龙眼叶片黄酮类物质生物合成关键基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼(Dimocarpus longan Lour.)原产于我国的亚热带水果,是福建省重要的特色果树。具文献记载,龙眼含有丰富的黄酮类物质,具有很高的药用价值。前人对龙眼黄酮类物质的研究主要集中在果实中这类物质的成分与含量的研究,但对其合成机理不甚了解。因此,本研究通过比较不同品种间芦丁和槲皮素的含量差异,克隆芦丁和槲皮素合成过程中相关基因的cDNA序列和启动子序列,研究这些基因在不同品种中的表达与调控,从而明确了黄酮类物质合成途径的关键基因,为进一步揭示黄酮类物质合成途径的分子机制奠定了良好基础。取得的主要研究结果如下:
     1、利用HPLC技术对龙眼4个品种‘松风本’、‘石硖’、‘立冬本’和‘乌龙岭’叶片的芦丁和槲皮素含量进行测定。分析结果表明,4个品种间芦丁的相对含量具有显著差异,含量最高的是‘乌龙岭’,达到439.8μg/g,含量最低的是‘石硖’,低于260μg/g;4个品种的黄酮含量有差异显著。在对4个龙眼品种中的槲皮素测定结果表明,四个品种中,松风本含量最低,为69.6μg/g,而石硖和立冬本的相对含量差异不显著,分别为131.8μg/g和129.1μg/g,但在乌龙岭叶片中没有检测到槲皮素。
     2、本研究利用RACE技术,以龙眼叶片cDNA为模板克隆得到Dlpal和Dlf3h的cDNA全长序列,得到FLS的保守区序列Dlfls,生物信息学分析结果表明这些序列分别与已克隆的PAL、F3H和FLS cDNA序列具有较高的同源性,通过对Dlpal和Dlf3h的编码产物进行预测,结果也表明两者的编码产物分布具有PAL和F3H的保守结构域,初步能断定Dlpal、Dlf3h和Dlfls是龙眼叶片的结构基因,参与了黄酮类物质的合成过程。
     根据Dlpal cDNA序列预测龙眼Dlpal酶蛋白的分子量约为306.4KD,是个碱性的亲水蛋白,属于芳香族氨基酸解氨酶,含有PAL(PLN02457)和PAL-HAL保守结构域,与PAL和HAL具有相同的功能。通过亚细胞定位分析,推测Dlpal为N端朝内由外到内的跨膜结构,在内质网上合成,并催化苯丙素类化合物合成。
     根据Dlf3h cDNA序列预测Dlf3h酶蛋白分子量约为45.3KD,是个亲水性蛋白,定位于内质网膜,具有双向跨膜结构。Dlf3h的整条肽链横跨于内质网膜内外,催化5,7,4'-黄烷酮,生成2R,3R-黄烷酮醇。
     3、本研究采用Takara公司的TAIL-PCR试剂盒和I-PCR技术克隆了龙眼叶片中CHI、CHS、PAL、F3H基因的5’端上游序列,PlantCare分析表明所获得的CHI-P、CHS-P、PAL-P、F3H-P均含有CHS、CHI、PAL、F3H基因启动子序列。
     本研究所获得的5个基因的启动子序列中,都包含光反应元件,如SP1、Box4、L-box等,说明参与黄酮类物质合成的基因启动子中潜在着复杂的光应激表达模式,PAL、CHI、CHS、F3H的表达具有光依赖性。
     除共同含有光反应元件外,还有一些与植物激素有关的元件。根据F3H、CHS和CHI的启动子序列中都包含的脱落酸响应的顺式作用元件推断F3H、CHS和CHI在龙眼叶片的类黄酮合成过程中协同表达,受到内源激素的调节。CHI-P含有赤霉素响应的元件TCCACCT-motif,CHS-P和PAL-P含有参与茉莉酸甲酯响应的元件CGTCA-motif,CHS-P中还含有水杨酸响应的元件TCA-element。
     4、龙眼叶片的Dlpal、CHI、CHS、Dlf3h、Dlfls在4个品种中表现出不同的表达模式,同一个基因在不同品种中的表达量具有显著性差异,结合第二章的结果,表明在同一个品种中,这些基因的表达量与黄酮类物质芦丁和槲皮素的含量具有正相关性。因此,可以认为Dlpal、CHI、CHS、Dlf3h、Dlfls在芦丁和槲皮素的合成过程中都起到了关键作用,这些基因的转录水平决定了龙眼叶片中黄酮类物质的含量。
Longan (Dimocarpus longan Lour.) is a kind of famous subtropics fruit originedfrom south of China. It is also an important fruit in Fujian province. According toliteratures, longan has abundant flavonoids in fruits and leaves, and it is considered asa medical resource. Studies on flavonoid in longan mainly focused on componentsand contents in fruits. The mechanism of flavonoid biosynthesis in longan was still inpuzzled. To confirmed key genes in flavonoid biosysthesis pathway in longan leaves,rutin and quercetin contents in4cultivar varieties were determined, some relatedgenes such as Dlpal, Dlf3h and Dlfls cDNA were cloned, the promoter sequences ofDlpal, Dlf3h, Dlfls, CHI and CHS were also obtained, and these genes’ expressionlevels in longan leaves were studied in this article. The mainly results as follows:
     1) Rutin and quercetin contents were measured in4cultivar varieties‘Songfengben’,‘Shixia’,‘Lidongben’ and ‘Wulongling’ by HPLC. The resultsshowed that there was significant difference in rutin contents among4varieties. Therutin content in ‘Wulongling’ is highest in4varieties with439.8μg/g. The quercetincontent in ‘Songfengben’ is lowest in4varieties with69.6μg/g. There was nosignificant difference between ‘Shixia’ and ‘Lidongben’ with the content of131.8μg/gand129.1μg/g respectively. There was no quercetin detected in ‘Wulongling’.
     2) Full length cDNA of Dlpal and Dlf3h were cloned by RACE technology, andpartial cDNA of FLS was also cloned using cDNA of longan leaves. Results ofbioinformatical analysis showed that the three sequences were highly homologouswith PAL, F3H and FLS respectively. The prediction results of Dlpal and Dlf3hcoding sequences showed that there were the conserved domains of PAL and F3H. Itwas inferred that Dlpal, Dlf3h and Dlfls were structural genes in longan leaves, andinvolved the processing of flavonoids biosynthsis.
