Ⅰ:BK_(Ca)通道参与尼古丁成瘾的实验研究;Ⅱ:龙胆苦苷下调伏隔核GluN2B受体抑制吗啡成瘾的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     吸烟是引起致命心血管系统、中枢神经系统(CNS)疾病的重要危险因素,每年死于与吸烟有关疾病的人数日益攀升,如何使吸烟者摆脱烟草的困扰即探讨其成瘾机制是当前该领域关注的焦点。
     烟草中的尼古丁,是产生烟草成瘾性或依赖性的主要成分,而引发成瘾的确切机制目前尚不清楚。成瘾和学习记忆过程有很多相同的神经生物学改变,与学习记忆有关的重要脑区、功能分子和离子通道参与了药物依赖的形成过程。大电导钙激活钾通道(BK_(Ca))在CNS中分布广泛,参与多种神经活动。激活该通道可产生后超极化电位(AHP),降低细胞膜的兴奋性,减少神经元电活动。BK_(Ca)亦可通过影响神经元的兴奋性及神经递质的释放,参与调节神经网络的活动。我们前期的研究结果显示,BK_(Ca)通过影响杏仁核神经电活动而参与焦虑的发病过程,提示BK_(Ca)参与脑的高级神经活动。然而,BK_(Ca)通道是否参与尼古丁成瘾及机制如何尚未见报道。本课题采用分子生物学、行为学及电生理等实验方法,观察BK_(Ca)通道在小鼠尼古丁成瘾中的作用及作用机制,并探讨其潜在的药理学治疗的可能性。
     目的
     BK_(Ca)广泛分布于CNS中,通过影响神经元的兴奋性及神经递质的释放参与多种神经活动。我们前期的研究结果显示,BK_(Ca)通过影响杏仁核神经电活动而参与焦虑的发病过程,提示BK_(Ca)参与脑的高级神经活动。本课题将以伏隔核BK_(Ca)通道为研究对象,阐明BK_(Ca)通道参与尼古丁成瘾的作用及作用机制,并探讨其潜在的药理学治疗可能性。
     方法
     1.体外原代培养神经元,免疫荧光双标技术观察BK_(Ca)通道在兴奋性和抑制性神经元的表达,Western Blot方法分析尼古丁刺激下神经元BK_(Ca)通道表达的变化。
     2.制备尼古丁成瘾小鼠模型,免疫荧光双标技术与Western Blot观察BK_(Ca)通道在尼古丁成瘾模型小鼠及正常对照小鼠伏隔核(NAc)中的表达变化。
     3.颈部皮下注射BK_(Ca)通道特异性激动剂NS1619、拮抗剂Paxilline,观察对尼古丁成瘾小鼠行为学的影响。
     4.脑立体定向注射BK_(Ca)通道shRNA慢病毒,RNA干扰(RNAinterference,RNAi)局部下调成瘾小鼠伏隔核BK_(Ca)的表达,24h后观察对尼古丁成瘾小鼠的行为改变。
     5.采用脑薄片全细胞膜片钳技术,研究伏隔核BK_(Ca)通道对神经元兴奋性,以及介导后超极化(AHP)功能中的作用;行为学观察调节BK_(Ca)通道功能对小鼠尼古丁成瘾的影响。
     结果
     1.采用IHC方法以VGLUT2标记兴奋性神经元,GAD67标记抑制性神经元,BK_(Ca)通道与VGLUT2、GAD67阳性的神经元共存,提示BK_(Ca)通道在两种神经元均有表达。
     2.体外原代神经元培养7d至成熟,给予50μM尼古丁刺激,于不同时间点收集并制备蛋白样品,WB方法观察尼古丁处理神经元24h起,BK_(Ca)蛋白表达降低。
     3.采用颈部皮下注射尼古丁,连续5d,CPP实验检测小鼠对白箱的偏爱确定成瘾模型制备成功,WB方法发现小鼠伏隔核中BK_(Ca)的表达降低。
     4.成瘾小鼠分别颈部皮下注射BK_(Ca)通道特异性激动剂NS1619、拮抗剂Paxilline,CPP发现NS1619可减少小鼠在白箱中的停留时间,即减弱了小鼠对尼古丁的觅药行为。
     5.成瘾小鼠NAc脑立体定向注射慢病毒包装的BK_(Ca)shRNA,RNAi下调其在NAc局部的表达,同时可增强小鼠在白箱中的停留时间,即增加对尼古丁的觅药行为。
     6.脑薄片全细胞膜片钳发现,尼古丁成瘾小鼠伏隔核神经元后超极化(AHP)幅度明显降低,其兴奋性明显增加,而BK_(Ca)通道被其特异性激动剂NS1619激活后使AHP幅度升高,显著降低成瘾小鼠伏隔核神经元兴奋性;尼古丁成瘾小鼠BK_(Ca)通道功能显著降低。
     结论
     1.我们采用体外原代神经元培养体系,证实BK_(Ca)表达于兴奋性和抑制性神经元,给予尼古丁刺激,BK_(Ca)的表达降低。
     2.证实尼古丁成瘾小鼠NAc的BK_(Ca)表达降低;升高BK_(Ca)功能(激动剂NS1619)可减弱小鼠的觅药行为;相反,抑制BK_(Ca)蛋白表达可增加小鼠的成瘾性。
     3.电生理结果进一步证实,BK_(Ca)通道通过调节神经元的兴奋性、调节神经网络的功能参与尼古丁成瘾,可作为潜在的治疗靶点。
     第二部分
     目的
     龙胆苦苷是从龙胆科植物条叶龙胆干燥根茎中分离出的一种裂环烯醚萜类化合物。该化合物具有镇痛作用,并能抑制NMDA受体的GluN2B亚基在小鼠前扣带皮层的表达。NAc是药物成瘾作用的重要前脑结构。然而,龙胆苦苷对吗啡成瘾和NAc突触传递的作用,尚不清楚。
     方法
     采用条件性位置偏爱(Conditioned place preference, CPP)和自发活动(locomotor activity)行为敏化观察成瘾小鼠的觅药行为;全细胞膜片钳记录NAc中神经元兴奋性突触后电流(EPSCs);Western blot检测相关蛋白的表达。
     结果
     小鼠给予龙胆苦苷可降低吗啡所致CPP效应,但对吗啡诱导的行为敏化没有影响。龙胆苦苷在吗啡戒断后一周内降低NMDA受体GluN2B亚基和多巴胺D2受体的过表达增强,但不影响NMDA受体GluN2A亚基和多巴胺D1受体。电生理结果表明龙胆苦苷亦可显著降低NAc中NMDA受体介导的EPSCs。
     结论
     研究证明,龙胆苦苷通过下调NAc中NMDA受体GluN2B亚基抑制吗啡的成瘾作用。
PartⅠ
     Smoking is the important risk factor leading to severe cardiovascular andcentral nervous system (CNS) diseases, and the death rate of diseases related tosmoking increased dramatically. Therefore, how to get rid of smoking and clarifythe mechanisms involved in smoking addiction are the focuses in this field.
