超(超)临界锅炉水冷壁安全监测与鳍片尺寸设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超(超)临界发电机组的发展,世界各国特高参数、特大容量机组越来越多,尤其是中国,发展更为迅速。超临界和超超临界机组已经成为我国电力行业“十一五规划”的主要发展机型。所以关于此类机组设备的设计制造、安全运行监测的研究越来越重要。
     本文为研究超(超)临界电站锅炉水冷壁的安全运行与监测,针对超(超)临界电站锅炉水冷壁截面温度场进行了大量工况的数值模拟,根据对两种结构尺寸水冷壁截面温度场的数值模拟,找到向火侧危险点温度、炉内局部热负荷、管内对流换热系数与背火侧三个特定点温度之间的关系,根据拟合的关系式发现,均与背火侧特定点温差成幂函数关系。
     搭建了水冷壁监测实验台进行验证和实践应用研究。根据其中一种结构尺寸的水冷壁搭建了实验装置,对拟合的关系式进行了验证和应用研究,研究发现对向火侧危险点温度和炉内局部热负荷的间接监测误差满足实践需要,对管内对流换热系数的监测由于误差放大,仅具有参考价值。
     提出了“背火侧三点法”监测水冷壁安全的方法,利用“背火侧三点法”监测水冷壁危险点壁温和炉内热负荷的方法在河南沁北电厂锅炉水冷壁上进行了应用,并对运行中的水冷壁和炉内燃烧工况进行了监测的实践。
     本文还针对沁北电厂的管子尺寸对多个厚度鳍片的水冷壁温度场进行了数值模拟,得到了鳍片危险点温度与鳍片厚度之间的关系,找到了使鳍片能满足焊接和安装要求且不超温的最小厚度,为超(超)临界压力节省较为昂贵的鳍片用钢提供了一种方法。
With the development of the supercritical and ultra-supercritical units, there are more and more high-parameters, large-capacity plants in the world, which are developing much more rapidly in China. The supercritical and ultra-supercritical units have been primary choices in utility industry in the 11th five-year plan. Therefore, the design, the manufacture and the safe-operation monitoring of such units, are becoming more and more significant.
     The dissertation simulates a lot of the temperature field of boiler water wall in supercritical and ultra-supercritical power boilers. Based on numerical simulation to the temperature fields of the two kinds of water walls of two structural sizes, the relationship is found between the temperature on fire wall side, thermal load inside boiler, the coefficient of heat exchange and the temperature difference of three key points on back wall side. According to the fitting relationship, the formulations form a power function between those and the temperature of the special points on back wall.
     A monitoring water-wall test bed is built for validation and practical application. This dissertation verifies the relation and studies the application by building an experimental device according to one dimension of the water-wall structure. It finds that the error of indirect monitoring meets the practical needs for the temperature on fire wall side and thermal load inside boiler, but those only provide reference value because the errors are enlarged to monitor the coefficient of heat exchange.
     "Three Point Method" is proposed monitoring the temperature of severe points and thermal load in this paper and is applied on the boiler in Henan Qinbei Power Plant. It plays a monitoring role on the water wall and the combustion condition in operation practice.
     According to numerical simulation to the temperature fields of water walls of different sizes in Qinbei Power Plant, we obtain the relation of the temperature of severe points and fin thickness, and the thinnest fin thickness which satisfies welding, installation requirements and temperature limit. This is to save a large number of steel that is more expensive to mark fin for supercritical and ultra-supercritical units.
引文
[1]严家禄.工程热力学[M].北京:高等教育出版社.2002.