     The molecular weight of Dlpal coded by Dlpal cDNA is306.4KD, the protein ishydrophilici and belonged to aromatic amino acid ammonia lyase containing PAL(PLN02457) and PAL-HAL conserved domain, and was similar with PAL and HAL.Transmembrane structure of Dlpal is outside-in. The Dlpal is synthesized onEndoplasmic reticulum and catalyzed phenylpropanoids.
     The molecular weight of Dlf3h coded by Dlf3h cDNA is45.3KD. The protein ishydrophilici and located on endoplasmic reticulum. Transmembrane structure ofDlf3h is outside-in and inside-out.
     3) The upstream sequences of CHI、CHS、PAL were cloned by TAIL-PCR kit,and the upstream sequences of F3H was cloned by I-PCR. The sequences CHI-P,CHS-P, PAL-P and F3H-P contained the promoter sequences of CHI, CHS, PAL andF3H each other, and were analyzed by PlantCare. There are light responsed elementsin all5sequences, such as SP1, Box4, L-box and so on. The results showed that thereare complex light responsed expression models in those genes involved in flavonoidssynthesis, and the expression of PAL, CHI, CHS and F3H are light dependent.
     Except for the light responsed elements, there are some element related to planthormone. The results showed that there are abscisic acid responsed element inpromoter sequences of F3H, CHS and CHI, according to that, it was concluded thatF3H, CHS and CHI are coordinated expression and regulated by endogenoushormones. Besides. In addition, CHI-P contains gibberellin responsed elementsTCCACCT-motif, CHS-P and PAL-P contain MeJA responsed elementsCGTCA-motif, CHS-P contained salicylic acid responsed elements TCA-element.
     4) There were different expression model of Dlpal、CHI、CHS、Dlf3h、Dlfls in4cultivar varieties. Considering the results in chapter2, it was concluded that thosegenes’transcript level were positively related to rutin and quercetin contents.Therefore, the genes Dlpal, CHI, CHS, Dlf3h and Dlfls played key roles in flavonoidssysthesis.
引文
[1] Dixon R A, Paiva N L. Stress-induced Phenylpropanoid metabolism[J]. Plant Cell,1995,7(7):1085~1097.
    [2] Dixon R A, Steele C L. Flavonoids and isoflavonoids-a gold mine for metabolic engineering[J]. Trends in Plant Sciences,1999,4(10):394~400.
    [3]毕殉,卢嘉文,蔡东联.银杏及叶中黄酮类化合物生理功效的研究进展[[J].武警医学.2004,15(6):458~459.
    [4]李勇,刘新民.银杏及叶中黄酮类化合物生理功效的研究进展[J].食品科技.2001,(5):72~73.
    [5] Peer W A, Murphy A S. Flavonoids and auxin transport: modulators or regulators. Trends PlantScience,2007,12:556~563.
    [6] Treutter D. Significance of flavonoids in plant resistance and enhancement of theirbiosynthesis[J]. Plant Bioloby,2005,7:581~591.
    [7] Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphereinteractions with plants and other organisms[J]. Annual Review Plant Biology,2006,57:233~266.
    [8] Taylor L P, Grotewold E. Flavonoids as developmental regulators[J]. Current Opinion PlantBiology,2005,8:317~323.
    [9] Mol J, Grotewold E, Koes R. How genes paint flowers and seeds[J]. Trends Plant Scince,1998,3:212~217.
    [10] Taylor L P, Jorgensen R. Conditional male-fertility in chalcone synthase-deficient petunia[J].Jounal of Heredity,1992,83:11~17.
    [11] Li J Y, Oulee T M, Raba R, Amundson R G, Last R L. Arabidopsis flavonoid mutants arehypersensitive to UV-B irradiation[J]. Plant Cell,1993,5:171~179.
    [12] Sheahan J J. Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsisthaliana (Brassicaceae)[J]. America Journal of Botany,1996,83:679~686.
    [13] Williams C A, Grayer R J. Anthocyanins and other flavonoids[J]. Natural Production Report,2004,21:539~573.
    [14] Singh R P, Gu M, Agarwal R. Silibinin inhibits colorectal cancer growth by inhibiting tumorcell proliferation and angiogenesis. Cancer Reseach,2008,68:2043~2050.
    [15] Polya G M. Biochemical Targets of Plant Bioactive Compounds: A PharmacologicalReference Guide to Sites of Action and Biological Effects[M]. Taylor&Francis, London. NewYork.2003.
    [16] Schijlen E G, Ric de Vos C H, van Tunen AJ. Modification of flavonoid biosynthesis in cropplants[J]. Phytochemistry.2004,65(19):2631~2648.
    [17] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis[J]. ThePlant Cell.1995,7(7):1071.
    [18] Tsai C J, El Kayal W, Harding S A. Populus, the new model system for investigatingphenylpropanoid complexity[J]. International Journal of Applied Science and Engineering,,2006,4:221-233.
    [19] Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biologicalactivity, and biosynthesis[J]. Journal of Plant Reseach,2000,113:475~488.
    [20] Debeaujon I, Leon-Kloosterziel K M, Koornneef M. Influence of the testa on seed dormancy,germination, and longevity in Arabidopsis[J]. Plant Physiol,2000,122:403~413.
    [21] Winkel-Shirley B. It takes a garden. How work on diverse plant species has contributed to anunderstanding of flavonoid metabolism[J]. Plant Physiol,2001,127:1399~1404.
    [22] Mathesius U, Keijzers G, Natera S H A, Weinman J J, Djordjevic M A, Rolfe BG.Establishment of a root proteome reference map for the model legume Medicago truncatulausing the expressed sequence tag database for peptide mass fingerprinting[J]. Proteomics,2001,1:1424~1440.
    [23] Owens D K, Alerding A B, Crosby K C, Bandara A B, Westwood J H, Winkel B S J.Functional analysis of a predicted flavonol synthase gene family in Arabidopsis[J]. PlantPhysiol,2008,147,1046~1061.
    [24] Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color [J]. Plant CellPhysiology,1998,39(11):1119~1126.
    [25] Ana-Rosa Ballester,Jos Molthoff,Ric de Vos,etal. Biochemical and Molecular Analysis ofPink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12Leads to Pink Tomato1Fruit Color. Plant Physiology,2010,152:71~84.
    [26] Forkmann G. Flavonoids as flower pigments:the formation of the natural spectrum and itsextension by genetic engineering. Plant Breed,1991,106:1~26.
    [27] Richard A J. Cosuppression,Flower Color Patterns,and Metastable Gene Expression States.Science,1995,268:686~691.
    [28]邵莉,李毅,杨美珠.查尔酮合酶基因对转基因植物花色和育性的影响.植物学报,1996,38(7):517~524.
