两个冬小麦品种吸收利用土壤钼的差异及其调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼是植物必需的微量元素之一。不同作物对钼的需要量和吸收能力不同,因此植物钼营养存在基因型差异。钼高效品种97003和钼低效品种97014在干物质量、产量、钼含量及累积量、含钼酶及其调控过程等方面均存在显著差异。本文在已有研究的基础上,通过盆栽、根箱及营养液培养实验,应用生理生化研究技术,深入研究了两个冬小麦品种对钼吸收利用的差异及其调控机制。主要结果如下:
     1.研究了两个冬小麦品种根际过程对土壤钼生物有效性影响的差异。结果表明:缺钼条件下,两个冬小麦品种根区土壤有效钼含量显著高于不种植物的对照,且显著高于非根区土壤;施钼条件下,两个冬小麦品种根区土壤有效钼含量显著低于不种植物的对照,且显著低于非根区土壤。说明在缺钼条件下,冬小麦能够通过根系活化土壤钼以适应缺钼胁迫。缺钼条件下,两个冬小麦品种根区土壤pH显著高于不种植物的对照,且显著高于非根区土壤。说明冬小麦根际过程能提高根区土壤pH进而提高土壤钼的有效性。两个冬小麦品种根系N03-的吸收和NH4+的外排导致了H+的内流,说明H+内流是冬小麦根系提高根区土壤pH的原因。两个冬小麦品种根系活化土壤钼存在差异。缺钼条件下,97003根区土壤有效钼提高的幅度高于97014;施钼条件下,97003根区土壤有效钼降低的幅度低于97014,说明97003根系活化土壤钼的作用强于97014。缺钼条件下,97003外排较少的NH4+和吸收较少的N03-导致了较低的H+内流,进而导致了较低的根区pH。但是,97003根系较强的活化土壤钼的能力可能与较低的H+内流导致较低的根区土壤pH无关。
     2.研究了两个冬小麦品种钼吸收、转运及同化相关蛋白基因表达的差异。结果表明:两个冬小麦品种根系TaSultr5.1、TaSultr5.2和TaCnxl基因表达与钼吸收量密切相关。根系TaSultr5.2基因表达与钼吸收速率密切相关。当供钼水平低于1μmol、L时,97003具有较强的钼吸收能力,这与97003根系较高的TaSultr5.1、 TaSultr5.2和TaCnxl基因表达有关。相反,当供钼水平高于5μmol、L时,97003根系TaSultr5.2和TaCnx1基因的下调表达导致了其较弱的钼吸收能力。说明TaSultr5.1、TaSultr5.2和TaCnx1基因的不同表达模式可能是两个冬小麦品种不同供钼水平下钼吸收能力差异的原因。
     3.研究了竞争离子对两个冬小麦品种钼吸收转运相关蛋白基因表达的影响。结果表明:硫和磷的缺乏分别提高了两个冬小麦品种地上部以及根系钼含量、钼迁移系数及单株钼累积量,表明缺硫和缺磷均能促进冬小麦钼的吸收和迁移。同时,硫和磷的缺乏分别降低了两个钼水平下根系TaSultr1.1和TaPht1.1基因表达,提高了TaSultr5.1和TaSultr5.2基因表达。说明缺硫和缺磷提高TaSultr5.1和TaSultr5.2基因表达可能是缺硫和缺磷促进小麦钼吸收和迁移的原因。两个冬小麦品种钼吸收转运相关蛋白的基因表达对缺硫和缺磷的响应程度不同。
     4.研究了两个冬小麦品种钼辅因子合成相关蛋白基因表达的差异。结果表明:缺钼条件下,97003叶片或根系NR和SO活性高于97014,叶片AO和XDH活性低于97014;施钼条件下,97003叶片SO活性同样高于97014,根系SO活性低于97014;叶片AO和XDH活性低于97014,根系AO和XDH活性高于97014。缺钼条件下,97003叶片NR基因表达显著低于97014、叶片及根系AO和XDH基因表达显著高于97014;施钼条件下,97003叶片及根系AO和XDH基因表达显著低于97014,说明两个冬小麦品种含钼酶活性和基因表达在不同钼水平下表现出不同的差异。缺钼和施钼条件下,97003叶片和根系TaCnx2和TaCnx5基因表达显著低于97014,说明97003体内有较少的环状蝶呤单磷酸盐(cPMP)和钼喋呤(MPT)的累积。97003叶片和根系TaCnxl基因表达显著高于97014,说明97003体内有更多的钼辅因子(Moco)合成。97014根系具有较高的TaAba3基因表达,可能与钼辅因子相对缺乏诱导TaAba3基因表达有关。
     综上所述,两个冬小麦品种吸收利用土壤钼差异的可能机制是:缺钼条件下,钼高效品种97003根区土壤有效钼含量高于钼低效品种97014,说明97003具有较强的根系活化土壤钼的能力;97003根内钼吸收转运蛋白TaSultr5.2和TaSultr5.1基因表达显著高于97014,说明97003具有较强的钼吸收转运能力;97003体内钼同化过程关键蛋白TaCnx1基因表达显著高于97014,说明97003具有较强的钼辅因子生物合成能力。因此,冬小麦钼高效品种高效吸收利用土壤钼在于其在缺钼条件下具有较强的活化土壤钼的能力、钼吸收转运能力以及钼辅因子生物合成能力。其中,钼吸收转运能力的差异是两个冬小麦品种吸收利用土壤钼差异的主要原因。
Molybdenum (Mo) is an essential trace element for higher plants. Plants can have genotypic differences in Mo uptake and use. There were significient differences in dry matter (DM), grain yield, Mo concentration, Mo accumulation, Mo enzyme activities and their regulating processes between Mo-efficient winter wheat cultivar97003and Mo-inefficient winter wheat cultivar97014. Based on the results of earlier studies, soil and solution culture experiments were conducted to investigate the differences in Mo uptake, utilization and its regulation mechanisms between the two winter wheat cultivars. The main results were as follows.