    [2]Stanley I. sandler. Chemical and Engineering Thermodynamics. Beijing.2002
    [3]H. Nakamura, H. Akaike. Statistical identification for optimal control of supercritical thermal power plants[J]. Automatica,1981,17(1):143~155
    [4]黄雅罗,盛根林.丹麦超超临界机组的先进技术[J].华中电力.2000,13(6):13~17
    [5]R. Viswanathan, J. F. Henry, J. Tanzosh. U.S. program on materials technology for ultra supercritical coal power plants[J]. Journal of Materials Engineering and Performance,2005, 14 (6):281-292
    [6]宋之平.超临界化--优化我国火电结构应从这里起步[J].中国工程科学.2002,4(2):33~36
    [7]国家电力总公司.国家863计划项目“超超临界燃煤发电技术”课题研究报告[R].2005,9
    [8]Alstom group. Alstom to build high-efficiency plant in USA. Pump Industry Analyst[J]. 2006,9:2-3
    [9]Noriaki Ebara. R&D of coal utilization technology in Japan. Fuel Processing Technology, 2000,62 (2-3):143~151
    [10]周鹤良.我国电力工业发展现状及面临的新形势[J].电气制造.2007,18(1):5~8
    [11]中国电力企业联合会.中国电力工业统计数据分析(2007年)[R].2007,2
    [12]中国国家电网公司.中国电力工业“十一五”发展规划和2020年远景目标[R].2006,3
    [13]中国电力企业联合会.中国电力行业2008年生产简况[R].2009,1
    [14]中国电力企业联合会.中国电力行业2009年生产简况[R].2010,1
    [15]黄莺,华洪渊,李涛等.超超临界锅炉的发展与关键问题[J].发电设备.2006,1:46~49
    [16]Nam-Hyuck Lee, Sin Kim, Byung-Hak Choe, et al. Failure analysis of a boiler tube in USC coal power plant[J]. Engineering Failure Analysis,2008,12:23~25
    [17]R. Viswanathan, K. Coleman, U. Rao. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping,2006,83 (11): 778~783
    [18]邵天佑,李法众,韩克刚.华能玉环电厂4×1000 MW超超临界机组锅炉用钢[J].热力发电,2006,35(12):12~14
    [19]K. Natesan, J.H. Park. Fireside and steamside corrosion of alloys for USC plants. International Journal of Hydrogen Energy,2007,32(16):3689~3697
    [20]陈听宽,徐进良,吴履琛等.超临界压力锅炉垂直管圈水冷壁水动力的研究[J].动力工程.1993,05:33~35
    [21]陈彦其,刘云.华能玉环电厂1000MW机组锅炉爆管预防分析[J].2007,28(8):22~25
    [22]邵天佑.超超临界锅炉试运期间爆管原因分析及对策.华电技术[J].2008,30(2):13~15
    [23]黄承懋.锅炉水动力学及锅内过程[M].北京:机械工业出版社,1982
    [24]林宗虎.锅内过程[M].西安:西安交通大学出版社,1990
    [25]莫耀伟.1000MW超超临界燃煤机组锅炉爆管原因分析[J].华东电力.2008,36(2):16~20
    [26]刘龙淼.锅炉故障处理大全[M].兵器工业出版社,1992
    [27]邱建平.水冷壁管爆管案例综合分析[J].广东电力,2006,9(7):16~17
    [28]王大伟.超临界锅炉爆管事故的分析和处理[J].广东电力,2007,7:20~23
    [29]李辛庚,雒利勇,傅敏,吴军.锅炉水冷壁管高温腐蚀原因和过程浅析[J].山东电力技术,1997,4:46~48
    [30]黄声富,余耕民.水冷壁管高温腐蚀的原因及应采取的措施[J].江西电力,1999,23(2):20~24
    [31]谢勇锋.水冷壁管高温腐蚀原因分析及对策[J].四川电力技术,2003,3:36~39
    [32]张翔,邵国桢.大型锅炉水冷壁高温腐蚀探讨[J].锅炉技术,2002,33(8):26~29
    [33]岑可法,樊建人等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994
    [34]曾汉才.大型锅炉水冷壁的高温腐蚀故障分析[J].华中电力,2001,4
    [35]郭鲁阳,孙旭光,刘志超,肖云.锅炉水冷壁高温腐蚀监控参数的选择[J].华东电力,2000,7
    [36]徐蓓.一例典型的锅炉水冷壁氢腐蚀爆管剖析[J].内蒙古电力,1994,4:18~21
    [37]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算.北京:科学出版社,2003
    [38]S. Srikanth, K. Gopalakrishna, S. K. Das, B. Ravikumar. Phosphate induced stress corrosion cracking in a waterwall tube from a coal fired boiler[J]. Engineering Failure Analysis,2003,10 (4):491~501
    [39]邹天舒,齐全友,张振兴等.超临界直流锅炉膜式水冷壁温度的测量方法[J].东北电力技术,2006,3:22~24