    [29] Taylor L P, Jorgensen R. Conditional male fertility in chalcone synthase-deficient petunia[J].Journal of Heredity,1992,83(1):11~17.
    [30] Kreuzaler F, Hahlbrock K. Enzymic synthesis of aromatic compounds in higher plantsformation of naringenin (5,7,4'-trihydroxy-flavanone) from pcoumaroyl-coenzyme A andmalonyl-coenzyme A[J]. FEBS Letter,1972,28:69~72.83.
    [31] Reimold U, Kroeger M, Kreuzaler F, Hahlbrock K. Coding and3'noncoding nucleotidesequence of chalcone synthase messenger RNA and assignment of amino acid sequence of theenzyme [J]. EMBO Journal,1983,2:1801~1806.
    [32] Franken P, Niesbach K U, Weydemann U. The duplicated chalcone synthase genes C2andWhp (white pollen) of Zea mays are independently regulated; evidence for translational controlof Whp expression by the anthocyanin intensifying gene[J]. EMBO Journal,1991,10:2605~2612.
    [33] Lo C, Coolbaugh R C, Nicholson R L. Molecular characterization and in silico expressionanalysis of chalcone synthase gene family in sorghum bicolor [J].Physiol Molecular PlantPathology,2002,61:179~188.
    [34] Liew C F, Goh C J, Loh C S, et al. Cloning and characterization of full2length cDNAclones encoding chalcone synthase from the orchid Bromheadia finlaysoniana[J]. Plant PhysiolBiochemisty,1998,9:647~655.
    [35] Holton T A, Brugllera F, Tanaka Y. Cloning and expression of chalcone synthase frompetunia hybrida[J]. Plant Journal,1993,4:1003~1010.
    [36] Saslowsky D E, Dana C D, Winkel S B. An allelic series for the chalcone synthase locus in Arabi dopsis[J].Gene,2000,225:127~138.
    [37] Sommer H, Saedler H. St ructure of the chalcone synthase gene of Antirrhinum majus [J].Molecular General Genetic,1986,202:429~434.
    [38] Akada S, Kung S, Dube S K. Nucleotide sequence of a soybean chalcone synthase gene witha possible rolein ultraviolet-B sensitivity, gmchs6[J]. Plant Physiol,1993,102:699~702.
    [39] Arioli T, Howles P A, Weinman J J. Trifolium subterraneum chalcone synthase is encodedby a multigene family[J]. Gene,1994,138:79~86.
    [40] Mckhamm H I, Hirsch A M. Isolation of chalcone synthase and chalcone isomerase cDNAfrom alfalfa (Medicagosativa L.): highest transcript levels occur in young root s and root tips[J].Plant Molecular Biology,1994,24:767~777.
    [41] Schroder J, Raiber S, Berger T. Plant polyketide synthases: a chalcone synthase2typeenzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesisof C-methylated chalcones[J]. Biochemistry,1998,23:8417~8425.
    [42] Fliegmann J, Schroder G, Schanz S. Molecular analysis of chalcone and dihydropinosylvinsynthase from Scots pine (pinus sylvestris), and differential regulation of these and relatedenzyme activities in stressed plants [J]. Plant Molecular Biology,1992,3:489~503.
    [43] Koes R E, Spelt C E, Mol J N M, Gerats A G M. The chalcone synthase multigene family ofPetunia hybrida: sequence homology, chromosomal localization and evolutionary aspects. PlantMolecular Biology,1987,10:159~169
    [44] Durbin M L, McCaig B, Clegg M T. Molecular evolution of the chalcone synthase multigenefamily in the morning glory genome. Plant Molecular Biology,2000,42:79~92
    [45] Helariutta Y, Kotilainen M, Elomaa P, Kalkkinen N, Bremer K, Teeri T H, Albert V A.Duplication and functional divergence in the chalcone synthase gene family of Asteraceae:evolution with substrate change and catalytic simplification. Proceedings of the NationalAcademy of Sciences,1996,93:9033~9038.
    [46] Sanchez I J F. Polyketide synthase in Cannabis sativa L.[D], Leiden University, Leiden, TheNetherlands,2008.
    [47] Ryder T B, Hedrick S A, Bell J N, Liang X, Clouse S D, Lamb C J. Organization anddifferential activation of a gene family encoding the plant defense enzyme chalcone synthase inPhaseolus vulgaris[J]. Molecular General Genetic,1987,210:219~233.
    [48] Bell J N, Ryder T B, Wingate V P M, Bailey J A, Lamb C J. Differential accumulation ofplant defense gene transcripts in a compatible and an incompatible plant: pathogeninteraction[J]. Molecular Cell Biology,1986,6:1615~1623.
    [49] Burbulis I E, Iacobucci M, Shirley B W. A null mutation in the first enzyme of flavonoidbiosynthesis does not affect male fertility in Arabidopsis[J]. Plant Cell,1996,8:1013~1025.
    [50] Thain S C, Murtas G, Lynn J R, McGrath R B, Millar A J. The circadian clock that controlsgene expression in Arabidopsis is tissue specific[J]. Plant Physiology,2002,130:102~110.
    [51] Dao T T H, Linthorst H J M, Verpoorte R. Chalcone synthase and its functions in plantresistance[J]. Phytochemistry review,2011,10:397~412.
    [52] Schijlen E G W, de Vos C H R, van Tunen A J, Bovy A G. Modification of flavonoidbiosynthesis in crop plants[J]. Phytochemistry,2004,65:2631~2648
    [53]周光才.被子植物中查尔酮异构酶基因家族的系统发育与进化[J].曲阜师范大学学报,2011,37(3):70~74.
    [54] Moustafa E, Wong E. Purification and properties of chalconeflavanone isomerase from soyabean seed[J]. Phytochemistry,1967,6:625~632
    [55] Shirley B W, Kubasek W L, Storz G, Bruggemann E, Koornneef M, Ausubel F M, GoodmanH M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis[J]. Plant Journal,1995,8:659~671
    [56] Van Tunen A J, Koes R E, Spelt C E. Cloning of the two chalcone flavanone isomerase genesfrom Petunia hybrida: coordinate, light-regulated and differential expression of flavonoidgenes[J]. EMBO Journal,1998,7(5):1257~1263.
    [57] Kim S, Jones R, Yoo K S, Pike L M. Gold color in onions (Allium cepa): a natural mutationof the chalcone isomerase gene resulting in a premature stop codon[J]. Molecular GeneticGenomics,2004,272:411~419.