     1. Rhizobox and hydroponic culture experiments were conducted to investigate the difference in rhizosphere precesses affecting availability of Mo between the two cultivars.The results showed that the available Mo concentration in the rhizosphere soil of the two cultivars was significantly inceased relative to the control without plants, and Mo concentration in the rhizosphere soil of the two cultivars was significantly higher than that in the non-rhizosphere soil in the-Mo treatment. In the+Mo treatment, the available Mo concentration in the rhizosphere soil of the two cultivars was significantly lower relative to the control without plants, and that in the rhizosphere soil of the two cultivars was significantly lower than that in the non-rhizosphere soil. This suggests that winter wheat can adapt to Mo deficiency stress through root activation of soil Mo. Under Mo-deficient conditions, the pH in the rhizosphere soil of the two cultivars was significantly inceased relative to the control without plants, and in the rhizosphere soil of the two cultivars was significantly higher than that in the non-rhizosphere soil. This indcates that rhizosphere processes of winter wheat can increase pH of the rhizosphere soil and thus increase the availability of Mo in the rhizosphere soil. The two cultivars absorbtion of NO3-and excretion of NH4+induced an influx of proton (H+), suggesting that H+influx into the roots of winter wheat might be the reason for increased pH of the rhizosphere soil. The two cultivars had differential abilities for activating soil Mo via rhizosphere processes. The available Mo in the rhizosphere soil of97003was higher than that in the rhizosphere soil of97014both in the-Mo and+Mo treatments. This suggests that97003has a greater ability for activating soil Mo. The pH of the rhizosphere soil of97003was lower than that of97014, which might be due to a lower net and mean H+influx into97003under Mo-deficient conditions.97003absorbed less NO3-and excreted less NH4+than97014, and thus induced a lower H+influx. However, the differences in the pH of the rhizosphere soil between the two cultivars might be nothing to do with the difference in the available Mo in the rhizosphere soils.
     2. A hydroponic culture experiment was conducted to investigate the difference in the expression of gene related to Mo uptake, transport and assimilation between the two cultivars.The results indicated a close relationship between Mo uptake and TaSultr5.1, TaSultr5.2and TaCnxl expression, according to a stepwise regression analysis of the time course of Mo uptake in the two cultivars. Meanwhile, expression of TaSultr5.2in roots also showed a positive relationship with Mo uptake rates.97003had stronger Mo uptake than97014at low Mo-application rates (less than1μmol Mo L-1) due to the higher expression of TaSultr5.2, TaSultr5.1and TaCnxl in roots. In contrast, Mo uptake of97003was weaker than97014at high Mo application rates (ranging from5to20μmol Mo L-1), which was related to significant down-regulation of TaSultr5.2and TaCnx1genes in roots of97003compared to97014. This indicates that the differential-expression intensities of TaSultr5.2, TaSultr5.1and TaCnxl could be the cause of the difference in Mo uptake between the two cultivars at low and high Mo application levels.
     3. A hydroponic culture experiment was conducted to investigate the influence of competitive ions on the expression of gene related to Mo uptake and transport in the two cultivars. The results showed that S and P deficiency increased Mo concentrations in shoots and roots, Mo translocation coefficients, and accumulation per plant, respectively. This shows that S and P deficiency can enhance Mo uptake and translocation in winter wheat, respectively. Meanwhile, S and P deficiency decreased the expression of TaSultr1.1and TaPht1.1but increased expression of TaSullr5.1and TaSultr5.2in roots of the two cultivars. This shows that S and P deficiency can enhance Mo uptake and translocation, which might be related to the increased TaSultr5.1and TaSultr5.2expression. There were different responses to S and P deficiency in Mo uptake, Mo translocation and expression of gene relted to Mo uptake and translocation between the two cultivars.
     4. A hydroponic culture experiment was conducted to investigate the difference in the expression of gene related to Moco biosynthesis between the two cultivars. The results showed that the activities of nitrate reductase (NR) and sulfite oxidase (SO) in leaves or roots of97003were higher than those of97014, but the activities of aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) in leaves of97003were lower than those of97014under Mo-deficient conditions. Under Mo-sufficient conditions,97003had higher SO activity in leaves, AO and XDH activities in roots but lower SO activity in roots, and AO and XDH activities in leaves than97014. The expression of NR in leaves of97003was lower than that of97014, but the expression of AO and XDH in leaves and roots of97003were lower that those of97014in the-Mo treatment.97003showed lower expression of AO and XDH in leaves and roots than97014in the+Mo treatment. This suggests that the difference in Mo enzyme activities and their gene expression between the two cultivars was different under Mo-deficient and Mo-suficient conditions respectively.97003had lower expression of TaCnx2and TaCnx5in leaves and roots than97014, which might result in the lower accumulation of cyclic pyranopterin monophosphate (cPMP) and molybdopterin (MPT) in97003. The expression of TaCnxl in leaves and roots of97003was significantly higher than that of97014, indicating more Moco formation in97003.97014had higher expression of TaAba3in roots than97003, which might be related to the increase of TaAba3expression incuded by the Moco shortage.