     Nicotine, the main component of tobacco, is the major substance fornicotine addiction or dependence, while the mechanisms involved remainunclear. There are lots of similarities in neurobiological changes betweenaddiction and learning memory, including similar critical brain regions,functional molecules and ion channels. Among them, large conductanceCa~(2+)-activated K+-channel (BK_(Ca)) is widely expressed in the CNS and playsimportant roles in lots of neural activities. Activation of BK_(Ca)channel producesafter hyperpolarization (AHP), subsequently decreases excitability of the neurons. At the same time, BK_(Ca)takes part in neural networks throughmodulation of neuron excitability and neurotransmitter release. Our previousdata show that BK_(Ca)are involved in anxiety development by affecting neuronselectricphysiological activities in amygdala, suggesting BK_(Ca)may play a criticalrole in higher nervous activities including learning and memory. However,whether BK_(Ca)plays roles in nicotine addiction and the underlying mechanismsare still unclear. In this study, multiple methods including molecular biology,behavior test, and electrophysiology were used to investigate the roles andmechanisms of BK_(Ca)involved in nicotine addiction. It is hopeful that this studymay shed light on the possibility of potential target for nicotine addictiontreatment.
     Objective
     BK_(Ca)is widely expressed in the CNS and takes part in lots of neuralfunctions through modulation of neuron excitability and neurotransmitter release.Our previous data show that BK_(Ca)is involved in anxiety development byaffecting neurons electricphysiological activities in amygdala, implicating BK_(Ca)may play a critical role in higher nervous functions. In this study, we willexplore the roles of BK_(Ca)of nucleus accumbens septum (NAc) in thedevelopment of nicotine-addiction and the mechanisms involved in the process.It may shed light on the potential target for the therapy of nicotine addiction.
     Methods
     1. Immunofluorescence double-staining were used to check the expression ofBK_(Ca)in the excitatory and inhibitory neurons. The change of BK_(Ca)expression under nicotine stimulation was tested in the primary cultureneurons.
     2. Nicotine-addiction mouse model was establish to investigate the alteration ofBK_(Ca)expression in mice NAc.
     3. Roles of BK_(Ca)in nicotine-addiction were determined by subcutaneousinjection of NS1619(BK_(Ca)agonist) and Paxilline (BK_(Ca)antigonist) inaddicted mice and the behavioral changes accordingly.
     4. Lentiviurs shRNA for BK_(Ca)was performed to further explore the roles ofBK_(Ca)nicotine-addiction.
     5. Whole-cell patch clamp technique was used to investigate the effects ofBK_(Ca)channels on the excitability of neurons in NAc and the alteration ofBK_(Ca)channels in nicotine-addiciton.
     Results
     1. BK_(Ca)channels were observed coexsited in both VGLUT2positive andGAD67positive cells, implicating BK_(Ca)channels are expressed inexcitatory and inhibitory neurons.
     2. Expression of BK_(Ca)in cultured neurons was found decreased after treatmentwith nicotine (50μM) for24hours.
     3. Conditioned place preference (CPP) test was used to test nicotine-addiction,which was induced by subcutaneous injeciton of nicotine (0.5mg/kg) forsuccessive5days. Expression of BK_(Ca)in NAc was decreased significantlyin the addition mice.
