葫芦脲及其衍生物在色谱中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于超分子化学作用的大环超分子化合物色谱固定相由于具有特殊的分离选择性、稳定性一直受到广大色谱工作者的极大关注。葫芦脲被誉为“第四代超分子化合物”,葫芦脲优良的分子识别能力早已被许多实验证实,研究已表明葫芦脲在色谱领域具有发展潜力,但其应用研究的深度和广度远远不如冠醚、环糊精和杯芳烃。利用葫芦脲的分子识别作用提高色谱分离选择性是色谱学与超分子化学交叉的前沿研究领域,显示出重要的学术价值和应用前景。本学位论文将葫芦脲应用于气相色谱固定相,表征和评价了新固定相的色谱性能,通过各种溶质和实际样品较系统地探讨了色谱保留机理;制备了葫芦[6]脲单轮烷键合硅胶固定相应用于高效液相色谱,对新固定相的制备、表征、色谱性能和保留机理等进行了较为系统的研究。主要内容如下:
     1.较全面地综述了大环超分子化合物冠醚、环糊精、杯芳烃在气相色谱和液相色谱固定相方面的研究进展,并侧重概述了第四代超分子化合物葫芦脲在分离科学和超分子自组装领域的研究现状和进展,为本论文选题、研究内容、技术路线设计等提供依据。
     2.合成了甘脲、葫芦[6]脲和羟基葫芦[6]脲,并采用红外光谱、质谱、热分析等手段对产物进行了表征,为气相色谱固定相和液相色谱键合相的制备提供原料。
     3.设计了一种在酸性条件下均匀涂渍固定液的新方法,首次将羟基葫芦[6]脲(HOCB6)用作气相色谱固定相。将HOCB6填装成气相色谱填充柱后,以烷烃、卤代烃、芳香烃、醇、酮、酯、酸、胺等类物质为探针以及用复杂样品花露水,对它的色谱分离性能进行了研究,探讨了其色谱分离机理。结果表明:HOCB6是一种性能优良的气相色谱分离材料,热稳定性高,柱性能稳定,可用于高温气相色谱。HOCB6柱具有优良的色谱分离性能,对难分离的芳香族位置异构体(如二甲苯)具有良好的分离能力,显示出较好的立体选择性;尤其是对复杂样品的高沸点组分(如花露水中的高沸点组分)有良好的分离效果,可预见其对复杂体系的分离具有广阔的应用前景。
     4.制备了葫芦[6]脲和甘脲填充柱,首次将甘脲应用于气相色谱固定相,采用各种溶质探针,评价了甘脲和葫芦[6]脲固定相的色谱性能,探讨了色谱分离机理。结果表明:甘脲固定相热稳定性高、柱性能稳定,是一种良好的气相色谱固定相,该固定相对烷烃、卤代烃、芳香烃、醇、酯、酮、酸、胺等类物质具有良好的分离能力,尤其是对位置异构体(如二取代苯位置异构体)有较好的分离选择性。葫芦[6]脲固定相对气体分子有吸附和捕集作用,在环保领域有应用前景。
     5.利用气相色谱法研究了葫芦[6]脲与有机气体分子的相互作用。结果表明:葫芦[6]脲能吸附和捕集气体分子,特别是气体小分子,可用于室内空气污染如甲醛污染的治理。
     6.将超分子自组装技术和色谱键合硅胶固定相制备技术相结合,采用γ-[(2,3)-环氧丙氧]丙基三甲氧基硅烷(KH-560)为偶联剂,首次将一种葫芦[6]脲单轮烷(CB6MR)键合到硅胶上,制备了一种新型的高效液相色谱葫芦[6]脲单轮烷键合固定相(CB6MRBS)。通过红外光谱、元素分析、热分析等手段表征了固定相的结构。
     7.采用中性、酸性、碱性化合物和二取代苯位置异构体等溶质探针,分别在反相和正相色谱模式下对固定相的色谱性能和保留机理进行了研究。结果表明:CB6MRBS是一种多模式键合固定相,具有良好的正相和反相色谱性能,对位置异构体具有较高的识别能力,特别是可有效地用于碱性化合物的分离分析。其保留机理存在氢键、静电、π-π和疏水作用等多种作用力机制,协同作用提高了CB6MRBS对溶质的分离选择性。由于配体中含有酰胺基和众多羰基,可预见CB6MRBS在络合色谱和生化样品分析方面有应用前景。
     8.采用新固定相进行了溶质分离的应用研究,研究了正相和反相色谱模式下嘌呤衍生物在新固定相上的色谱行为并在反相模式下与ODS固定相进行了比较,研究了各种因素对色谱分离的影响,探讨了分离机理,并优化色谱条件,有利于新固定相进一步的推广应用;利用新固定相在正相和反相模式下测定了茶叶中的咖啡因。结果表明:在反相模式下,嘌呤化合物与葫芦[6]脲单轮烷键合相之间存在多种相互作用,除疏水作用外,分离过程中还存在与ODS不同的色谱分离机制,分离效果明显优于ODS。在正相条件下,多作用力的色谱分离机制同样存在。葫芦[6]脲单轮烷键合相与溶质之间存在疏水、氢键、π-π和偶极-偶极等多种作用力,协同作用提高了固定相对它们的分离选择性。CB6MRBS对茶叶中咖啡因的测定在正相和反相模式下均取得了满意的效果。CB6MRBS在嘌呤碱基衍生物的快速分离和测定方面有广阔的应用前景。
     9.葫芦脲在毛细管气相色谱等方面的应用以及葫芦[6]脲单轮烷键合硅胶固定相在生化样品分离分析等方面的应用有待于下一步研究。
Macrocycle supramolecular chromatography stationary phases have been gaining great interest for the chromatography due to special molecular recognition based on supramolecular interaction retention mechanism. A great deal of studies have shown that cucurbit[n]urils (CB[n], n=5-10), the macrocyclic host molecules of the fourth generation supramolecular, possess special capacity of the molecular recognition for a wide variety of guest molecules based on supramolecular interactions. Although cucurbit[n]s are potentially as useful as well-known host molecules such