     Possible mechanisms of differences in the Mo uptake and utilization between two cultivars are summarized. Under Mo-deficient conditions, the available Mo concentration in the rhizosphere soil of97003was higher than that in the rhizosphere soil of97014, which suggested that97003had a stronger ability of activating soil Mo via rhizosphere processes; The expression of TaSultr5.2and TaSultr5.1in roots of97003were higher than those of97014, which suggested that97003had a stronger ability of Mo uptake and transport; The expression of TaCnxl in leaves and roots of97003were higher than those of97014, which suggested that97003had a stronger ability of Moco biosynthesis. Therefore, under Mo-deficient conditions, Mo-efficient cultivar using soil Mo efficiently was due to the stronger ability of activating soil Mo, Mo uptake and transport, and Moco biosynthesis. The difference in the ability of Mo uptake and transport might be the most important reason for the difference in the Mo uptake and utilization between the two winter wheat cultivars.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2008
    2.曹仁林,何宗兰,霍文瑞,潘言明,李艳丽.农作物对钼的吸收和累积规律.农业环境科学学报,1985,4:2-6
    3.陈龙池,廖利平,汪思龙,肖复明.根系分泌物生态学研究.生态学杂志,2002,21:57-62
    4.陈震,吴俊兰,郭福才.施用微量元素肥料对棉麦的增产效果.土壤肥料,1976,3:39-41
    5.甘巧巧,孙学成,胡承孝,谭启玲.施钼对不同钼效率冬小麦叶片呼吸作用相关酶的影响.植物营养与肥料学报,2007,13:113-117
    6.胡承孝,王运华,李宗堂,何华,谭启玲,杜昌文,魏文学.钼,氮配合施用对冬小麦产量,干物质积累的影响.华中农业大学学报,1999,18:225-228
    7.胡承孝,王运华,魏文学,李宗堂,何华,谭启玲,陈浩.钼在冬小麦植株中的分布研究.华中农业大学学报,2000,6:568-572
    8.胡承孝,王运华,庞静,陈浩,魏文学.冬小麦不同生育阶段对钼的吸收和积累.华中农业大学学报,2001,20:350-353
    9.蒋廷惠,郑绍建,石锦芹,胡窑堂,史瑞和,徐茂.植物吸收养分动力学研究中的儿个问题.植物营养与肥料学报,1995,1:11-17
    10.李丽书,陈献华,邵叶波,刘璇,徐平.黄嘌呤氧化还原酶的结构,功能和作用.细胞生物学杂志,2006,26:381-384
    11.林葆,李家康.当前我国化肥的若干问题和对策.磷肥与复肥,1997,2:1-5
    12.刘鹏,杨玉爱.土壤中的钼及其植物效应的研究进展.农业环境保护,2001,20:280-282
    13.刘铮,唐丽华,朱其清,韩玉勤,欧阳洮.我国主要土壤中微量元素的含量与分布初步总结.土壤学报,1978,15:138-150
    14.刘铮,朱其清,徐俊祥,严楚良.中国土壤中钼的含量与分布规律.环境科学学报,1990,10:132-137.
    15.刘铮.中国土壤微量元素.南京:江苏科学技术出版社,1997.
    16.刘芷宇.根际土壤的氮素状况.见:朱兆良,文启孝编,中国土壤氮素.南京:江苏科学技术出版社,1992.197-212
    17.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10:379-382
    18.施卫明.根系分泌物与养分有效性.土壤,1993,25:252-256
    19.宋松泉,王永锐,傅家瑞.高等植物中硝酸还原酶的研究进展.作物杂志,1993,4:32-35
    20.孙学成,胡承孝.高等植物含钼酶与钼营养.植物生理学通讯,2005,41:395-399
    21.孙学成,胡承孝,谭启玲,甘巧巧.低温胁迫下钼对冬小麦光合作用特性的影响.作物学报,2006a,32:1418-1422
    22.孙学成,谭启玲,胡承孝,甘巧巧,易长城.低温胁迫下钼对冬小麦抗氧化酶活性的影响.中国农业科学,2006b,39:952-959
    23.孙学成.钼提高冬小麦抗寒力的生理基础及分子机制.[博士学位论文].武汉:华中农业大学图书馆,2007
    24.谭和平,张玉兰,高杨,吕昊,陈能武,孙羽婕.ICP-AES法在茶叶磷和硫分析中的应用.中国测试,2011,3:50-52
    25.涂书新,孙锦荷,郭智芬,谷峰.植物根系分泌物与根际营养关系评述.土壤与境,2000,9:64-67
    26.万耀星,刘雄德,李正艳.土壤有效钼及植物全铝的示波极谱测定.土壤通报,1988,19:43-46
    27.王夔.生命科学中的微量元素(上).北京:中国计量科学出版社,1991.251-299
    28.王运华,魏文学,谭启玲,杜应琼,许松林.湖北省黄棕壤冬小麦缺铝和施铝研究.土壤肥料,1995,4:24-28
    29.王运华,魏文学,胡承孝,谭启玲.钼肥对冬小麦的增产效果.土壤肥料,1997,3: 11
    30.王治荣,王运华,闽志忠,陶维银,张垒勤,陈陶平,梅和定.钼肥对小麦增产作用的初步研究.土壤肥料,1991,3:29-31
    31.魏向文,温永煌,翁善兰.江西土壤微量元素含量水平与微肥效应.土壤肥料,1986,1:23-27
    32.吴明才,肖昌珍.大豆钼素研究.大豆科学,1994,13:245-251
    33.邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述.应用生态学报,2000,11:785-790
    34.徐卫红,王宏信,刘怀,熊治庭,Balwant Singh. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响.环境科学,2007,28:2089-2095
    35.喻敏.冬小麦不同基因型的钼效率及其生理基础.[博士学位论文].武汉:华中农业大学图书馆,2000
    36.喻敏,胡承孝,王运华.冬小麦缺钼反应的基因型筛选.华中农业大学学报,2003,22:360-364
    37.喻敏,胡承孝,王运华.不同钼效率冬小麦品种钼的吸收和分配.中国农业科学,2004,37:1749-1753
    38.曾曙才,苏志尧,陈北光,俞元春.植物根际营养研究进展.南京林业大学学报(自然科学版),2003,27:79-83
    39.张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998.21-75
    40.张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29:239-250
    41.张福锁,申建波,冯固等著.根际生态学-过程与调控.北京:中国农业大学出版社,2009
    42.赵明宇.应用石墨炉原子吸收分光光度法检测水中钼.内蒙古科技与经济,2011,9:97-98
    43.赵秋芳.两个冬小麦基因型根系生理特征对钼营养效率的影响.[硕士学位论文].武汉:华中农业大学图书馆,2012
    44.赵秋芳,胡承孝,孙学成,谭启玲,张木,朱伟堃.冬小麦不同钼效率品种钼吸收差异及其与根系形态特征的关系.华中农业大学学报,2013,32:67-71
    45.周阮宝,谷丽萍.植物硝酸还原酶的研究进展.植物杂志,1994,3:5-7
    46. Adriano DC. Trace elements in terrestrial environments:biogeochemistry, bioavailability, and risks of metals. Berlin: Springer-Verlag, 2001.614-615
    47. Afridi M, Hewitt E. The Inducible formation and stability of nitrate reductase in higher plants:Ⅰ. Effects of nitrate and molybdenum on enzyme activity in cauliflower (Brassica oleracea var. Botrytis). J Exp Bot, 1964, 15:251-271
    48. Aguey-Zinsou KF, Bernhardt PV, Leimkuhler S. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase. J Am Chem Soc, 2003,125: 15352-15358
    49. Akaba S, Seo M, Dohmae N, Takio K, Sekimoto H, Kamiya Y, Furuya N, Romano T, Koshiba T. Production of homo-and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J Biochem, 1999, 126:395-401
    50. Alhendawi RA, Kirkby EA, Pilbeam DJ. Evidence that sulfur deficiency enhances molybdenum transport in xylem sap of tomato plants. J Plant Nutr, 2005,28: 1347-1353