     4. Subcutaneous injection of NS1619, the agonist of BK_(Ca), decreaseddrug-seeking behavior in addiction mice.
     5. Knocked down BK_(Ca)expression in NAc by shRNA promoted drug-seekingbehaviors.
     6. Using the whole-cell patch clamp technique we found that NS1619, theBK_(Ca)agonist, increasd the peak of the fAHP in the NAc neurons of addiction mice. The function of BK_(Ca)channels was decreased in thenicotine-addiction mice.
     Conclusions
     1. BK_(Ca)channels were expressed in both excitatory and inhibitory neurons andthe expression of BK_(Ca)was decreased after nicotine treatment.
     2. Expression of BK_(Ca)channels was decreased in NAc of nicotine-addictionmice. Increase of BK_(Ca)channel function (using agonist NS1619) coulddecrease drug-seeking behavior, however, inhibition of BK_(Ca)expressionby shRNA caused enhancement of drug-seeking behavior.
     3. Whole-cell patch-clamp recordings reveal that BK_(Ca)channels involve in thedevelopment of nicotine-addiction by regulating the excitability of thenetwork. Modulation of the BK_(Ca)channels may be the potential target forthe treatnment of drug addition.
     PartⅡ
     Objective: Gentiopicroside (Gent) is one of the secoiridoid compoundisolated from Gentiana lutea. This compound exhibits analgesic activities andinhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA)receptors in the anterior cingulate cortex in mice. Nucleus accumbens (NAc) is aforebrain structure known for its role in drug addiction. However, little is knownabout the role of Gent on morphine dependence and synaptic transmissionchanges in the NAc.
     Methods: Conditioned place preference (CPP) test and behavioralsensitization of locomotor activity were used to investigate drug-seeking relatedbehaviors. Brain slices containing NAc were prepared, and whole-cell patch-clamp recordings were performed to record the excitatory postsynapticcurrents (EPSCs). Expression of proteins was detected by Western blot analysis.
     Results: Systemic administration of Gent attenuated the CPP effect inducedby morphine, but had no effect on morphine-induced behavioral sensitization.Gent significantly reversed overexpression of GluN2B-containing NMDAreceptors and dopamine D2receptors in NAc during the first week of morphinewithdrawal. However, the compound did not affect the overexpression ofGluN2A-containing NMDA receptors, GluA1, and dopamine D1receptors.Lastly, Gent significantly reduced NMDA receptors-mediated EPSCs in theNAc.
     Conclusions: Our study provides strong evidence that Gent inhibitsmorphine dependence through downregulation of GluN2B-containing NMDAreceptors in the NAc.
引文
[1] Treistman SN&Martin GE. BK Channels: mediators and models foralcohol tolerance. Trends Neurosci200932:629-637.
    [2] WHO urges more countries to require large, graphic health warnings ontobacco packaging: the WHO report on the global tobacco epidemic,2011examines anti-tobacco mass-media campaigns. Cent Eur J Public Health201119:133,151.
    [3] Peto R, Lopez AD, Boreham J, Thun M&Heath C, Jr. Mortality fromtobacco in developed countries: indirect estimation from national vitalstatistics. Lancet1992339:1268-1278.
    [4] Peto R et al. Mortality from smoking worldwide. Br Med Bull199652:12-21.
    [5] Liu BQ et al. Emerging tobacco hazards in China:1. Retrospectiveproportional mortality study of one million deaths. BMJ1998317:1411-1422.
    [6] Changeux JP. Nicotinic receptors and nicotine addiction. C R Biol2009332:421-425.
    [7] Di Chiara G. Role of dopamine in the behavioural actions of nicotinerelated to addiction. Eur J Pharmacol2000393:295-314.
    [8] Stolerman IP&Shoaib M. The neurobiology of tobacco addiction. TrendsPharmacol Sci199112:467-473.
    [9] Bevins RA, Eurek S&Besheer J. Timing of conditioned responding in anicotine locomotor conditioning preparation: manipulations of thetemporal arrangement between context cues and drug administration.Behav Brain Res2005159:135-143.
    [10] Simmons MA, Werkheiser JL&Hudzik TJ. Acute nicotine andphencyclidine increase locomotor activity of the guinea pig withattenuated potencies relative to their effects on rat or mouse. PharmacolBiochem Behav201094:410-415.
    [11] DiFranza JR&Wellman RJ. Sensitization to nicotine: how the animalliterature might inform future human research. Nicotine Tob Res20079:9-20.
    [12] Dani JA&Harris RA. Nicotine addiction and comorbidity with alcoholabuse and mental illness. Nat Neurosci20058:1465-1470.
    [13] Dani JA, Ji D&Zhou FM. Synaptic plasticity and nicotine addiction.Neuron200131:349-352.
    [14] Mansvelder HD&McGehee DS. Cellular and synaptic mechanisms ofnicotine addiction. J Neurobiol200253:606-617.
    [15] Clarke PB. Mesolimbic dopamine activation--the key to nicotinereinforcement? Ciba Found Symp1990152:153-162; discussion162-158.
    [16] Dani JA&Heinemann S. Molecular and cellular aspects of nicotine abuse.Neuron199616:905-908.
    [17] Crain D&Bhat A. Current treatment options in smoking cessation. HospPract (Minneap)201038:53-61.