as crown ethers, cyclodextrins, and calixarenes, their practical applications are still limited especially in separation science. How to promote separation selectivity via the molecular recognition of CB[n] ligands is an attracting subject in the overlapping area of modern chromatography with supramolecular chemistry, showing great promising prospect for the researches of separation theory and application. In this thesis, CB[n]s was used as stationary phase for gas chromatography for the first time. The preliminary evaluation of the new stationary phases for GC was carried out. Related separation mechanism was systematically studied. Meanwhile, the preparation, characterization, evaluation and retention mechanism of cucurbit[6]uril mono-rotaxane-bonded silica stationary phases for HPLC were studied systematically. The main contents studied are as follows:
     1. The progress of the study of crown ethers, cyclodextrins, and calixarenes in HPLC and GC were reviewed in detail. The main subject focused on the preparation, chromatographic property, retention mechanism and application of cucurbituril-bonded stationary phases for HPLC and molecular assembly of cucurbituril. The application prospect of cucurbituril for separation science and related techniques in the future is discussed. Above all provide the basis and start point for further research of the subject.
     2. Glycoluril, cucurbit[6]uril and perhydroxycucurbit[6]uril were synthesized. Their structures were characterized by infared fourier transform spectroscopy, elemental analysis, thermal analysis and mass spectrometry. This provided material for the preparation of GC stationary phases and bonded silica stationary for HPLC.
     3. A novel method of well-proportionally coating perhydroxycucurbit[6]uril stationary phase (PSP) on a packed column under acidic condition was developed, perhydroxycucurbit[6]uril has been used successfully as stationary phase for packed column gas chromatography for the first time. Perhydroxycucurbit[6]uril stationary phase exhibited wide operational temperature, outstanding thermostability and good selectivities for various organic compounds, such as alkanes, aromatic hydrocarbons, alcohols, esters, ketones and amines, etc. It was also found that some positional isomers, such as disubstituted benzenes could be well separated on this column. PSP has excellent separation abilities to some complicate samples, for example commercial toilet waters. PSP exhibits the promising application in the separation of complicate samples. Separation mechanism of the new packing for GC-separation was preliminary discussed.