    51. Alikulov ZA, Mendel RR. Molybdenum cofactor from tobacco cell cultures and milk xanthine oxidase:involvement of sulfhydryl groups in dimerization activity of cofactor. Biochemie Physiologie Pflanzen, 1984, 179:693-705
    52. Bais H, Weir T, Perry L, Gilroy S and Vivanco J. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol, 2006, 57:233-266
    53. Balik J, Pavlikova D, Tlustos P, Sykora K, Cerny J. The fluctuation of molybdenum content in oilseed rape plants after the application of nitrogen and sulphur fertilizers. Plant Soil Environ,2006,52:301-307
    54. Balk J, Lobreaux S. Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci, 2005,10:324-331
    55. Barber SA. Soil Nutrient Bioavailability. In:A mechanistic approach. New York: John Wiley and Sons Incorporation, 1984.95-99
    56. Basak A, Mandal L N, Haldar M. Interaction of phosphorus and molybdenum in relation to uptake and utilization of molybdenum, phosphorus, zinc, copper and manganese by rice. Plant Soil, 1982, 68:261-269
    57. Baxter I, Muthukumar B, Park H, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford M and Guerinot M. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). Plos Genet, 2008, 4:e1000004
    58. Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. JBiol Chem,2001,276:40381-40384
    59. Boland MJ. NAD+:xanthine dehydrogenase from nodules of navy beans:partial purification and properties. Biochem Int, 1981,2:567-574
    60. Bolchi A, Petrucco S, Tenca PI, Foroni C and Ottonello S. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNA in response to variations in sulfur nutritional status:stereospecific down-regulation by L-cysteine. Plant Mol Biol, 1999, 39:527-537
    61. Bravin MN, Gamier C, Lenoble V, Gerard F, Dudal Y, Hinsinger P. Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim Cosmochim Ac, 2012, 84:256-268
    62. Breteler H. Comparison between ammonium and nitrate nutrition of young sugar-beet plants grown in nutrient solutions at constant acidity. 1. Production of drymatter, ionic balance and chemical composition. Neth JAgr Sci, 1973,21:227-244
    63. Britto DT, Kronzucker HJ. Futile cycling at the plasma membrane:a hallmark of low-affinity nutrient transport. Trends Plant Sci, 2006, 11:529-534
    64. Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants. P Natl Acad Sci, 2001,98:4255-4258
    65. Brown J, Clark R. Differential response of two maize inbreds to molybdenum stress. Soil Sci Soc Am J, 1974, 38:331-333
    66. Brychkova G, Alikulov Z, Fluhr R, Sagi M. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdhl Arabidopsis mutant. Plant J, 2008,54:496-509
    67. Brychkova G, Xia Z, Yang G, Yesbergenova Z, Zhang Z, Davydov O, Fluhr R, Sagi M. Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J, 2007, 50: 696-709
    68. Buchner P, Takahashi H and Hawkesford MJ. Plant sulphate transporters: coordination of uptake, intracellular and long distance transport. J Exp Bot, 2004, 55: 1785-1798
    69. Buchner P, Parmar S, Kriegel A, Carpentier M, Hawkesford MJ. The sulfate transporter family in wheat: tissue-specific gene expression in relation to nutrition. Mol Plant, 2010,3:374-389
    70. Campbell WH. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Biol, 1999, 50:277-303
    71. Campbell WH. Structure and function of eukaryotic NAD(P) H:nitrate reductase. Cell Mol Life Sci,2001,58:194-204
    72. Chen YL, Guo YQ, Han SJ, Zou CJ, Zhou YM and Cheng GL. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil. J Forestry Res, 2002,13:115-118
    73. Corpas FJ, Colina C, Sanchez-Rasero F, Rio LA. A role of leaf peroxisomes in the catabolism of purines. J Plant Physiol, 1997,151:246-250
    74. Datta DB, Triplett EW, Newcomb EH. Localization of xanthine dehydrogenase in cowpea root nodules:implications for the interaction between cellular compartments during ureide biogenesis. P Natl Acad Sci,1991,88:4700-4702
    75. Das AK, Chakraborty R, Cervera ML and De la Guardia M. A review on molybdenum determination in solid geological samples. Talanta, 2007, 71:987-1000
    76. Davies EB. Factors affecting molybdenum availability in soils. Soil Sci, 1956, 81: 209-222
    77. Dhankar JS, Kumar V, Sangwasra SPS. Effect of sulfur and molybdenum application on dry matter yield, uptake and utilization of soil and fertilizer-sulfur in raya crop (Brassica juncea Coss). Agrochemica, 1993,37:316-329
    78. Dios R, Broyer T. Deficiency symptoms and essentiality of molybdenum in corn hybrids. Agrochimica Pisa, 1965, 9:273
    79. Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hansch R, Mendel RR. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem, 2001, 276:46989-46994
    80. Evans H, Nason A. The effect of reduced triphosphopyridine nucleotide on nitrate reduction by purified nitrate reductase. Arch Biochem Biophys, 1952, 39(1):234-235.