    [18] Balfour DJ, Wright AE, Benwell ME&Birrell CE. The putative role ofextra-synaptic mesolimbic dopamine in the neurobiology of nicotinedependence. Behav Brain Res2000113:73-83.
    [19] Spanagel R&Weiss F. The dopamine hypothesis of reward: past andcurrent status. Trends Neurosci199922:521-527.
    [20] Schultz W. Dopamine neurons and their role in reward mechanisms. CurrOpin Neurobiol19977:191-197.
    [21] Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol199880:1-27.
    [22] Grace AA&Onn SP. Morphology and electrophysiological properties ofimmunocytochemically identified rat dopamine neurons recorded in vitro.J Neurosci19899:3463-3481.
    [23] Lacey MG, Mercuri NB&North RA. Two cell types in rat substantia nigrazona compacta distinguished by membrane properties and the actions ofdopamine and opioids. J Neurosci19899:1233-1241.
    [24] Johnson SW&North RA. Two types of neurone in the rat ventraltegmental area and their synaptic inputs. J Physiol1992450:455-468.
    [25] Johnson SW&North RA. Opioids excite dopamine neurons byhyperpolarization of local interneurons. J Neurosci199212:483-488.
    [26] Meltzer LT, Christoffersen CL&Serpa KA. Modulation of dopamineneuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev199721:511-518.
    [27] Fan X&Hess EJ. D2-like dopamine receptors mediate the response toamphetamine in a mouse model of ADHD. Neurobiol Dis200726:201-211.
    [28] Wu Q et al. Concurrent autoreceptor-mediated control of dopamine releaseand uptake during neurotransmission: an in vivo voltammetric study. JNeurosci200222:6272-6281.
    [29] Gonon F. Prolonged and extrasynaptic excitatory action of dopaminemediated by D1receptors in the rat striatum in vivo. J Neurosci199717:5972-5978.
    [30] Ding ZM, Liu W, Engleman EA, Rodd ZA&McBride WJ. Differentialeffects of dopamine D2and GABA(A) receptor antagonists on dopamineneurons between the anterior and posterior ventral tegmental area offemale Wistar rats. Pharmacol Biochem Behav200992:404-412.
    [31] Schumann J, Matzner H, Michaeli A&Yaka R. NR2A/B-containingNMDA receptors mediate cocaine-induced synaptic plasticity in the VTAand cocaine psychomotor sensitization. Neurosci Lett2009461:159-162.
    [32] Zellner MR, Kest K&Ranaldi R. NMDA receptor antagonism in theventral tegmental area impairs acquisition of reward-related learning.Behav Brain Res2009197:442-449.
    [33] Mercuri NB, Stratta F, Calabresi P, Bonci A&Bernardi G. Activation ofmetabotropic glutamate receptors induces an inward current in ratdopamine mesencephalic neurons. Neuroscience199356:399-407.
    [34] Zweifel LS, Argilli E, Bonci A&Palmiter RD. Role of NMDA receptorsin dopamine neurons for plasticity and addictive behaviors. Neuron200859:486-496.
    [35] Wang T&French ED. Electrophysiological evidence for the existence ofNMDA and non-NMDA receptors on rat ventral tegmental dopamineneurons. Synapse199313:270-277.
    [36] Overton PG&Clark D. Burst firing in midbrain dopaminergic neurons.Brain Res Brain Res Rev199725:312-334.
    [37] Carr DB&Kalivas PW. Confused about NMDA and addiction? Targetedknockouts provide answers and new questions. Neuron200859:353-355.
    [38] Bonci A&Malenka RC. Properties and plasticity of excitatory synapseson dopaminergic and GABAergic cells in the ventral tegmental area. JNeurosci199919:3723-3730.
    [39] Jones S&Kauer JA. Amphetamine depresses excitatory synaptictransmission via serotonin receptors in the ventral tegmental area. JNeurosci199919:9780-9787.
    [40] Zhang Y, Mantsch JR, Schlussman SD, Ho A&Kreek MJ. Conditionedplace preference after single doses or "binge" cocaine in C57BL/6J and129/J mice. Pharmacol Biochem Behav200273:655-662.
    [41] Tirelli E, Laviola G&Adriani W. Ontogenesis of behavioral sensitizationand conditioned place preference induced by psychostimulants inlaboratory rodents. Neurosci Biobehav Rev200327:163-178.
    [42] Shabat-Simon M, Levy D, Amir A, Rehavi M&Zangen A. Dissociationbetween rewarding and psychomotor effects of opiates: differential rolesfor glutamate receptors within anterior and posterior portions of theventral tegmental area. J Neurosci200828:8406-8416.
    [43] Moron JA et al. Modulation of opiate-related signaling molecules inmorphine-dependent conditioned behavior: conditioned place preferenceto morphine induces CREB phosphorylation. Neuropsychopharmacology201035:955-966.
    [44] Sofuoglu M&Mooney M. Cholinergic functioning in stimulant addiction:implications for medications development. CNS Drugs200923:939-952.
    [45] Langmead CJ, Watson J&Reavill C. Muscarinic acetylcholine receptorsas CNS drug targets. Pharmacol Ther2008117:232-243.