     4. Cucurbit[6]uril and glycoluril packed column was prepared and glycoluril was used as stationary phase in packed column gas chromatography for the first time. Their chromatographic properties were studied by using different probes. The results showed that the glycoluril stationary phase (GSP) was a good GC stationary phase with wide operational temperature, outstanding thermostability and good separation ability for alkanes, halohydrocarbons, aromatic hydrocarbons, alcohols, esters, ketones, carboxylic acids and amines, etc. It was also found that some positional isomers such as disubstituted benzene can be well separated on GSP. The GC-separation mechanism of GSP was preliminary discussed. The results also showed that cucurbit[6]uril can absorbed and capture gas molecules. Cucurbituril will be well application prospect in environmental protection.
     5. The interactions between cucurbit[6]uril and organic volatile molecules were studied by using gas chromatography method. The results show that cucurbit[6]uril can absorb and capture gas molecules especially for small molecules, cucurbit[6]uril can be used in control indoor air pollution such as the treatment of indoor formaldehyde pollution.
     6. A novel cucurbit[6]uril monorotaxane bonded silica stationary phase (CB6MRBS) for high performance liquid chromatography has been prepared successfully by combining supramolecular self-assembly technology with the immobilization technique of chromatographic stationary phase. A cucurbit[6]uril monorotaxane (CB6MR) was, for the first time, grafted to silica gel by usingγ-glycidoxypropyl-trimethoxysilane (KH-560) as a coupling reagent. CB6MRBS was characterized by FTIR, elemental analysis and thermal analysis.
     7. The chromatographic performance and retention mechanism of CB6MRBS were evaluated by using organic components including acidic, basic, neutral analytes and positional isomers of disubstituted benzene as probe molecules under both reversed-phase and normal-phase modes. The results show that CB6MRBS is a kind of multimode bonded stationary phase with excellent reversed-phase and normal-phase chromatographic properties. CB6MRBS shows obvious priority for separation of positional isomers, especially for the better separation of basic compounds. The new packing material can provide various action sites for different analytes, such as those of hydrogen-bonding,π-π, electrostatic and hydrophobic interactions. It may have good prospect for complexation chromatography, which is required to further stduy.
     8. The new cucurbit[6]uril monorotaxane-bonded stationary phases were used for the separation of solute series. The chromatographic behavior of purine derivatives on CB6MRBS were studied by high performance liquid chromatography under normal and reversed phase modes. A comparative study with ODS was carried out as well. The various influence factors on the chromatographic behavior of the solutes on CB6MRBS were investigated. The chromatographic conditions were optimized partially, which paid the way for further applications. Coffeine has been determined by using CB6MRBS under both reversed-phase and normal-phase modes. The results show that various interactions occurred between the analytes and CB6MRBS besides hydrophobic interaction under reversed-phase mode, which was different from that on ODS. CB6MRBS were superior to ODS in the above separations. According to the chromatographic analysis, the separation mechanism of multiple interactions also existed under normal-phase chromatography. CB6MRBS can provide various sites for analytes, such as the hydrophobic, hydrogen-bonding,π-πand dipole-dipole interactions. Separations of purine derivatives on CB6MRBS were achieved with satisfaction due to the various retention mechanisms both under reversed and normal phase modes. CB6MRBS exhibits the promising application in the rapid separation and determination of purine derivatives.
     9. Applying of cucurbituril in capillary column gas chromatography and the chromatographic application of CB6MRBS such as for biochemical samples will still be requiring to be developed in the next step.