    81. Evans HJ, Nason A. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol, 1953,28:233-254
    82. Fedorova E, Greenwood JS, Oaks A. In-situ localization of nitrate reductase in maize roots. Planta,1994,194:279-286
    83. Fischer K, Llamas A, Tejada-Jimenez M, Schrader N, Kuper J, Ataya FS, Galvan A, Mendel RR, Fernandez E, Schwarz G. Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii. J Biol Chem, 2006, 281: 30186-30194
    84. Fitzpatrick K, Tyerman S and Kaiser B. Molybdate transport through the plant sulfate transporter SHST1. Febs Lett,2008, 582:1508-1513
    85. Fortescue JA. Landscape geochemistry:Retrospect and prospect-1990. Appl Geochem, 1992,7:1-53
    86. Garrett RM, Rajagopalan KV. Site-directed mutagenesis of recombinant sulfite oxidase. J Biol Chem,1996,271:7387-7391
    87. Gasber A, Klaumann S, Trentmann O, Trampczynska A, Clemens S, Schneider S, Sauer N, Feifer I, Bittner F and Mendel R. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol,2011,13:710-718
    88. Goldberg S. Competitive adsorption of molybdenum in the presence of phosphorus or sulfur on gibbsite. Soil Sci, 2010, 175:105-110
    89. Gupta UC. Soil and plant factors affecting molybdenum uptake by plants. In Gupta UC. Molybdenum in agriculture. New York: Cambridge University Press, 1997. 71-91
    90. Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol, 2003,132:578-596
    91. Hammond JP, Broadley MR, White PJ. Genetic responses to phosphorus deficiency. Ann Bot, 2004, 94:323-332
    92. Haynes R. Active ion uptake and maintenance of cation-anion balance:A critical examination of their role in regulating rhizosphere pH. Plant Soil, 1990, 126:247-264
    93. Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B. Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem, 2006, 281:34796-34802
    94. Havemeyer A, Lang J, Clement B. The fourth mammalian molybdenum enzyme mARC:current state of research. Drug Meta Rev, 2011,43:524-539
    95. Hawkesford MJ. Transporter gene families in plants:the sulphate transporter gene family:redundancy or specialization? Physiologia Plantarum, 2003,117:155-163
    96. He Y, Xu J, Tang C, Wu Y. Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biol Biochem, 2005,37:2017-2024
    97. Hedley MJ, White RE, Nye PH. Plant-induced changes in the rhizosphere of rape (Brassica Napus var. Emerald) seedlings. New Phytol, 1982, 91:45-56
    98. Hemann C, Hood BL, Fulton M, Hansch R, Schwarz G, Mendel RR, Kirk ML, Hille R. Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase:nature of the redox-active orbital and electronic structure contributions to catalysis. J Am Chem Soc,2005,127:16567-16577
    99. Hesberg C, Hansch R, Mendel RR, Bittner F. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: Differential gene expression and enzyme activities. J Biol Chem, 2004, 279:13547-13554
    100.Heuwinkel H, Kirkby EA, Bot JL and Marschner H. Phosphorous deficiency enhances molybdenum uptake by tomato plants. J Plant Nutr, 1992, 15:549-568
    101.Hew CS, Chai BW. Effect of light intensity, nitrate and molybdenum levels on nitrate assimilation in Choy Sam (Brassica chinensis). International Congress on Soilless Culture, 1984
    102.Hille R, Nishino T, Bittnerc F. Molybdenum enzymes in higher organisms. Coordin Chem Rev,2011,255:1179-1205
    103.Hinsinger P, Bengough AG, Vetterlein D, Young IM. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil, 2009, 321:117-152
    104.Howarth JR, Fourcroy P, Davidian JC, Smith FW and Hawkesford MJ. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae. Planta, 2003,218:58-64
    105.Ibdah M, Chen YT, Wilkerson CG, Pichersky E. An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol, 2009, 150: 416-423
    106.Ide Y, Kusano M, Oikawa A, Fukushima A, Tomatsu H, Saito K, Hirai M Y and Fujiwara T. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. J Exp Bot, 2011,62:1483-1497
    107.Ishizuka J. Characteristics of molybdenum absorption and translocation in soy bean plants Glycine max. Soil Sci Plant Nutr, 1982, 28:63-77
    108. Johnson JL, Hainline BE, Rajagopalan KV, Arison BH. The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem,1984,259:5414-5422
    109.Kaiser BN, Gridley KL, Brady JN, Phillips T and Tyerman SD. The role of molybdenum in agricultural plant production. Ann Bot, 2005,96:745-754
    110.Kannan S, Ramani S. Studies on molybdenum absorption and transport in bean and rice. Plant Physiol,1978,62:179-181
    111.Karimian N and Cox F. Adsorption and extractability of molybdenum in relation to some chemical properties of soil. Soil Sci Soc Am J,1978,42:757-761
    112.Karthikeyan AS, Varadarajan DK, Mukatira UT, D'Urzo MP, Damsz B, Raghothama KG. Regulated expression of Arabidopsis phosphate transporters, Plant Physiol, 2002, 130:221-233
    113.Katalin Barabas N, Omarov RT, Erdei L, Herman Lips S. Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci, 2000, 155:49-58
    114.Kataoka T, Hayashi N, Yamaya T and Takahashi H. Root-to-shoot transport of sulfate in Arabidopsis:evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol, 2004a, 136: 4198-4204
    115.Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T and Takahashi H. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell,2004b,16:2693-2704
    116.Kisker C, Schindelin H, Rees DC. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem,1997,66:233-267
    117.Kochian LV, Shaff JE, Kiihtreiber WM, Jaffe LF, Lucas WJ. Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+, and Ca2+ fluxes in maize roots and maize suspension cells. Planta, 1992, 188:601-610
    118.Koiwai H, Akaba S, Seo M, Komano T, Koshiba T. Functional expression of two Arabidopsis aldehyde oxidases in the yeast Pichia pastoris. J Biochem, 2000, 127: 659-664
    119.Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. Purification and properties of flavin-and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol, 1996, 110:781-789
    120.Kotthaus J, Wahl B, Havemeyer A, Schade D, Garbe-Schonberg D, Mendel R, Bittner F, Clement B. Reduction of Nomega-hydroxy-L-arginine by the mitochondrial amidoxime reducing component (mARC). Biochem J, 2011,433:383-391
    121.Kozmin SG, Leroy P, Pavlov YI, Schaaper RM. YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Mol Microbiol, 2008,68:51-65
    122.Kramer SP, Johnson AA, Ribeiro DS, Millington KV, Rajagopalan J. The structure of the molybdenum cofactor. Characterization of di-(carboxamidomethyl) molybdopterin from sulfite oxidase and xanthine oxidase. J Biol Chem, 1987, 262: 16357-16363
    123.Kubo Y, Ogura N, Nakagawa H. Limited proteolysis of the nitrate reductase from spinach leaves. J Biol Chem, 1988, 263:19684-19689
    124.Kubota J, Lemon ER and Allaway WH. The effect of soil moisture content upon the uptake of molybdenum, copper, and cobalt by alsike clover. Soil Sci Soc Am J, 1963, 27:679-683.