    [46] Schmidt LS et al. Increased amphetamine-induced locomotor activity,sensitization, and accumbal dopamine release in M5muscarinic receptorknockout mice. Psychopharmacology (Berl)2010207:547-558.
    [47] Dajas-Bailador F&Wonnacott S. Nicotinic acetylcholine receptors andthe regulation of neuronal signalling. Trends Pharmacol Sci200425:317-324.
    [48] Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci199720:92-98.
    [49] Nestler EJ. Is there a common molecular pathway for addiction? NatNeurosci20058:1445-1449.
    [50] Mansvelder HD&McGehee DS. Long-term potentiation of excitatoryinputs to brain reward areas by nicotine. Neuron200027:349-357.
    [51] Dani JA&De Biasi M. Cellular mechanisms of nicotine addiction.Pharmacol Biochem Behav200170:439-446.
    [52] Kenny PJ&Markou A. Nicotine self-administration acutely activatesbrain reward systems and induces a long-lasting increase in rewardsensitivity. Neuropsychopharmacology200631:1203-1211.
    [53] Brody AL. Functional brain imaging of tobacco use and dependence. JPsychiatr Res200640:404-418.
    [54] Hollander JA, Lu Q, Cameron MD, Kamenecka TM&Kenny PJ. Insularhypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U SA2008105:19480-19485.
    [55] Guitart X, Thompson MA, Mirante CK, Greenberg ME&Nestler EJ.Regulation of cyclic AMP response element-binding protein (CREB)phosphorylation by acute and chronic morphine in the rat locus coeruleus.J Neurochem199258:1168-1171.
    [56] Kauer JA&Malenka RC. Synaptic plasticity and addiction. Nat RevNeurosci20078:844-858.
    [57] Kolb B, Gorny G, Li Y, Samaha AN&Robinson TE. Amphetamine orcocaine limits the ability of later experience to promote structuralplasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci U SA2003100:10523-10528.
    [58] Robinson TE&Kolb B. Alterations in the morphology of dendrites anddendritic spines in the nucleus accumbens and prefrontal cortex followingrepeated treatment with amphetamine or cocaine. Eur J Neurosci199911:1598-1604.
    [59] Li Y&Kauer JA. Repeated exposure to amphetamine disruptsdopaminergic modulation of excitatory synaptic plasticity andneurotransmission in nucleus accumbens. Synapse200451:1-10.
    [60] Norrholm SD et al. Cocaine-induced proliferation of dendritic spines innucleus accumbens is dependent on the activity of cyclin-dependentkinase-5. Neuroscience2003116:19-22.
    [61] Brown RW&Kolb B. Nicotine sensitization increases dendritic lengthand spine density in the nucleus accumbens and cingulate cortex. BrainRes2001899:94-100.
    [62] Schramm NL, Egli RE&Winder DG. LTP in the mouse nucleusaccumbens is developmentally regulated. Synapse200245:213-219.
    [63] Nishioku T, Shimazoe T, Yamamoto Y, Nakanishi H&Watanabe S.Expression of long-term potentiation of the striatum inmethamphetamine-sensitized rats. Neurosci Lett1999268:81-84.
    [64] Marrone DF&Petit TL. The role of synaptic morphology in neuralplasticity: structural interactions underlying synaptic power. Brain ResBrain Res Rev200238:291-308.
    [65] Thomas MJ, Beurrier C, Bonci A&Malenka RC. Long-term depression inthe nucleus accumbens: a neural correlate of behavioral sensitization tococaine. Nat Neurosci20014:1217-1223.
    [66] Gekara NO et al. The multiple mechanisms of Ca2+signalling bylisteriolysin O, the cholesterol-dependent cytolysin of Listeriamonocytogenes. Cell Microbiol20079:2008-2021.
    [67] Sausbier U et al. Ca2+-activated K+channels of the BK-type in themouse brain. Histochem Cell Biol2006125:725-741.
    [68] Beurg M, Evans MG, Hackney CM&Fettiplace R. A large-conductancecalcium-selective mechanotransducer channel in mammalian cochlear haircells. J Neurosci200626:10992-11000.
    [69] Marty A. Ca-dependent K channels with large unitary conductance inchromaffin cell membranes. Nature1981291:497-500.
    [70] Latorre R&Brauchi S. Large conductance Ca2+-activated K+(BK)channel: activation by Ca2+and voltage. Biol Res200639:385-401.
    [71] Cui J, Yang H&Lee US. Molecular mechanisms of BK channel activation.Cell Mol Life Sci200966:852-875.
    [72] Ghatta S, Nimmagadda D, Xu X&O'Rourke ST. Large-conductance,calcium-activated potassium channels: structural and functionalimplications. Pharmacol Ther2006110:103-116.
    [73] Nardi A&Olesen SP. BK channel modulators: a comprehensive overview.Curr Med Chem200815:1126-1146.
    [74] Matthews EA, Weible AP, Shah S&Disterhoft JF. The BK-mediatedfAHP is modulated by learning a hippocampus-dependent task. Proc NatlAcad Sci U S A2008105:15154-15159.
    [75] Goldberg JA&Wilson CJ. Control of spontaneous firing patterns by theselective coupling of calcium currents to calcium-activated potassiumcurrents in striatal cholinergic interneurons. J Neurosci200525:10230-10238.