    [58] Reuber S, Jende-Strid B, Wray V, Weissenbock G. Accumulation of the chalconeisosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalconeisomerase[J]. Physiology Plant,1997,101:827~832.
    [59] Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. TheRc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. Plant Journal,2007,49:91~102.
    [60] Sweeney M T, Thomson M J, Pfeil B E, McCouch S. Caught redhanded: Rc encodes a basichelix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell,2006,18:283~294.
    [61] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annual Review of PlantBiolology,2006,57:761~780.
    [62] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation andevolution of biochemical pathways[J]. Trends of Plant Science,2005,10:236~242.
    [63] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Geneticsand biochemistry of seed flavonoids[J]. Annual Review of Plant Biology,2006,57:405~430
    [64] Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T,Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red colorationin apple skin[J]. Plant Physiology Biochemisty,2002,40:955~962.
    [65] Castellarin S D, Matthews M A, Gaspero G D, Gambetta G A. Water deficits accelerateripening and induce changes in gene expression regulating flavonoid biosynthesis in grapeberries[J]. Planta,2007,227:101~112.
    [66] Palapol Y, Ketsa S, Wang K L, Ferguson B I, Allan A C. A MYB transcription factor regulatesanthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) ftuit during ripening[J].Planta,2009,229:1323~1334.
    [67] Feng S Q, Wang Y L, Yang S, Xu Y T, Chen X S. Anthocyanin biosynthesis in pears isregulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta,2010,232:245~255.
    [68] Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S.Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit bya R2R3MYB transcription factor[J]. Planta,2010,231:887~899.
    [69] Kim S H, Lee J R, Hong S T, Yoo Y K, An G H, Kim S R. Molecular cloning and analysis ofanthocyanin biosynthesis genes preferentially expressed in apple skin[J]. Plant Science,2003,165:403~413.
    [70] Ashraf E K, Chervin C, Roustan J P, Cheynier V, Souquet J M, Moutounet M, Raynal J, FordC, Latché A, Pech J C, Bouzayen M. Exogenous ethylene stimulates the long-term expressionof genes related to anthocyanin biosynthesis in grape berries[J]. Physiology Plantarum,2003,119:175~182.
    [71] Ubi B U, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T Expressionanalysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature[J].Plant Science,2006,170:571~578.
    [72] Castellarin S D, Pfeiffer A, Sibilotti P, Degan M, Peterlunger E, Gaspero G D. Transcriptionalregulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal waterdeficit[J]. Plant Cell,2007,30:1381~1399.
    [73] Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functionalanalysisis of a MYB transcription factor gene that is a key regulator for the development of redcoloration in apple skin[J]. Plant Cell Physiology,2007,48(7):958~970.
    [74] Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C. Cloning and molecular analysis ofstructural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinfera)[J]. PlantMolecular Biology,1994,24:743~755.
    [75] Jeong S T, Goto-Yamanoto G, Kobayashi S, Eaka M. Effects of plant hormones and shadingon the accumulation of anthocyanins and expression of anthocyanin biosynthetic genes in grapeberry skins[J]. Plant Science,2004,167:247~252.
    [76] Jeong S T, Yamamoto N G, Hashizume K, Esaka M. Expression of multi-copy glavonoidpathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation, grapevine[J].Vitis,2008,47(3):135~140.
    [77] Van Eldik G J, Reijnen W H, Ruiter R K. Regulation of flavonol biosynthesis during antherand pistil development, and during pollen tube growth in Solanum tuberosum. The Plant Journal,1997,11(1):105-113.
    [78] Moriguchi T, Kita M, Ogawa K. Flavonol synthase gene expression during citrus fruitdevelopment. Physiologia Plantarum,2002,114:251~258.
    [79] Fujita A, Goto-Yamamoto N, Aramaki I, et al. Organ-specific transcription of putativeflavonol synthase genes of grapevine and effects of plant hormones and shading on flavonolbiosynthesis in grape berry skins.Bioscience[J]. Biotechnology and Biochemistry,2006,70(3):632~638.
    [80]庞永珍.银杏黄酮和菇类化合物生物合成途径中重要相关基因的克隆和研究[D].复旦大学博士学位论文,2005.
    [81]马春雷,陈亮.茶树黄酮醇合成酶基因的克隆与原核表达[J].基因组学与应用生物学,2009,28(3):433-438.
    [82]黄伟伟.烟草黄酮醇合成酶基因的分离及其序列分析[D].华中科技大学,2007.
    [83] Nielsen K, Deroles S C, Markham K R et al. Antisense flavonol synthase alterscopigmentation and flower color in lisianthus[J]. Molecular Breeding,2002,9:217-229.
    [84] Muir S R, Collins G J, Robinson S et al. Overexpression of petunia chalcone isomerase intomato results in fruit containing increased levels of flavonols[J]. Nature Biotechnology,2001,19(5):470-474.
    [85] Pelletier M K, Murrell J, Shirley B W. Characterization of flavonol synthase andleucoanthocyanidin dioxygenase genes in Arabidopsis, Further evidence for differentialregulation of "early" and "late" genes[J]. Plant physiology,1997,113:1437-1445.
    [86] Koukol J, Conn E E. The metabolism of aromatic and properties of the Phenylalaninedeaminase of Hordeum vulgare. Journal of Biological Chemistry,1961,236:2692~2698.
    [87] Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism.Annual Review of Plant Physiol. Plant Mol. Biology,1991,40:347~369.
    [88] Nugroho L H, Verberne M C, Verpoorte R. Activities of enzymes involved in thephenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. PlantPhysiol Biochemisty,2002,40:755~760
    [89] Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content,phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation.Journal of Agricultural Food Chemisty,2003,51:2227~2231.
    [90] Fiona C,Laurence B,Norman G.The Arabidopsis phenylalanine ammonia lyase gene family:kinetic characterization of the four PAL isoforms[J]. Phytochemistry,2004,65(11):1557~564.
    [91] Lois R,Dietrich A,Hahlbrock K. A phenylalanine ammonia-lyase gene from parselyatructure,regulation and identification of elicitor and light responsive cis-acting elements [J]. EMBO,1989,8(6):1641-1648.
    [92] Appert C,Logemann E,Hahlbrock K.Structural and catalytic properties of the fourphenylalanine ammonia-lyase isoenzymes from Parsely (Petroselinum crispumNym)[J].European Journal of Bichemistry,1994,225(1):491-499.