    125.Kumar V, Singh M. Interaction of sulfur, phosphorus and molybdenum in relation to uptake and utilization of phosphorus by soybean. Soil Sci, 1980, 130:26-31
    126.Kumar M, Singh A, Prakash J, Katiyar T, Bharose RKR. Effect of phosphorus and molybdenum on yield and nutrient uptake by cowpea. Asian J Soil Sci, 2013,8: 366-369
    127.Kiihtreiber WM, Jaffe LF. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol, 1990, 110:1565-1573
    128.Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G. The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. J Biol Chem, 2006, 281:18343-18350
    129.Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Haensch R. Sulphite oxidase as key enzyme for protecting plants against sulphur dioxide. Plant Cell Environ, 2007, 30:447-455
    130.Lasztity B. Effect of nutrition levels on the Mo accumulation of winter wheat on a calcareous chernozem soil. Agrokemia es Talajtan, 1992, 41:261-270
    131.Lemon ER, Allaway WH and Kubota J. The effect of soil moisture content upon the uptake of molybdenum, copper and cobalt by alsike clover. Soil Sci Soc Am J, 1963, 27:679-683
    132.Leustek T, Martin MN, Bick J and Davies JP. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol, 2000,51:141-165
    133.Lindsay WL. Chemical equilibria in soils. New York: John Wiley and Sons, 1979.
    134.Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol, 1998, 116:91-99
    135.Liu HE, Hu CX, Hu XM, Nie ZJ, Sun XC, Tan QL, Hu H. Interaction of molybdenum and phosphorus supply on uptake and translocation of phosphorus and molybdenum by Brassica napus. J Plant Nutr, 2010, 33:1751-1760
    136.Liu HE, Hu CX, Sun XC, Tan QL, Nie ZJ. Interactive effects of molybdenum and phosphorus fertilizers on dry matter accumulation, seed yield and yield components in Brassica napus. J Food Agric Environ, 2012, 10:389-392
    137.Liu X, Zhao X, Zhang L, Lu W, Li X, Xiao K. TaPhtl; 4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol, 2013,40: 329-341
    138.Lopez-Martinez E, Carbonell-Barrachina A, Burlo-Carbonell F, Arenas-Pozo M, Alemany-Garcia M, Mataix-Beneyto J. Molybdenum uptake, distribution and accumulation in bean plants. Fresen Environ Bull, 1996, 5:73-78
    139.Mandal B, Pal S, Mandal LN. Effect of molybdenum, phosphorus, and lime application to acid soils on dry matter yield and molybdenum nutrition on lentil. J Plant Nutr,1998,21:139-147
    140.Marschner H. Mineral Nutrition of Higher Plants. London: Academic, 1995.
    141.Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global Effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol, 2003,132: 597-605
    142.Mendel RR, Bittner F. Cell biology of molybdenum. Bba-Mol Cell Res, 2006, 1763: 621-635
    143.Mendel RR, Hansch R. Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot, 2002,53:1689-1698
    144.Mendel RR, Schwarz G. Molybdenum cofactor biosynthesis in plants and humans. Coordin Chem Rev, 2011,255:1145-1158
    145.Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. Bba-Mol Cell Res,2012,1823:1568-1579
    146.Mendel RR. The Molybdenum Cofactor. J Biol Chem, 2013,288:13165-13172
    147.Mengel KE, Kirby A. Principles of Plant Nutrition (third edition). Bern: International Potash Institute,1987.68-79
    148.Milborrow BV. The pathway of biosynthesis of abscisic acid in vascular plants:a review of the present state of knowledge of ABA biosynthesis. J Exp Bot, 2001,52: 1145-1164
    149.Miller AJ, Cramer MD. Root nitrogen acquisition and assimilation. Plant Soil, 2004, 274:1-36
    150.Miyasaka SC, Kochian LV, Shaff JE, Foy CD. Mechanisms of aluminum tolerance in wheat an investigation of genotypic differences in rhizosphere pH, K+, and H+ transport, and root-cell membrane potentials. Plant Physiol, 1989, 91:1188-1196
    151.Montalbini P. Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Sci, 1998,134:89-102
    152.Mudge SR, Rae AL, Diatloff E. Expression analysis suggests novel roles for members of the Phtl family of phosphate transporter in Arabidopsis. Plant J, 2002, 31:341-353
    153.Mulder E. Molybdenum in relation to growth of higher plants and micro-organisms. Plant Soil,1954,5:368-415
    154.Nakagawa A, Sakamoto S, Takahashi M, Morikawa H, Sakamoto A. The RNAi-mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants. Plant Cell Physiol, 2007, 48:1484-1495
    155.Nason A, Lee KY, Pan SS, Ketchum PA, Lamberti A, DeVries J. In vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate:nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes. P Natl Acad Sci,1971,68:3242-3246
    156.Nie ZJ, Hu CX, Sun XC, Tan QL, Liu HE. Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Soil, 2007, 295:13-21
    157. Nowak K, Luniak N, Witt C, Wustefeld Y, Wachter A, Mendel RR, Hansch R. Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol, 2004,45:1889-1894
    158. Omarov RT, Sagi M, Lips SH. Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. J Exp Bot, 1998,49:897-902
    159.Palmgren M, Harper J. Pumping with P-type ATPases. J Exp Bot, 1999,50:883-893
    160.Pasricha NS, Nayyar VK, Randhawa NS, Sinha M K. Influence of sulfur fertilization on suppression of molybdenum uptake by berseem (Trefolium Alexandrinum L.) and oats(Aneva Sativa L.) growing on a molybdenum toxic soil. Plant Soil, 1977, 46: 245-250
    161.Patel NA, Mehta BV. The effect of copper, molybdenum and phosphorus on the yield and composition of Alfalfa. Indian J Agr Sci, 1977, 44:893-896
    162.Pearson J, Stewart GR. The deposition of atmospheric ammonia and its effects on plants. New Phytol, 1993,125:283-305
    163.Perez-Vecinte R, Alamillo JM, Cardenas J, Pineda M. Purification and substrate inactivation of xanthine dehydrogenase from Chlamydomonas reinhardtii. Bba-Gen Subjects, 1992, 1117:159-166
    164.Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res,2001,29:2002-2007
    165.Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book, 2002, 1:e0024