    [76] Shruti S, Clem RL&Barth AL. A seizure-induced gain-of-function in BKchannels is associated with elevated firing activity in neocorticalpyramidal neurons. Neurobiol Dis200830:323-330.
    [77] Nelson AB, Krispel CM, Sekirnjak C&du Lac S. Long-lasting increasesin intrinsic excitability triggered by inhibition. Neuron200340:609-620.
    [78] Giraldez T, Hughes TE&Sigworth FJ. Generation of functionalfluorescent BK channels by random insertion of GFP variants. J GenPhysiol2005126:429-438.
    [79] Xu JW&Slaughter MM. Large-conductance calcium-activated potassiumchannels facilitate transmitter release in salamander rod synapse. JNeurosci200525:7660-7668.
    [80] Sausbier M et al. Cerebellar ataxia and Purkinje cell dysfunction causedby Ca2+-activated K+channel deficiency. Proc Natl Acad Sci U S A2004101:9474-9478.
    [81] Orio P&Latorre R. Differential effects of beta1and beta2subunits onBK channel activity. J Gen Physiol2005125:395-411.
    [82] Zeng XH, Benzinger GR, Xia XM&Lingle CJ. BK channels with beta3asubunits generate use-dependent slow afterhyperpolarizing currents by aninactivation-coupled mechanism. J Neurosci200727:4707-4715.
    [83] Jiang Z, Wallner M, Meera P&Toro L. Human and rodent MaxiK channelbeta-subunit genes: cloning and characterization. Genomics199955:57-67.
    [84] Lancaster B&Nicoll RA. Properties of two calcium-activatedhyperpolarizations in rat hippocampal neurones. J Physiol1987389:187-203.
    [85] Storm JF. Action potential repolarization and a fast after-hyperpolarizationin rat hippocampal pyramidal cells. J Physiol1987385:733-759.
    [86] Storm JF. Potassium currents in hippocampal pyramidal cells. Prog BrainRes199083:161-187.
    [87] Faber ES&Sah P. Ca2+-activated K+(BK) channel inactivationcontributes to spike broadening during repetitive firing in the rat lateralamygdala. J Physiol2003552:483-497.
    [88] Kang J, Huguenard JR&Prince DA. Voltage-gated potassium channelsactivated during action potentials in layer V neocortical pyramidal neurons.J Neurophysiol200083:70-80.
    [89] Jahromi BS, Zhang L, Carlen PL&Pennefather P. Differentialtime-course of slow afterhyperpolarizations and associated Ca2+transients in rat CA1pyramidal neurons: further dissociation by Ca2+buffer. Neuroscience199988:719-726.
    [90] Li W&Aldrich RW. Unique inner pore properties of BK channelsrevealed by quaternary ammonium block. J Gen Physiol2004124:43-57.
    [91] Cui J, Cox DH&Aldrich RW. Intrinsic voltage dependence and Ca2+regulation of mslo large conductance Ca-activated K+channels. J GenPhysiol1997109:647-673.
    [92] Latorre R, Vergara C&Hidalgo C. Reconstitution in planar lipid bilayersof a Ca2+-dependent K+channel from transverse tubule membranesisolated from rabbit skeletal muscle. Proc Natl Acad Sci U S A198279:805-809.
    [93] Olesen SP, Munch E, Moldt P&Drejer J. Selective activation ofCa(2+)-dependent K+channels by novel benzimidazolone. Eur JPharmacol1994251:53-59.
    [94] Biagi G et al.1,5-Diarylsubstituted1,2,3-triazoles as potassium channelactivators. VI. Farmaco200459:397-404.
    [95] Biagi G et al. Synthesis and biological activity of novel substitutedbenzanilides as potassium channel activators. V. Eur J Med Chem200439:491-498.
    [96] MacDonald SH, Ruth P, Knaus HG&Shipston MJ. Increased largeconductance calcium-activated potassium (BK) channel expressionaccompanied by STREX variant downregulation in the developing mouseCNS. BMC Dev Biol20066:37.
    [97] Liu Q, Chen B, Ge Q&Wang ZW. Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release byactivating BK channels at Caenorhabditis elegans neuromuscular junction.J Neurosci200727:10404-10413.
    [98] Misonou H et al. Immunolocalization of the Ca2+-activated K+channelSlo1in axons and nerve terminals of mammalian brain and culturedneurons. J Comp Neurol2006496:289-302.
    [99] Martin G et al. Somatic localization of a specific large-conductancecalcium-activated potassium channel subtype controls compartmentalizedethanol sensitivity in the nucleus accumbens. J Neurosci200424:6563-6572.
    [100] Zhang XF, Gopalakrishnan M&Shieh CC. Modulation of action potentialfiring by iberiotoxin and NS1619in rat dorsal root ganglion neurons.Neuroscience2003122:1003-1011.
    [101] Gu N, Vervaeke K&Storm JF. BK potassium channels facilitatehigh-frequency firing and cause early spike frequency adaptation in ratCA1hippocampal pyramidal cells. J Physiol2007580:859-882.
    [102] Benhassine N&Berger T. Large-conductance calcium-dependentpotassium channels prevent dendritic excitability in neocortical pyramidalneurons. Pflugers Arch2009457:1133-1145.