引文
[1] Fishbein L, Chromatography of environmental hazards, Amsterdam, Elsevier, Pub. Co., 1982
    [2] 师治贤,王俊德.生物大分子的液相色谱分离和制备[M].北京,科学出版社,1992
    [3] 霍斯泰特曼,马斯顿著.赵维民,张天佑译.制备色谱技术在天然产物分离中的应用[M].北京,科学出版社,2000
    [4] 达世禄,色谱学导论(第二版)[M].武汉,武汉大学出版社,1999
    [5] Snyder L R., Kirkland J J, Glajch J L. Practical HPLC method development. Chichester, England, John Wiley & Sons Inc., 1997
    [6] 傅若农,顾俊岭.近代色谱分析[M].北京,国防工业出版社,2002
    [7] 刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装[M].天津,南开大学出版社,2001
    [8] V(?)gtle F.著,张希,林志宏,高蓓译.超分子化学[M].长春,吉林大学出版社,1995
    [9] 来祥华,吴采樱.大环化合物分离机理的研究新进展.分析科学学报,2000,16(1):82-87
    [10] Lehn J M. Supramolecular chemistry-scope and perspectives molecules. Angew. Int. Ed. Engl., 1988, 27 (1): 89~112
    [11] Cram D J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Int. Ed. Engl., 1988, 27 (8): 1009~1020
    [12] Pedersen C J. The discovery of crown ethers (Nobel Lecture). Angew. Int. Ed. Engl:, 1988, 27 (8): 1021~1027
    [13] 小田良平,庄野利之,田伏岩夫.王冠醚化学[M].北京,原子能出版社.1985
    [14] 化学分离富集方法及应用编委.化学分离富集方法及应用[M].长沙,中南工业大学出版社,2000
    [15] Blasius E, Adrian W, Janzen K P, Klautke G. Darstellung und eigenschaften von austauschern auf basis von kronenverbindungen. J. Chromatogr., 1974, 96: 89~92
    [16] Kaplan L, Sousa L R, Hoffman D H, Cram D J. Total optical resolution of amino esters by designed host-guest relations in molecular complexation. J. Chem. Soc., 1974, 96: 7100~7101
    [17] Wu C Y, Wang C M, Zeng Z R, Liu X R. Preparation and characteristics of a crown ether polysiloxane stationary phase for capillary gas-chromatography. Anal. Chem., 1990, 62 (9): 968~971
    [18] Zeng C R, Wu C Y, Yan H, Huang Z F, Wang Y T. Preparation and characteristics of a new GC stationary phases: dihydroxy crown-ether containing polysiloxane. Chromatographia, 1992, 34 (1-2): 85~90
    [19] Fu R N, Huang C, Huang Z F, Xu W. Preparation of benzo-18-crown-6 ether side-chain polysiloxane used as open-tubular column gas-chromatographic stationary-phase. J Chromatogr, 1993, 653 (1): 173~177
    [20] Zhou X C, Yan H, Chen Y Y, Wu C Y, Lu X R. Chiral crown ether-anchored polysiloxanes as capillary gas chromatography stationary phases. J. Chromatogr. A, 1996, 753 (2): 269~277
    [21] 臧旭.套索冠醚用作气相色谱固定液性能测定.武汉大学硕士学位论文,1996
    [22] Lauth M, Gramain P, Ion chromatographic-separation on silica grafted with benzo-18-c-6 crown ether. J. Liq. Chromatogr. 1985, 8 (13): 2403~2415
    [23] Bradshaw J S, Bruening R L, Krakowiak K E, Tarbet B J, Bruening M L, Izatt R M, Christensen J J. Preparation of silica gel-bound macrocycles and their cation-binding properties. J. Chem. Sot., Chem. Commun., 1988, 12: 812~814
    [24] 冯钰镝,龚银汉,达世禄.高效液相色谱氮杂冠醚键合固定相的合成及性能研究.高等学校化学学报,1998,19(5):720~722
    [25] 达世禄,张元伟,王忠华,齐广才.氮杂冠醚键合固定相的RP-HPLC色谱性能研究.高等学校化学学报,1995,16(8):1219~1223
    [26] 达世禄,张元伟,董亚琼,王忠华,范畴.多功能基和氮杂冠醚键合固定相的制备与鉴.色谱,1995,13(3):161~165.