    166.Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J. The TIGR Gene Indices:analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res, 2001,29:159-164
    167.Randall P. Changes in nitrate and nitrate reductase levels on restoration of molybdenum to molybdenum-deficient plants. Crop Pasture Sci, 1969, 20:635-642
    168.Rausch C, Zimmermann P, Amrhein N, Bucher M. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto-and heterotrophic tissues in potato and Arabidopsis. Plant J, 2004, 39:13-28
    169.Rebafka FP, Ndunguru BJ, Marschner H. Single superphosphate depresses molybdenum uptake and limits yield response to phosphorus in groundnut (Arachis hypogaea L.) grown on an acid sandy soil in Niger, West Africa. Fert Res, 1993,34: 233-242
    170.Reddy KJ, Munn LC and Wang L. Chemistry and mineralogy of molybdenum in soils. In Gupta UC. Molybdenum in agriculture. New York:Cambridge University Press,1997.4-22
    171.Rengel Z. Root exudation and microflora populations in rhizosphere of crop genotypes differing in tolerance to micronutrient deficiency. Plant Soil, 1997, 196: 255-260
    172.Rodriguez-Trelles F, Tarrio R, Ayala FJ. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. P Natl Acad Sci, 2003,100:13413-13417
    173.Rose TJ, Hardiputra B, Rengel Z. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil, 2010,326:159-170
    174.Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian J-C, Fourcroy Pand Berthomieu P. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol, 2008,147: 897-911
    175.Roy W, Hassett J, Griffin R. Competitive coefficients for the adsorption of arsenate, molybdate, and phosphate mixtures by soils. Soil Sci Soc Am J, 1986, 50:1176-1182
    176.Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001,15:2122-2133
    177.Rufty TW, Thomas JF, Remmler JL, Campbell WH, Volk RJ. Intercellular localization of nitrate reductase in roots. Plant Physiol, 1986, 82:675-680
    178.Sagi M, Fluhr R, Lips SH. Aldehyde oxidase and xanthine dehydrogenase in aflacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol, 1999, 120:571-578
    179.Sairam RK, Till AR, Blair GJ. Effect of sulfur and molybdenum levels on growth, nitrate-assimilation and nutrient content of phalaris. J Plant Nutr, 1995,18: 2093-2103
    180.Saito K. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol, 2004,136:2443-2450
    181.Schiavon M, Pittarello M, Pilon-Smits E, Wirtz M, Hell R, Malagoli M. Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.: Implications for phytoremediation. Environ Exp Bot, 2012,75:41-51
    182.Schunmann PH, Richardson AE, Vickers CE, Delhaize E. Promoter analysis of the barley Phtl; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol, 2004, 136: 4205-4214
    183.Schwarz G, Mendel RR. Molybdenum cofactor biosynthesis and Molybdenum enzymes. Annu Rev Plant Biol, 2006, 57:623-647
    184.Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature,2009,460:839-847
    185.Schwarz G. Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci, 2005,62:2792-2810
    186.Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci,2002,7:41-48
    187.Seo M, Koshiba T. Transport of ABA from the site of biosynthesis to the site of action. J Plant Res,2011,124:501-507
    188.Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J, 2000a, 23: 481-488
    189.Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. P Natl Acad Sci, 2000b, 97:12908-12913
    190. Singh M, Kumar V. Sulfur, phosphorus, and molybdenum interactions on the concentration and uptake of molybdenum in soybean plants (Glycine max). Soil Sci, 1979, 127:307-312
    191.Sheppard MI and Thibault DH. Desorption and extraction of selected heavy metals from soils. Soil Sci Soc Am J, 1992, 56:415-423
    192.Shin HS, Shin HS, Dewbre GR, Harrison J. Phosphate transporter in Arabidopsis: Pht1.1 and Pht1.4 play a major role in phosphate acguisition from both low- and high-phosphate environments. Plant J, 2004, 39:629-642
    193.Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao F-J, McGrath SP, Hawkesford MJ. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol, 2010,153:327-336
    194.Smiley R. Rhizosphere pH as influenced by plants, soils, and nitrogen fertilizers. Soil Sci Soc Am J, 1974, 38:795-799
    195.Smith FW, Ealing PM, Hawkesford MJ and Clarkson DT. Plant members of a family of sulfate transporters reveal functional subtypes. P Natl Acad Sci USA,1995a, 92: 9373-9377
    196.Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR and Warrilow AG. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J, 1997, 12:875-884
    197.Smith FW, Hawkesford MJ, Prosser IM and Clarkson DT. Isolation of a cDNA from Saccharomyces cerevisiae that an codes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet, 1995b, 247:709-715
    198.Smith FW, Rae AL and Hawkesford MJ. Molecular mechanisms of phosphate and sulphate transport in plants. Bba-Biomembranes, 2000, 1465:236-245
    199.Solomonson LP, Barber MJ. Assimilatory nitrate reductase:functional properties and regulation. Annu Rev Plant Biol, 1990, 41:225-253
    200.Stoimenova M, Hansch R, Mendel R, Gimmler H, Kaiser WM. The role of nitrate reduction in the anoxic metabolism of roots. I. Characterization of root morphology and normoxic metabolism of wild type tobacco and a transformant lacking root nitrate reductase. Plant Soil, 2003,253:145-153
    201.Stout P, Meagher W. Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science, 1948,108:471-473
    202.Stout PR, Meagher WR, Pearson GA, Johnson CM. Molybdenum nutrition of crop plants. Ⅰ. Influence of phosphate and sulfate on absorption of molybdenum from soils and solution culture. Plant Soil, 1951,3:51-87
    203.Stroud J, Zhao F, Buchner P, Shinmachi F, McGrath S, Abecassis J, Hawkesford M, Shewry P. Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain. J Cereal Sci, 2010,52:111-113