    [93] Wang X, Hadrami A, Adam L, et al.US-1and US-8genotypes of Phytophthora infestansdifferentially affect local proximal and distal gene expression of phenylalanine ammonia-lyaseand3-hydroxy,3-methylglutaryl CoA reductase in potato leaves[J].Physiological and MolecularPlant Pathology,2004,65(3):157-167.
    [94] Gail L S,Wesley S V,Kenneth L K,et al. Phenylpropanoid compounds and disease resistancein transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase[J].Phytochemistry,2003,64(1):153-161.
    [95] Nagai N,Kitauch'i F,Shimosaka Y.Cloning and sequencing of a full length cDNA coding forphenylalanine ammonia-lyase from tobacco cell culture[J].Plant Physiology,1994,84(3):283-287.
    [96] Pellegrini L,Rohfritsch O,Friting B. Phenylalanine ammonia-lyase in tobacco Molecularcloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and theresponse to a fungal elicitor[J].Plant Physiology,1994,106(3):877-886.
    [97] Cramer C L, Edwards K, Dron M,. Phenylalanine ammoria-lyase Gene organization andstructure [J]. Plant MolecularBiology,1989,12:367-383.
    [98] Yamada T,Tanaka Y,Sriprassertsak P. phenylalanine ammonia-lyase gene from Pisum sativum:structure, organ-specific expression and regulation by fungal elicitor and suppressor[J].Plantand Cell Physiology,1992,33(6):715-725.
    [99] Minami E, Ozeki Y, Mats-ioka M, et al. Structure and some characterization of the gene forphenylalanine ammonia-lyase from rice.[J].Uropean Journal of Biochemistry,1989,185:19-25.
    [100] Tanaka Y,Matsuoka M,Yamamoto N. Structure and characterization of a cDNA forphenylalanine ammonia-lyase from cut injured roots of sweet potato[J].Plant Physiology,l989,90(4):1403-1407.
    [101] Whetten R W Sederoff R R. Phenylalanine ammonial-lyase from loblolly pine,Purificationof the enzyme and isolation of complementary DNA clones[J]. Plant Physiology,1992,98(1):380-386.
    [102] Sparvoli F,Martin C,Scienza A. Cloning and molecular analysis of structural genes involvedin flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.)[J].PlantMolecular B iology,1994,24(5):743-755.
    [103] Gowri G,Paiva N,Dixon RA.Stress responses in alfalfa (Medicage sativa L)12. Sequenceanalysis of Phenylalanine ammonia-lyase(PAL) cDNA clones and developing plants[J].Plant Molecular Biology,1991,17(3):415~429.
    [104] Osakabe K,Kawai S,Katayama Y. Characterization of the structure and determination ofMrna levels of the Phenylalanine ammonia-lyase gene family from Populus kitakamiensis[J].Plant Molecular Biology,1995,28(6):1133~1141.
    [105] Klaus Schmidt,Brixtie Heberle,Jeanette Kurrasch,etal., Suppression of phenyialanineammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediatedat the core promoter of the gene[J]. Plant Molecular Biology,2004,55(6):835~852.
    [106] Kruger W M, Carver TJ,Zeyen R J.Effects of inhibiting phenolic biosynthesis on-penetrationresistance of barley isolines containing seven powdery mildew resistance genesor alleles[J]. Physiological and Molecular Plant Pathology,2002,61(1):41~51.
    [107] Anterola A M, Lewis N G. Trends in lignin modification: a comprehensive analysis of theeffects of genetic manipulations/mutations on lignification and vascular integrity[J].Phytochemistry,2002,61:221~94.
    [108] Khan W, Prithiviraj B, Smith D L. Chitosan and chitin oligomers increase phenylalanineammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves[J]. J Plant Physiol2004;160:859–63.
    [109] Gachon C M M, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolismglycosyltransferases: the emerging functional analysis[J]. Trends of Plant Science,2005,10:542~549.
    [110] Kristine M O, Unni S L, Rune S, Michel V, Cathrine L. Differential expression of fourArabidopsis PAL genes; PAL1and PAL2have functional specialization in abioticenvironmental-triggered flavonoid synthesis[J]. Journal of Plant Physiology,2008,165:1491~1499.
    [111] Cochrane F C, Davin L B, Lewis N G. The Arabidopsis phenylalanine ammonia-lyase genefamily: kinetic characterization of the four PAL isoforms[J]. Phytochemistry,2004,65:1557~1564
    [112] Mizutani M, Ohta D, Sato R. Isolation of a cDNA and a genomic clone encoding cinnamate4-hydroxylase from Arabidopsis and its expression manner in Planta[J]. Plant Physiology,1997,113:755~763.
    [113] Trielia T, Peterson M, Kemn D. A procedure for in vitro amplification of DNA segments thatlie outside the boundaries of known sequences[J]. Nucleic Acids Research.1988,16(16):81-86.
    [114] Liu Y G, Whinier R F. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P l and clones for chromosome walking [J]. Genomics.1995,25(3):674-681.
    [115] Chen S, Jin W, Wang M, et al. Distribution and characterization of over1000T DNA tags inrice genome[J]. The Plant Journal.2003,36(1):105-113.
    [116] Zhang Q. Strategies for developing green super rice[J]. Proceedings of the NationalAcademy of Sciences.2007,104(42):16402-16409.
    [117] Unger E. Achimeric ecdysone receptor facilitates methoxyfe-nozidedependent restoration ofmale fertility in ms45maize. Trans. genic Res,2002,11:455.
    [118]路静,赵华燕,何奕昆等.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862.
    [119]文良娟,王嵬.龙眼活性物质的提取及其抗氧化能力的研究[J].食品研究与开发,2008,29(9):37-41.
    [120]黄晓冬.4种龙眼核提取物的总黄酮含量、体外抗菌活性与抗氧化活性.食品科学,2011,32:43~47.
    [121]黄爱萍,郑少泉.龙眼果实发育过程果肉黄酮和氨基酸含量的变化.热带作物学报,2010,31(9):1519~1523.
    [122]梁洁,藤建北,柳贤福,余靓.龙眼叶化学成分预试研究.中国民族民间医药,2010,4:142~143.
    [123]陆海峰,赵进,李琳,黄锁义,李卫彬,阳文辉.超声波提取龙眼叶总黄酮及其鉴别.微量元素与健康研究,2007,24(4):48~49.
    [124] Winkel-Shirley B. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cellbiology, and biotechnology[J]. Plant Physiol2001,126:485~493.
    [125] McGregor WG, McKillican ME. Rutin content of varieties of buckwheat.[J]. Journal ofAgriculture Science,1952,32:48~51.