    [103] Benhassine N&Berger T. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apicaldendrite of rat neocortical layer5pyramidal neurons. Eur J Neurosci200521:914-926.
    [104] Kent J&Meredith AL. BK channels regulate spontaneous action potentialrhythmicity in the suprachiasmatic nucleus. PLoS One20083:e3884.
    [105] Brodie MS, Scholz A, Weiger TM&Dopico AM. Ethanol interactionswith calcium-dependent potassium channels. Alcohol Clin Exp Res200731:1625-1632.
    [106] Pietrzykowski AZ et al. Alcohol tolerance in large-conductance,calcium-activated potassium channels of CNS terminals is intrinsic andincludes two components: decreased ethanol potentiation and decreasedchannel density. J Neurosci200424:8322-8332.
    [107] Pietrzykowski AZ et al. Posttranscriptional regulation of BK channelsplice variant stability by miR-9underlies neuroadaptation to alcohol.Neuron200859:274-287.
    [108] Liu J, Asuncion-Chin M, Liu P&Dopico AM. CaM kinase IIphosphorylation of slo Thr107regulates activity and ethanol responses ofBK channels. Nat Neurosci20069:41-49.
    [109] Cowmeadow RB et al. Ethanol tolerance caused by slowpoke induction inDrosophila. Alcohol Clin Exp Res200630:745-753.
    [110] Cowmeadow RB, Krishnan HR&Atkinson NS. The slowpoke gene isnecessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res200529:1777-1786.
    [111] Davies AG et al. A central role of the BK potassium channel in behavioralresponses to ethanol in C. elegans. Cell2003115:655-666.
    [112] Ghezzi A, Al-Hasan YM, Larios LE, Bohm RA&Atkinson NS. slo K(+)channel gene regulation mediates rapid drug tolerance. Proc Natl Acad SciU S A2004101:17276-17281.
    [113] Martin GE et al. Identification of a BK channel auxiliary proteincontrolling molecular and behavioral tolerance to alcohol. Proc Natl AcadSci U S A2008105:17543-17548.
    [114] Fowler CD&Kenny PJ. Intravenous nicotine self-administration andcue-induced reinstatement in mice: effects of nicotine dose, rate of druginfusion and prior instrumental training. Neuropharmacology201161:687-698.
    [115] Dunah AW&Standaert DG. Dopamine D1receptor-dependent traffickingof striatal NMDA glutamate receptors to the postsynaptic membrane. JNeurosci200121:5546-5558.
    [116] Wang X, Yin C, Xi L&Kukreja RC. Opening of Ca2+-activated K+channels triggers early and delayed preconditioning against I/R injuryindependent of NOS in mice. Am J Physiol Heart Circ Physiol2004287:H2070-2077.
    [117] Imlach WL et al. The molecular mechanism of "ryegrass staggers," aneurological disorder of K+channels. J Pharmacol Exp Ther2008327:657-664.
    [118] Abdullaev IF, Rudkouskaya A, Mongin AA&Kuo YH. Calcium-activatedpotassium channels BK and IK1are functionally expressed in humangliomas but do not regulate cell proliferation. PLoS One20105:e12304.
    [119] Zhao WF et al. The effects of chronic lead exposure on long-termdepression in area CA1and dentate gyrus of rat hippocampus in vitro.Brain Res1999818:153-159.
    [120] Neher E&Sakmann B. Single-channel currents recorded from membraneof denervated frog muscle fibres. Nature1976260:799-802.
    [121] Maguire HC et al. A collaborative case control study of sporadic hepatitisA in England. Commun Dis Rep CDR Rev19955:R33-40.
    [122] Neher E. Ion channels for communication between and within cells.Science1992256:498-502.
    [123] Jin W, Sugaya A, Tsuda T, Ohguchi H&Sugaya E. Relationship betweenlarge conductance calcium-activated potassium channel and burstingactivity. Brain Res2000860:21-28.
    [124] Monyer H, Burnashev N, Laurie DJ, Sakmann B&Seeburg PH.Developmental and regional expression in the rat brain and functionalproperties of four NMDA receptors. Neuron199412:529-540.
    [125] Trujillo KA. Are NMDA receptors involved in opiate-induced neural andbehavioral plasticity? A review of preclinical studies.Psychopharmacology (Berl)2000151:121-141.
    [126] Murray F, Harrison NJ, Grimwood S, Bristow LJ&Hutson PH. Nucleusaccumbens NMDA receptor subunit expression and function is enhancedin morphine-dependent rats. Eur J Pharmacol2007562:191-197.
    [127] Trujillo KA&Akil H. Inhibition of morphine tolerance and dependenceby the NMDA receptor antagonist MK-801. Science1991251:85-87.
    [128] Spanagel R, Herz A&Shippenberg TS. The effects of opioid peptides ondopamine release in the nucleus accumbens: an in vivo microdialysis study.J Neurochem199055:1734-1740.
    [129] Shippenberg TS&Herz A. Place preference conditioning reveals theinvolvement of D1-dopamine receptors in the motivational properties ofmu-and kappa-opioid agonists. Brain Res1987436:169-172.