    [40]Levert F. E., Robinson J. C., Barrett S. A., et al. Slag deposition monitor for boiler performance enhancement[J]. IS A Transactions,1988,27(3):213~221
    [41]阎维平.300MW燃煤电站锅炉积灰结渣计算机在线监测与优化吹灰[J].中国电机工程学报,2000,20(9):84~88
    [42]白杰.电站锅炉受热面积灰、结渣在线监测及智能吹灰的研究[硕士学位论文].北京:华北电力大学,2002
    [43]Jantaler. A method of determining in local heat flux in boiler furnaces [J]. Heater mass transfer,1992,35(6):1625-1634
    [44]Clements B R, Heaton D. Ash monitoring using a model based expert system and simulator for Genesee generating station[R]. A Report Of CANMET Energy Technology Center,1996
    [45]Wang Yu,Lu Junfu,Yang Hairui,et al.Measurement of Heat transfer in a 465t/h Circulating Fluidized Bed Boiler. Proceeding of the 18th International Conference on Fluidized Bed Combustion[C]. Toronto, ASME,2005:327~335
    [46]张继锋,岳光溪,方肇洪.循环流化床锅炉水冷壁温与热流的计算研究[J].锅炉技术,1998,12:1~5
    [47]Animesh Dutta, Prabir Basu. An experimental investigation into the heat trans fer on wing walls in a circulating fluidized bed boiler [J]. I nternational Journal of H eat and Mass Trans fer,2002,45 (18):4479~4491
    [48]吕俊复,于龙,岳光溪等.循环流化床锅炉水冷壁的热流密度分布[J].动力工程,2007,27(6):336~340
    [49]Valero A,Cortes C. Ash fouling in coal-fired utility boilers,monitoring and optimization of on-load cleaning. Progress in Energy and Combustion Sciences,1996,22(2):189-200
    [50]N A fgan, M G Carvalho, P Coelho. Concept of expert system for boiler fouling assessment. Applied thermal engineering,1996(10):835-844
    [51]G J nakoneczny, R S Conrad, K L Noel. Implementing B&W's Intelligent Sootblowing System at MidAmerican Energy Company's Louisa Energy Center Unit 1. Western Fuels Conference, Albuquerque, New Mexico,U.S.A.2002:1-5
    [52]N. H. Afgan, M. G. Carvalho. Knowledge-based expert system for fouling assessment of industrial heat exchangers. Applied Thermal Engineering,1996,16(3):203-208
    [53]刘定坡.燃煤电站锅炉灰污在线监测与优化吹灰系统研究:[硕士论文].华中科技大学.2005
    [54]兰泽全、曹欣玉等.一种灰污热流探针的研制及应用[J].中国电机工程学报.2004.5
    [55]郭宏生、徐通模等.一种简易辐射式热流计[J].热力发电,1993
    [56]Bowen B D, Fournier M, Grace J R. Heat transfer in membrane waterwalls[J]. International Journal of Heat and Mass Transfer,1991,34 (415):1043~1057
    [57]沈洛婵,陈建荣,王月明.锅炉膜式水冷壁温度场的数值计算[J].浙江大学学报,1986,20(6):27~36
    [58]范谨,贾鸿祥,陈听宽.膜式水冷壁温度场解析[J].热力发电,1996,NO.3:10~17
    [59]林宗虎,徐通模.实用锅炉手册.北京:化学工业出版社,1999,471~475
    [60]Xie Donglai, Fang Zhaohong. Heat conduction in membrane waterwalls. Heat Transfer Science and Technology. Beijing:Higher Education Press,1996,125~130
    [61]Fang Zhaohong, Xie Donglai, Diao Nairen, et al. A new method for solving the inverse conduction problem in steady heat flux measurement. International Journal of Heat and Mass Transfer,1997,40 (16):3947~3953
    [62]张继峰.循环流化床水冷壁内传热的计算和试验研究:[硕士学位论文].北京:清华大学,1998
    [63]Rajaram S, Abraham K U. Determination of boiler furnace heat flux[J]. International Journal of Heat and Mass Transfer,1984,27 (11):2161~2166
    [64]周一工.600MW超临界压力锅炉水冷壁温度场计算外边界条件的确定[J].电力建设,1997,10:23~43
    [65]武彬.电站锅炉受热面灰污监测:[博士学位论文].北京:清华大学,2000