    [27] 达世禄,何国亮,王忠华.高效液相色谱二氮杂冠醚键合相的合成及性能研究.高等学校化学学报,1993,14(12):1677~1681
    [28] Da S-L, Yue W-G, Wen Y-F, Da H-L, Wang Z-H. Preparation and characterization of bonded stationary phases of nitrogen-containing crown ether for high-performance liquid chromatography. Analytica Chimica Acta, 1994, 299: 239~243
    [29] Da S-L, Feng Y-Q, Da H-N, Gong Y-H, Zhang Y-W. Preparation and characterization of 3- (Aza-18-crown-6) propylsilyl bonded phase for reversed-phase liquid chromatography. Journal of Chromatographic Science, 1999, 37 (5): 137~144
    [30] 冯钰琦,龚银汉,达世禄.氮杂冠醚、环糊精混合功能基键合硅胶液相色谱固定相的合 成与评价.高等学校化学学报,1999,20(4):552~554
    [31] Hirose K, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Preparation and evaluation of novel chiral stationary phases covalently bound with chiral pseudo-18-crown-6 ethers. Tetrahedron Letters, 2003, 44 (8): 1549~1551
    [32] Horvath G, Huszthy P, Szarvas S, Szokan G, Redd J T, Bradshaw J S, Izatt R M. Preparation of a new chiral pyridino-crown ether-based stationary phase for enantioseparation of racemic primary organic ammonium salts. Industrial and Engineering Chemistry Research, 2000, 39: 3576~3579
    [33] Hirose K, Yongzhu J, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Preparation and evaluation of a ehiral stationary phase covalently bound with chiral pseudo -18-crown-6 ether having 1-phenyl-1, 2-cyclohexanediol as a chiral unit. Journal of Chromatography A, 2005, 1078 (1~2): 35~41
    [34] Armstrong D W. US. Patent, No. 4539399, 1985
    [35] Chang C A,Wu Q H, Armstrong D W. Reversed-phase high-performance liquid chromato-graphic separation of substituted phenolic-compounds with a beta-cyclodextrin bounded phase column. J. Chromatogr., 1986, 354: 454~458
    [36] 戴立信,陆熙炎,朱光美.手性技术的兴起.化学通报,1991,6:15~13
    [37] 曾昭睿,周志平,吴采樱,刘敏.两类β-环糊精衍生物固定相上溶质的色谱保留行为和热力学性质.分析化学,1997,25(8):874~878
    [38] Beck T, Mosandl A. Gamma (delta)-thionolactones-enantioselective capillary GC and sensory characteristics of enantiomers. J. High Resol. Chromatogr., 1999, 22 (2): 89~92
    [39] Klobes U, Vetter W, Luckas B, Hottinger G. Enantioseparation of the compounds of technical toxaphene (CTTs) heptakis (6-O-tert-butyldimethylsilyl-2, 3-di-O-methyl)-beta-cyclodextrin in OV1701. Chromatographia, 1998, 47 (9-10): 565~569
    [40] Zhang H B, Zhang J, Fu R N, Zuo X B, Liu H F. High-resolution GC separation of alkyl lactate enantiomers and the determination of the determination of the enantiomeric excess of the optical isomers of alkyl lactates. Chromatographia, 1998, 48 (3-4): 305~309
    [41] Lamparczyk H, Zarzycki P K, Ochocka R J., Asztem-borska M, Sybilska D. Retention behavior of inclusion complexes of some polycyclic armotic hydrocarbons with β-cyclodextrin. Chromatographia, 1991, 31: 157~162.
    [42] Kawaguchi Y, Tanaka M, Nakae M, Funazo K, Shono T. Chemically bonded cyclodextrin stationary phase for liquid chromatographic separation of aromatic compounds. Anal. Chem. 1983,55:1852-1857
    
    [43] Frijimura K, Ueda T, Ando T. Retention behavior of aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. Anal. Chem. 1983, 55: 446-550
    [44] Tanaka M, Kawaguchi Y, Nakae M, Funazo K, Shono T. Retention behavior of disubstituted benzene derivates on several p-cyclodextrin stationary phases. J. Chromatogr. 1984, 299: 341-350
    [45] Armstrong D W, Demond W, Czech B P. Separation of metallocene enantiomers by liquid- chromatography-chiral recognition via cyclodextrin bonded phases. Anal. Chem. 1985, 57 (2): 481-484