    204.Sun XC, Hu CC, Tan QC, Liu JS, Liu HE. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot, 2009, 104:345-356
    205.Sun XC, Hu CX, Tan QL. Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. J Plant Physiol Mol Biol, 2006,32:175-182
    206.Skarpa P, Kunzova E, Zukalova H. Foliar fertilization with molybdenum in sunflower (Helianthus annuusm L.). Plant Soil Environ,2013,59:156-161
    207.Takahashi H, Sasakura N, Noji M and Saito K. Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. Febs Lett, 1996, 392: 95-99
    208.Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ and Saito K. The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J, 2000, 23:171-182
    209.Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Vanmontagu M and Saito K. Regulation of sulfur assimilation in higher plants:a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. P Natl Acad Sci USA,1997,94:11102-11107
    210.Taylor NJ, Cowan AK. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado. J Plant Res, 2004, 117: 121-130
    211.Teng W, Deng Y, Chen XP, Xu XF, Chen RY, Lv Y, Zhao YY, Zhao XQ, He X, Li B. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. JExp Bot, 2013,64:1403-1411
    212.Teschner J, Lachmann N, Schulze J, Geisler M, Selbach K, Santamaria-Araujo J, Balk J, Mendel RR, Bittner F. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell Online, 2010, 22: 468-480
    213.Tessier A, Campbell PGC and Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51:844-851
    214.Thomas MD, Hendricks RH, Hill GR. Some chemical reactions of sulphur dioxide after absorption by alfalfa and sugar beets. Plant Physiol, 1944, 19:212-216
    215.Ticconi CA, Abel S. Short on phosphate:plant surveillance and countermeasures. Trends Plant Sci,2004,9:548-555
    216.Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N and Fujiwara T. An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. P Natl Acad Sci, 2007, 104:18807-18812
    217.Van Beusichem ML, Baas R, Kirkby EA, Nelemans JA. Intracellular pH regulation during NO3- assimilation in shoot and roots of Ricinus communis. Plant Physiol, 1985,78:768-773
    218.Van Beusichem ML, Nelemans JA, Bienfait HF. nterrelationships between trans-plasma membrane electron/proton transfer stoichiometry, organic acid metabolism, and nitrate reduction in dwarf bean (Phaseolus vulgaris). Plant Physiol, 1988,87:269-273
    219.Van Riet L, Nagaraj V, Van den Ende W, Clerens S, Wiemken A, Van Laere A. Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.). J Exp Bot,2006,57:213-223
    220.Vaughn KC, Campbell WH. Immunogold localization of nitrate reductase in maize leaves. Plant Physiol, 1988,88:1354-1357
    221.Versaw WK, Harrison MJ. A chloroplast phosphate transporter, PHT2:1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell,2002,14:1751-1766
    222.Vieira R, Cardoso E, Vieira C and Cassini S. Foliar application of molybdenum in common beans. Ⅰ. Nitrogenase and reductase activities in a soil of high fertility. J Plant Nutr,1998,21:169-180
    223.Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA. A Secl4p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005,168:801-812
    224.Wahl B, Reichmann D, Niks D, Krompholz N, Havemeyer A, Clement B, Messerschmidt T, Rothkegel M, Biester H, Hille R. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes. J Biol Chem, 2010, 285:37847-37859
    225.Wiesler F, Horst W. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching. Plant Soil, 1993,151: 193-203
    226.Xie RJ, Mackenzie AF. Molybdate sorption-desorption in soils treated with phosphate. Geoderma, 1991,48:321-333
    227.Xu Y, Sun T, Yin LP. Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol, 2006a, 48:823-831
    228.Xu N, Christodoulatos C, Braida W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite:effect of pH and competitive anions. Chemosphere, 2006b, 62:1726-1735
    229.Xu N, Christodoulatos C, Braida W. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemosphere, 2006c, 64:1325-1333
    230.Yaneva I, Mack G, Vunkova-Radeva R, Tischner R. Changes in nitrate reductase activity and the protective effect of molybdenum during cold stress in winter wheat grown on acid soil. J Plant Physiol, 1996, 149:211-216
    231.Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J, 2005, 42:862-876
    232.Yu B, Xu C, Benning C. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. P Natl Acad Sci, 2002a, 99:5732-5737
    233.Yu M, Hu CX, Wang YH. Influences of seed molybdenum and molybdenum application on nitrate reductase activity, shoot dry matter, and grain yields of winter wheat cultivars. J Plant Nutr,1999,22:1433-1441
    234.Yu M, Hu CX, Wang YH. Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution. Plant Soil, 2002b, 245:287-293
    235. Yu M, Hu CX, Sun XC, Wang Y-H. Influences of Mo on nitrate reductase, glutamine synthetase and nitrogen accumulation and utilization in Mo-efficient and Mo-inefficient winter wheat cultivars. Agr Sci China, 2010, 9:355-361
    236.Zarepour M, Simon K, Wilch M, Nielander U, Koshiba T, Seo M, Lindel T, Bittner F. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Mol Biol. 2002,80:659-671
    237.Zdunek-Zastocka E, Lips HS. Is xanthine dehydrogenase involved in response of pea plants (Pisum sativum L.) to salinity or ammonium treatment? Acta Physiol Plant, 2003,25:395-401
    238.Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Cao AY, Cui M, Zhang Y. Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant Soil, 2012, 355: 375-383
    239.Zimmer W, Mendel RR. Molybdenum metabolism in plants. Plant Biol, 1999, 1: 10-168
    240.Zonia L, Cordeiro S, Tupy J, Feijo JA. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5, 6-tetrakisphosphate. Plant Cell Online,2002, 14:2233-2249
    241.Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol, 2006, 57:805-836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700