    [126] Attanassova M, Bagdassarian V. Rutin content in plant products[J]. Journal of ChemistryTechnology metabolism2009,44:201~203.
    [127] Ho S C, Hwang L S, Shen Y J, Lin C C. Suppressive effect of a proanthocyanidin-richextract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production inLPS-stimulate macrophage cells[J]. Journal of Agricultural and Food Chemistry,2007,55,10664~10670.
    [128] Yang D J, Chang Y Y, Hsu C L, Liu C C, Lin Y L, Lin Y H. Antiobesity and hypolipidemiceffects of polyphenol-rich longan (Dimocarpus longan Lour.) flower water extracts inhypercaloric-dietary rats[J]. Journal of Agricultural and Food Chemistry,2010,58:2020–2027.
    [129]梁洁,零璐遥,柳贤福,余靓,王雯慧. UV法测定广西不同产地龙眼花药材中的总黄酮[J].华西药学杂志,2010,25(5):605~606.
    [130] Liu C W, Yang D J, Chang Y Yen, Hsu C L, Tseng J K, Chang M H, Wang M L, Chen Y C.Polyphenol-rich longan (Dimocarpus longan Lour.)-flower-water-extract attenuatesnonalcoholic fatty liver via decreasing lipid peroxidation and downregulating matrixmetalloproteinases-2and-9[J]. Food Research International,2012,45(1):444~449.
    [131] He N, Wang Z Y, Yang C X, Lu Y H, Sun D H, Wang Y P, Shao W Y, Li Q B. Isolation andidentification of polyphenolic compounds in longan pericarp[J]. Separation and PurificationTechnology,2009,70(2):219–224.
    [132] Ru Q H, Li N H, Huang S Y. Study on the Purification of Longan Seed Flavonoids byMacro-Porous Resin[J]. Advanced Materials Research,2011, Advanced Materials Research,236-238.
    [133] Wang J, Weng Z X, Cheng C L, Liu H, Liang W Y, Jiang J M, Wei Chen. Identification andanalysis of differentially expressed proteins during cotyledon embryo stage in longan[J].Scientia Horticulturae,2010,126(4):426~433.
    [134] Dietrych-Szostak, D, Oleszek W. Effect of processing on the flavonoid content in buckwheat(Fagopyrum esculentum Moench) grain[J]. Journal of Agricultural and Food Chemistry,1999,47,4384~4387.
    [135] Watanabe M, Ohshita Y, Tsushida T. Antioxidant compounds from buckwheat (Fagopyrumesculentum Moench) hulls[J]. Journal of Agricultural and Food Chemistry,1997,45,1039~1044.
    [136] Kuntic V, Pejic N, Ivkovic B, Vujic Z, Ilic K, Micic S, Vukojevic V. Isocratic RP-HPLCmethod for rutin determination in solid oral dosage forms[J]. Journal of Pharmaceutical andBiomedical Analysis,2007,43:718~721.
    [137] Wang J, Zhao L L, Sun G X, Liang Y, Wu F A, Chen Z L, Cui S M. A comparison of acidicand enzymatic hydrolysis of rutin[J]. African Journal of Biotechnology,2011,10:1460~1466.
    [138] Hendson M, Hildebrand D C, Schroth M N. Distribution among Pseudomonads ofsequences homologous to the rutin glycosidase and beta-glucosidase genes of Pseudomonasviridiflava[J]. Molecular Plant Pathology,1992,82:1230~1233.
    [139] Suzuki T, Honda Y, Funatsuki W, Nakatsuka K. Purification and characterization of flavonol3-glucosidase, and its activity during ripening in tartary buckwheat seeds[J]. Plant Science,2002,163:417~423
    [140] Baumgertel A, Grimm R, Eisenbeiss W, Kreis W. Purification and characterization of aflavonol3-O-betaheterodisaccharidase from the dried herb of Fagopyrum esculentumMoench[J]. Phytochemistry,2003,64:411~418
    [141] Ghafar M F A, Prasad K N, Weng K K, Ismail A. Flavonoid, hesperidine, total phenoliccontents and antioxidant activities from Citrus species[J]. Africa Journal of Biotechnology,2010,9(3):326~333.
    [142] Tomczyk M, Pleszczynska M, Wiater A. Variation in total polyphenolics contents of aerialparts of Potentilla species and their anticariogenic activity[J]. Molecules2010;15(7):4639–51.
    [143] Quan Q M, Wu W, Li Y X, Cai Q R. Variation in icariin and flavonoid contents ofBarrenwort species. Journal of Medical Plant Research,2010,4(12):1176~1181.
    [144] Mol J, Grotewold E, Koes R. How genes paint flowers and seeds[J]. Trends Plant Science,1998,3:212~217.
    [145] Buer C S, Imin N, Djordjevic M A. Flavonoids: new roles for old molecules[J]. J IntegraPlant Biology,2010,52(1):98~111.
    [146] Besseau S, Hoffman L, Geoffroy P. Flavonoid accumulation in Arabidopsis repressed inlignin synthesis affects auxin transport and plant growth[J]. The Plant Cell,2007,19:148~162.
    [147] Lepiniec L, Debeaujon I, Routaboul J M, et al.. Genetics and biochemistry of seedflavonoids[J]. Annual Review of Plant Biology,2006,57:405~430.
    [148]戴余军,方华,江德安.不同品种银杏叶片的黄酮含量变化规律研究[J].林业实用技术,2009,2:4~6.
    [149]王锦玲.龙眼叶片黄酮类化合物合成关键酶基因和DHAR基因cDNA全长的克隆[D].福建农林大学硕士学位论文,2008.
    [150]章希娟,许鸿川,游向荣,李燕,陈清西,陈伟.龙眼胚胎F3H基因的cDNA克隆及序列分析[J].园艺学报,2008,35(11):1581~1586.
    [151] Winkel-Shirley B. Biosynthesis of flavonoids and effects of stressfJl. Current opinion inplant iology,2002,5(3):218-223.
    [152] Owens D K, Alerding A B, Crosby K C, Bandara A B, Westwood J H, Winkel B S J.Functional analysis of a predicted flavonol synthase gene family in Arabidopsis[J]. PlantPhysiol.147,2008a,1046~1061.
    [153] Arioli T, Howles P A, Weinman J J, Rolfe B G. In Trifolium subterranium, chalcone synthaseis encoded by a multigene family[J]. Gene,1994,138:79~86.