    [46] Lee S H, Berthod A, Armstrong D W. Systematic study on the resolution of derivatized amino acids enantiomers on different cyclodextrin-bonded stationary phases. J. Chromatogr. 1992, 603: 83-93
    [47] Waksmundzka H M. Chromatographic separation of aromatic carboxylic acids. J. Chromatogr. B 1998, 717:93-118
    [48] Tanaka M, Okazaki J, Ikeda H, Shono T. Methylated cyclodextrin-bonded stationary phase for liquid chromatography. J. Chromatogr. 1986,370: 293-301
    [49] Fujimura K, Suzuki K, Hagashi K, Masuda S, Retention behavior and chiral recognition mechanism of several cyclodextrin-bonded stationary phases for dansyl amino acids. Anal. Chem. 1990, 60: 2198-2205
    [50] Kuroda Y, Koto T, Ogoshi H. Liquid chromatography with aminopropylsilica gel modified byhetakis (2,3,6-tri-o-methyl)-P-cyclodextrin derivative. Bull. Chem. Soc. Jpn. 1993, 66: 1116-11208
    [51] Lin C-E, Chen C-H, Lin C-H, Yang M-H, Jiang J-C. Chemically bonded cyclodextrin silica stationary phase for liquid chromatographic separation of some disubstituted benzene derivates. J. Chromatogr. Sci. 1989,27:665-671
    [52] Grini G, Lekchiri Y, Morcellet M. Separation of structure isomers using cyclodextrin-poly (allylamine)-coated silica column. Chromatographia 1995,40:296-302
    [53] Grini G, Morcellet M. HPLC of structural isomers using cyclodextrin-poly(villylamine)-coated silica column Part II retention behavior and separation. J. Chromatogr. Sci. 1996,34:485-494
    [54] Grini G, Torri G, Lekchiri Y, Bmartel, Janus L, Morcellet M. High performance liquid chromatography of structural isomers using a cyclodextrin-poly(allylamine)-coated silica column Chromatographia 1995,41:424-430
    [55] Grini G, Morin N, Morcellet M. High performance liquid chromatography of structural isomers using a cyclodextrin-poly(villylamine)-coated silica columns Part III retention mechanism study of nitrophenol derivatives. J. Chromatogr. Sci. 1999,37:121-125
    [56] Thuaud N, Sebille B, Deratani A, Lelievre G. Retention behavior and chiral recognition of β-cyclodextrin-derivative polymer absorbed on silica for warfarin,structurally related compounds,and Dans-amino acids. J. Chromatogr. 1991,555:53-64
    [57] Thuaud N, Sebille B. Structural factors affecting the enantiomeric separation of barbiturates and thiobarbiturates with a chiral side-chain by various p-cyclodextrins supports. Effect of the presence of hydroxyproyl subsistent on the chiral selector. J. Chromatogr. A 1994,685:15-20
    [58] Mizobuchi Y, Tanaka M, Shono T. Separation of aromatic amino acids on p-cyclodextrin polyurethane resins. J. Chromatogr. 1981,208:35-40
    [59] Dyassawara A, Shimada K. P-cyclodextrin modified monolithic stationary phase for capillary electrochromatography and non-HPLC chiral analysis of ephedrine and ibuprofen. J. Liq. Chromatogr. 2002,25:2473-2484
    [60] Muller E, Lubda D, Wieland G, Cabrera K, Czerny K, Dicks E. PCT Int. Appl. 22p. 1998 Patent.
    [61] Emnanuele L,Virginie, Mackenzie G, Ewing D, Christophe L, Deins P. HPLC separation and determination of enantiomeric nucleoside analysis.on cyclodextrin chiral stationary phase using reversed and polar organic modes. Anal. Lett., 2004, 37: 385-399
    [62] He H, Liu Y, Sun C, Wang X-R, Chuong P-H. Effect of temperature on enantiomer separation of oxzepam and lorazepam by high-performance liquid chromatography on a p-cyclodextrin derivative bonded chiral stationary phase. J. Chromatogr. Sci. 2004,42: 62-66
    [63] Pawlowska M, Zukowska J, Arstrong D W. Selective enantiomeric separation of aliphatic and aromatic amines using aromatic and hydrides as non-chiral derivatizing agents. J. Chromatogr. A, 1994,666:485-49173.