    [130] Shippenberg TS&Herz A. Motivational effects of opioids: influence ofD-1versus D-2receptor antagonists. Eur J Pharmacol1988151:233-242.
    [131] Verma A&Kulkarni SK. Role of D1/D2dopamine andN-methyl-D-aspartate (NMDA) receptors in morphine tolerance anddependence in mice. Eur Neuropsychopharmacol19955:81-87.
    [132] Hase K et al. Hepatoprotective principles of Swertia japonica Makino onD-galactosamine/lipopolysaccharide-induced liver injury in mice. ChemPharm Bull (Tokyo)199745:1823-1827.
    [133] Ozturk N, Korkmaz S, Ozturk Y&Baser KH. Effects of gentiopicroside,sweroside and swertiamarine, secoiridoids from gentian (Gentiana luteassp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med200672:289-294.
    [134] Ozturk N, Baser KH, Aydin S, Ozturk Y&Calis I. Effects of Gentianalutea ssp. symphyandra on the central nervous system in mice. PhytotherRes200216:627-631.
    [135] Chen L et al. Down-regulation of NR2B receptors partially contributes toanalgesic effects of Gentiopicroside in persistent inflammatory pain.Neuropharmacology200854:1175-1181.
    [136] Wise RA&Bozarth MA. A psychomotor stimulant theory of addiction.Psychol Rev198794:469-492.
    [137] Di Chiara G et al. Drug addiction as a disorder of associative learning.Role of nucleus accumbens shell/extended amygdala dopamine. Ann N YAcad Sci1999877:461-485.
    [138] Sahraei H et al. Effects of Papaver rhoeas extract on the acquisition andexpression of morphine-induced conditioned place preference in mice. JEthnopharmacol2006103:420-424.
    [139] Feng B et al. Blocking alpha4beta2and alpha7nicotinic acetylcholinereceptors inhibits the reinstatement of morphine-induced CPP by drugpriming in mice. Behav Brain Res2011220:100-105.
    [140] Huang EY, Liu TC&Tao PL. Co-administration of dextromethorphanwith morphine attenuates morphine rewarding effect and related dopaminereleases at the nucleus accumbens. Naunyn Schmiedebergs ArchPharmacol2003368:386-392.
    [141] Kao JH, Huang EY&Tao PL. NR2B subunit of NMDA receptor atnucleus accumbens is involved in morphine rewarding effect by siRNAstudy. Drug Alcohol Depend118:366-374.
    [142] Inoue M, Mishina M&Ueda H. Locus-specific rescue of GluRepsilon1NMDA receptors in mutant mice identifies the brain regions important formorphine tolerance and dependence. J Neurosci200323:6529-6536.
    [143] Ma YY, Chu NN, Guo CY, Han JS&Cui CL. NR2B-containing NMDAreceptor is required for morphine-but not stress-induced reinstatement.Exp Neurol2007203:309-319.
    [144] Narita M, Aoki T&Suzuki T. Molecular evidence for the involvement ofNR2B subunit containing N-methyl-D-aspartate receptors in thedevelopment of morphine-induced place preference. Neuroscience2000101:601-606.
    [145] Elmer GI et al. Failure of intravenous morphine to serve as an effectiveinstrumental reinforcer in dopamine D2receptor knock-out mice. JNeurosci200222:RC224.
    [146] Elmer GI et al. Brain stimulation and morphine reward deficits indopamine D2receptor-deficient mice. Psychopharmacology (Berl)2005182:33-44.
    [147] Pontieri FE, Tanda G&Di Chiara G. Intravenous cocaine, morphine, andamphetamine preferentially increase extracellular dopamine in the "shell"as compared with the "core" of the rat nucleus accumbens. Proc Natl AcadSci U S A199592:12304-12308.
    [148] Pontieri FE, Tanda G, Orzi F&Di Chiara G. Effects of nicotine on thenucleus accumbens and similarity to those of addictive drugs. Nature1996382:255-257.
    [149] Tanda G, Pontieri FE&Di Chiara G. Cannabinoid and heroin activation ofmesolimbic dopamine transmission by a common mu1opioid receptormechanism. Science1997276:2048-2050.
    [150] Martin G et al. Chronic morphine treatment alters NMDAreceptor-mediated synaptic transmission in the nucleus accumbens. JNeurosci199919:9081-9089.
    [151] Bajo M, Crawford EF, Roberto M, Madamba SG&Siggins GR. Chronicmorphine treatment alters expression of N-methyl-D-aspartate receptorsubunits in the extended amygdala. J Neurosci Res200683:532-537.
    [152] Hollmann M, Hartley M&Heinemann S. Ca2+permeability ofKA-AMPA--gated glutamate receptor channels depends on subunitcomposition. Science1991252:851-853.
    [153] Toyoda H et al. Long-term depression requires postsynaptic AMPA GluR2receptor in adult mouse cingulate cortex. J Cell Physiol2007211:336-343.
    [154] Esteban JA et al. PKA phosphorylation of AMPA receptor subunitscontrols synaptic trafficking underlying plasticity. Nat Neurosci20036:136-143.
    [155] Snyder GL et al. Regulation of phosphorylation of the GluR1AMPAreceptor in the neostriatum by dopamine and psychostimulants in vivo. JNeurosci200020:4480-4488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700