    [66]北京锅炉厂译.锅炉机组热力计算标准方法.北京:机械工业出版社,1976
    [67]周全龙.UP型直流锅炉水冷壁的传热工况和金属温度工况的计算研究[J].锅炉技 术,1985,07:3~18
    [68]陈听宽,徐进良,吴履琛等.超临界压力锅炉垂直管圈水冷壁水动力的研究[J].动力工程.1993,5:20~23
    [69]Yin F, Chen TK, LiHX. An investigation on heat transfer to supercritical water in inclined upward smooth tubes[J]. Heat Transfer Engineering.2006,27(9):44~52
    [70]Alstom Group. Alstom performance standard. STD NO.31-93-09.2003,8:70~72
    [71]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算.第三版.北京:科学出版社,2003
    [72]中国机械工业联合会.GB50041-2008.锅炉设计规范.北京:中国计划出版社,2008
    [73]范谨,贾鸿祥,陈听宽等.电站锅炉膜式水冷壁鳍片管温度场热应力场分析[J].西安交通大学学报.1997,31(5):76~80
    [74]华能沁北电厂DG1900/25.4-571/569-Ⅱ1锅炉结构说明书.东方锅炉股份有限公司.2003,4
    [75]华能玉环电厂HG2950/27.56-605/603-Ⅱ1锅炉结构说明书.哈尔滨锅炉厂股份有限公司.2005,3
    [76]华电邹县电厂DG3033/26.25-605/603-1锅炉结构说明书.东方锅炉股份有限公司.2006,3
    [77]朱根福,邵建明,王炯祥等.超超临界锅炉制造技术的研究[J].2003,04:18~21
    [78]梁茂春,杨金发,黄新元.邹县电厂1000MW超超临界锅炉水冷壁系统设计及结构特点[J].锅炉制造,2007,(3):9~13
    [79]樊泉桂.超超临界及亚临界参数锅炉.北京:中国电力工业出版社,2007
    [80]锅炉机组热力计算标准方法.北京锅炉厂译.北京:机械工业出版社.1976
    [81]樊泉桂.亚临界和超临界压力锅炉.北京:中国电力工业出版社,2000
    [82]盛春红,陈听宽.矩形鳍片膜式水冷壁辐射角系数的求解[J].锅炉技术,1997.8:8~11
    [83]陈汉平,计算流体力学.北京:水利电力出版社,1995
    [84]帕坦卡SV著.传热与流体流动的数值计算(张政).北京:科学出版社,1983
    [85]B E Launder, D B Spalding. Lectures in Mathematical Models of Turbulence. London, England:Academic Press,1972
    [86]郭永红.超细粉再燃低NOx燃烧技术的数值模拟与实验研究:[博士学位论文].北京:华北电力大学,2006
    [87]周一工.膜式水冷壁表面热流密度分布的精确解[J].锅炉技术,1991,1:1~5
    [88]上海师范大学数学系,上海锅炉厂研究所.膜式水冷壁管管壁温度计算方法.锅炉技术[J],1974,10:23~24
    [89]张志正,孙保民,郭永红,董卫江,徐鸿等.超(超)临界压力锅炉膜式水冷壁危险点壁温在线监测方法研究[J].中国电机工程学报,2005,25(3):130~134
    [90]ZHANG Zhi-zheng, SUN Bao-min, XU Hong, GUO Yong-hong. Study on correlation of key points temperature of membrane water wall.2005 ASME International Mechanical Engineering Congress and Exposition. November 5-11, Orlando, Florida USA.2005, Vol.376 No.2,528-532
    [91]张志正,孙保民.膜式水冷壁管内外换热监测方法研究.中国工程热物理学会第十一届年会论文,2005,10:325~328
    [92]锅炉水冷壁鳍片管温度场电阻网络模拟实验[R].上海交通大学,上海锅炉厂,1973
    [93]张志正,孙保民,徐鸿等.膜式水冷壁特定点温度相关性的研究[J].动力工程,2005,25(6):805~808
    [94]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991
    [95]郭永红,孙保民,康志忠.超细粉再燃低NOx燃烧技术的数值模拟[J].动力工程,2005,25(3):422~426
    [96]Guo Yonghong, Sun Baomin, Liu Tong. NOx Emission Numerical Simulation of Reburning Technology of Superfine Pulverized Coal. FREPS-3,2nd International Energy Conversion Engineering Conference, New York, AIAA 2004 5568,450~455
    [97]郭永红,孙保民,刘彤等.褐煤的超细粉再燃中NOx的生成与还原的数值模拟[J].中国电机工程学报,2005,25(9):94~98
    [98]朱根福,邵建明,王炯祥,亓安芳.超超临界锅炉制造技术的研究[J].锅炉技术,2003,(4):33~37
    [99]安继儒,田龙刚.金属材料手册.北京:化学工业出版社,2008
    [100]膜式水冷壁管屏焊机使用说明书.哈尔滨宇辰机电设备制造有限公司.2005,5
    [101]张宪,郑欣荣,赵章风,王扬渝等.膜式水冷壁管屏平角、仰角MAG焊接工艺研究[J].电焊机,2004,5:42~46
    [102]李再华,白范雄,张清辉.水冷在薄板焊接中的应用[J].焊接技术,2004,33(2): 57~59
    [103]仝启中,阎维仁,张君超.锅炉水冷壁鳍片焊接变形的探讨[C].中国北方焊接学术会议论文集,2000,8:249~252
    [104]张志正,孙保民.超(超)临界锅炉膜式水冷壁鳍片厚度的优化设计[J].长春工程学院学报,2008,9(3):36~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700