    [154] Mathesius U, Keijzers G, Natera S H A, Weinman J J, Djordjevic M A, Rolfe B G.Establishment of a root proteome reference map for the model legume Medicago truncatulausing the expressed sequence tag database for peptide mass fingerprinting[J]. Proteomics,2001,1:1424~1440.
    [155] Owens D K, Crosby K C, Runac J, Howard B A, Winkel B S J. Biochemical and geneticcharacterization of Arabidopsis flavanone3beta-hydroxylase[J]. Plant Physiology Biochemistry,2008b,46:833~843.
    [156] Daniel K. Owens, Anne B. Alerding, Kevin C. Crosby, Aloka B. Bandara, James H.Westwood, Brenda S J. Winkel. Functional analysis of a predicted flavonol synthase genefamily in arabidopsis[J]. Plant Physiology,2008,147:1046~1061.
    [157] Ancheol C, Myungho L, Shinwoo L, E. Jane R, Ross N. N. Tomato phenylalanineammonia-lyase gene family, highly redundant but strongly underutilized[J]. The Journal ofBiological Chemistry,2008,283(48):33591~33601.
    [158] Feng X, Rong C, Shuiyuan C, Hewei D, Yan W, Shuhan C. Molecular cloning,characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba[J].African Journal of Biotechnology,2008,7(6):721~729.
    [159] Lusheng H, Yilin H, Chuanshan Y, Chiehyang C, Chienchih Y, Pingdu L. Molecularcharacterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii[J].Molecular Biology Report,2011,38:283~290.
    [160] Martin C, Prescott A, Mackay S. Control of anthocyanin biosynthesis in flowers ofAntirrhinum majus [J].Plant J,1991(1):37-49.
    [161] Britsch L, Ruhnau-Brich B, Forkmann G. Molecular cloning, sequence analysis,and invitroexpression of flavanone3-(3-hydroxylase from Petunia hybrida[J].Biol Chem,1992,267:5380-5387.
    [162] Hsieh LS, Hsieh YL, Yeh CS,et al. Molecular characterization of a phenylalanineammonia-lyase gene (BoPAL1) from Bambusa oldhamii[J]. Mol Biol Rep,2011,38(1):283-290.
    [163]欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控[J].植物生理学通讯,1988,24(3):9~16.
    [164] Hanson K R, Havir E A. Phenylalanine ammonia-lyase. In: Conn E E, secondary plantproducts (Vol.7of the biochemistry of plant: a comprehensive treatise(stumpf P K and Conn EE eds in chief)[M]. New York: Acadamic Press,1981,577~625.
    [165]欧阳光察,应初衍.植物苯丙氨酸解氨酶的研究VI.水稻、小麦PAL的纯化及基本特性.植物生理学报,1985,44(2):204~214.
    [166] Camm E L, Towers G H N. Phenylalanine ammonia lyase. Phytochemistry,1973,12:961~973.
    [167] Jin N, Tatsuya A, Keiji T, Minoru F, Hiroshi S. Immunocytochemical localization ofphenylalanine ammonia-lyase and cinnamylalcoho ldehydrogenase in differentiating trachearyelements derived from Zinnia mesophyll cells[J]. Plant Cell Physiology,1997,38(2):113~123
    [168] Martin B, Daniel K, Corina B, Andreas V, Rolf M, Andreas B. Genes and enzymes involvedin caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Journal ofBacteriology,2006,188(7):2666~2673.
    [169] Schroeder A C, Kumaran S, Hicks L M, Cahoon R E, Halls C, Yu O, Jez J M. Contributionsof conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing inthe active site of tyrosine ammonia lyase[J]. Phytochemistry,2008,69(7):1496~1506.
    [170] Kyndt J A, Meyer T E, Cusanovich M A, Van Beeumen J J. Characterization of a bacterialtyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letter,2002,512:240~244
    [171]张大生,崔丽洁,王景明.红巴梨F3H基因的克隆及植物表达载体的构建[J].南京林业大学学报,2005,29(2):65-68.
    [172]苏丽,赵昶灵,杨晓娜,李会荣,李云.高等植物F3H cDNA及其氨基酸序列的生物信息学分析.云南农业大学学报,2010,25(3):316~326.
    [173] Larson R, Bussard J B, Coe E H. Gene-dependent flavonoid3’-hydroxyalation in maize.Biochemical Genetics,1996,24(7):615~624.
    [174] Hsieh K, Huang A H C. Tapetosomes in Brassica tapetum accumulate endoplasmicreticulum–derived Xavonoids and alkanes for delivery to the pollen surface[J]. Plant Cell,2007,19:582~596
    [175] Kyoko T, Haruko K, Kalaiselvi S, Norimoto S, Toshio A, Shin-ichi A, Setsuko S, MasaakiS, Yasumasa M, Ryoji T. The soybean F3′H protein is localized to the tonoplast in the seed coathilum[J]. Planta,2012, DOI:10.1007/s00425-012-1590-5
    [176] Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classiWcation and secondary structureprediction system for membrane proteins[J]. Bioinformatics,1998,14:378~379
    [177] Hrazdina G. Compartmentation in aromatic metabolism. In: StaVord HA, Ibrahim RK (eds)Phenolic metabolism in plants[J]. Plenum Press, New York,1992, pp1–23
    [178]朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社.1997:17~59.
    [179]施维属,潘腾飞,钟凤林,潘东明.柑橘基因组DNA快速提取及ISSR-PCR扩增体系优化[J].生物技术通报,2009,10:109~113.
    [180] Jones D H, Winistorfer S C. A method for the amplification of unknown flanking DNA:Targeted inverted repeat amplification. BioTechniques,1993,15:894~904.
    [181] Neve R L, West R W, Rodriguez R L. Eukaryotic DNA fragments which act as promotersfor a plasmid gene[J]. Nature.1979,277(5694):324~325.
    [182]李姗姗,迟彦,李凌飞.启动子克隆方法研究进展[[J].中国生物工程杂志,2005,25(7):9~16.
    [183] Tran T, Vu Thi Q C, Mohd P A, Hishamuddin O, Suhaimi N. Efficiency of ligation-mediatedPCR and TAIL-PCR methods for isolation ofRbcS promoter sequences from greenmicroalga Ankistrodesmus convolutes. Molecular Biology,46(1):58~64.
    [184] Du H, Zhang Z X, Li J S. Isolation and functional characterization of awaterlogging-induced promoter from maize[J]. Plant Cell Report,2010,26(11):1269~1275.
    [185] Wang X F, Chen X Y, Zhang X M, Zhou Y, Zhang H C, Miao Q M, Fang J, Xu J F.Molecular characteristics and specific PCR detection of transgenic rice containing Cry1Ab[J].Hereditas,2012,34(2):208~214.
    [186]郝迪萩,赵琳,陈李淼,李文滨.克隆启动子方法的比较及应用[J].东北农业大学学报,2010,41(3):154~160.
    [187] Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chainreaction[J]. Genetics.1988,120:621~623.
    [188] Wang L J, Fan S H, Guo A G. Cloning and functioanalysis of ats1A gene promoter fromArabidopsis thaliana[J]. Acta Botanica Boreali-Occidentali Sinica,2004,4(10):1856~1860.
    [189] Forester C, Arthur E, Crespi S, et al. Isolation of a pea (Pisum sativum) seed lipoxygenasepromoter by inverse polymerase chain reaction and characterization of its expression intransgenic tobacco [J]. Plant Molecula Biology,1994,26(1):235-248.
    [190] Joshi CP. An inspection of the domain between putative TATA box and translational start sitein79plant genes. Nucleic Acids Research,1987,15:6643~6653
    [191] Goszybska DM, Rudnicki RM, Reid M S. The role of plant hormones inthe postharvest life of cut flower[J].Acta Horticulturae,1985,167:79-93
    [192]程水源,王燕,李俊凯.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004,40(6):45-49.
    [193]程水源.影响银杏叶黄酮形成的主要因子及调控技术的研究[D].泰安:山东农业大学,2001
    [194] Martin C, Prescott A, Mackay S. Control of anthocyanin biosynthesis in flowers ofAntirrhinum majus [J].Plant J,1991(1):37~49.
    [195] Han Y Y, Ming F, Wang J W, et al. Molecular characterization and functional analysis of anovel chalcone synthase gene from Phalaenopsis Orchid in transgenic tobacco[J]. PlantMolecular Biology Report,2005,23:193
    [196] Koes R E, Spelt C E, Reif H J, et al. The chalcone synthase multigene family of Petuniahybrida(V30): differential, light-regulated expression during flower development and UV lightinduction[J]. Plant Molecular Biology,1989,12:213-225.
    [197] Farzad M, Griesbach R, Hammond J, et al. Differential expression of three key anthocyaninbiosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today andTomorrow[J]. Plant Science,2003,165:1333-1342.
    [198] Nakatsuka A, Izumi Y, Yamagishi M. Spatial and temporal expression of chalcone synthaseand dihydroflavonol4-reductase genes in the Asiatic hybrid lily[J]. Plant Science,2003,165:759-767.
    [199]娄倩.百合花色形成关键基因(CHS)启动子功能分析[D].杨凌:西北农林科技大学,2010.
    [200] Rouster J, Leah R, Mundy J, Cameron-Mills V. Identification of a methyljasmonate-responsive region in the promoter of a lipoxygenase1gene expressed in barleygrain[J]. Plant Journal,1997,11(3):513~523
    [201] Max C S. External control of anthocyanin formation in apple[J]. Scientia Horticulturae,1990,42:181~218.
    [202]曹帮华,蔡青菊.银杏种子生理研究进展[J].山东农业科学,2001,1:40~42.
    [203] Knogge W, Schmelzer E, Weissenbock G. The rote of chalcone synthase in the regulation offlavonoid biosynthesis in developing oat primary leaves[J]. Arch Biochem Biophys,1986,250:364-372.
    [204] Nidhi G, Sunil K S, Jai C R, Rajinder S C. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species[J]. Journal of PlantPhysiology,2011,168:2117~2123.
    [205] Chang J, Luo J, He G. Regulation of polyphenols accumulation by combined overexpressionsilencing key enzymes of phenylpropanoid pathway[J]. Acta Biochemistry Biophysiology Sin(Shanghai)2009,41(2):123~30.
    [206] Jaakola L, Maatta K, Pirttila A M, Torronen R, Karenlampi S, Hohtola A. Expression ofgenes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin andflavonol levels during bilberry fruit development[J]. Plant Physiology,2002,130(2):729~739.
    [207] Amrhein N, Zenk MH. Activity of phenylalanine ammonialyase (PAL) and accumulation ofphenylpropanoid compounds during the germination of buckwheat (Fagopyrum esculentumMoench) in the dark[J]. Z Pflanzenphysiol1970;63(4):384–8.
    [208] Bovy A, Schijlen E, Hall RD. Metabolic engineering of flavonoids in tomato (Solanumlycopersicum): the potential for metabolomics[J]. Metabolomics2007;3:399–412.
    [209] Pitakdantham W, Sutabutra T, Chiemsombat P, Pitaksutheepong C. Isolation andcharacterization of chalcone synthase gene isolated from Dendrobium Sonia Earsakul[J].Pakistan Journal of Biological Science,2010,13(20):1000~1005.
    [210] Zhou L, Wang Y, Peng Z. Molecular characterization and expression analysis of chalconesynthase gene during flower development in tree peony (Paeonia suffruticosa)[J]. AfricaJournal of Biotechnology,2011,10(8):127512~84.
    [211] Park N I, Li X, Suzuki T, Kim S J, Woo S H, Park C H, Park S U. Differential expression ofanthocyanin biosynthetic genes and anthocyanin accumulation in Tartary Buckwheat cultivars‘Hokkai T8’and ‘Hokkai T10’[J]. Journal of Agricultural Food Chemistry,2011,56(6):2356~2361.
    [212] Povero G, Gonzali S, Bassolino L, Mazzucato A, Perata P. Transcriptional analysis inhigh-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes[J]. Journal of PlantPhysiology,2011,168(3):270~279.
    [213] Wang Y, Li J, Xia R. Expression of chalcone synthase and chalcone isomerase genes andaccumulation of corresponding flavonoids during fruit maturation of Guoqing no.4satsumamandarin (Citrus unshiu Marcow)[J]. Science Horticultural,2010,125(2):110~116.
    [214] Bovy A, Schijlen E, Hall R D. Metabolic engineering of flavonoids in tomato (Solanumlycopersicum): the potential for metabolomics[J]. Metabolomics,2007,3:399~412.
    [215] Jiang Y N, Wang B, Li H, Yao L M, Wu T L. Flavonoid production is effectively regulatedby RNAi interference of two flavone synthase genes from glycine max[J]. Journal of PlantBiological,2010,53:425~432.
    [216] Ali M B, Howard S, Chen S, Wang Y, Yu O, Kovacs L G, Qiu W. Berry skin development inNorton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis[J]. BMCPlant Biological,2011,10:11~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700