    [64] Chang S C, Reid G L, Chen S, Chang C D, Arm-strong D W. Evaluation of a new polar-organic high-performance liquid chromatographic mobile phase for cyclodextrin-bonded chiral stationary phases. Trends Anal. Chem. 1993,12:144-153
    [65] Armstrong D W, Chen S, Chang C, Chang S. A new approach for the direct resolution of racemic androgenic blocking agent by HPLC. J. Liq. Chromatogr. 1992,15: 545-556
    [66] Koeniy W. Cyclodextrin as chiral stationary phase in capillary gas chromatography penthylated- α -cyclodextrin. J. Chromatogr. 1988,47:193-197
    [67] Swpek J, Somolkovd K E, Cserdati T, Gada K H. Stalcup A. Comprehensive Supramolecular Chemistry. Atwmd J L, Lehn J M, Eds.Vol3, Cyclodextrins.pergamon, Oxford U.K 1996,559
    [68] Hargitai T, Okamoto Y. Evaluation of 3,5-dimethylphenyl carbamoylated α-, β- and γ- cyclodextrins as chiral stationary phase for HPLC. J. Liq. Chromatogr. 1993,16:843-858
    [69] Li S, Purdy W C. Direct separation of enantiomers using multiple interaction chiral stationary phase based on the modified p-cyclodextrin-bonded stationary phase. J. Chromatogr. 1992,625: 109-120
    [70] Han M S, Armstrong D W. Use of mocrocolumn liquid chromatography with a chiral stationary phases for the separation of low-resolution enantiomers. J. Chromatogr. 1987, 389: 256-262
    [71] Han S M. In Chiral Separation by HPLC. A.M.Krstulovic, Ed., John Wiley&Sons:New York 1989
    [72] Ng S C, Ong T T, Fu P, Ching C B. Enantiomer separation of flavor and fragrance compounds by liquid chromatography using novel urea-covalent bonded methylate β -cyclodextrins on silica. J. Chromatogr. A 2002, 968:31-40
    [73] Yu H-W, Ching C-B, Fu P, Ng S-C. Enantioseparation of fluoxetine on a new β-cyclodextrin bonded phase column by HPLC. Separation Science and Technology 2002,37:1401-1415
    [74] Nakatsu C N, Stalcup A M. Separation of enantiomers using (S)-naphthylethylcarbamoylated γ-cyclodextrin stationary phase. J. Liq. Chromatogr. 1993,16:209-233
    
    [75] Hargita T, Kaida Y, Okamoto Y. Preparation and chromatographic evaluation of 3,5- dimethylphenyl carbamoylated p-cyclodextrin stationary phase for normal-phase high- performance liquid chromatographic separation of enantiomers. J. Chromatogr. 1993, 628:11-22
    [76] Hilton M L, Chang S C, Gasper M, Pawlowska M, Armstrong D W, Stalcup A M. Comparison of the enantioselectivity of phenthyl-and naphthethyl-carbamoylated cyclodextrin bonded phases. J. Liq. Chromatogr. 1993,16:127-131
    [77] Armstrong D W, Chang S C, Lee S H. (R)- and (S)- naphthylethyl-carbamate substituted cyclodextrin bonded phase for reversed-phase liquid chromatographic separation of enantiomers. J. Chromatogr. 1991,539:83~90
    [78] Schumcher D D, Mitchell C R, Xiao T L, Rozhkov R V, Larack R C, Armstrong D W. Cyclodextrin-based liquid chromatographic enantiomeric separation of chiraldihydrofuro-coumarins, an emerging class of medical compounds. J. Chromatogr. A 2003, 1011:37~47
    [79] Wu W, Stalcup A M. Separation of forphyrins using a γ-cyclodextrin stationary phase, J. Liq. Chromatogr. 1994, 17:1111~1124
    [80] Stalcup A M, Jin H L, Armstrong D W, Mazur P, Derguini F, Nakanishi K. Separation of carotenes on cyclodextrin-bonded phases. J. Chromatogr. 1990, 499:627~4535
    [81] 龚银汉,董亚琼,达世禄,王忠华.β-环糊精键合硅胶固定相合成方法和色谱性能研究.分析测试学报,1998,17(5):5~8
    [82] 冯钰镝,谢敏杰,达世禄.8-羟基喹啉衍生化β-环糊精键合硅胶液相色谱固定相的合成与评价.高等学校化学学报,1999,20:1708~1713
    [83] Feng Y Q, Xie M J, Da S L. Preparation and characterization L-tyrosine-derivatived β-cyclodextrin-bonded silica stationary phase. Anal. Chimica Acta 2000, 403: 187~195
    [84] Armstrong D W, Jin H L. Evaluation of the liquid chromatographic separation of disaccharides, triaccharrides, tertasacchdarides, deoxysccharides and sugar alcohols with stable cyclodextrin bonded phase columns. J. Chromatogr. 1989, 262:219~232
    [85] Gutsche C D, Muthukrishnan R. Calixarenes. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J. Org. Chem., 1978, 43: 4905~4906
    [86] Smalkova K E, Feltl L. Procedings of the 2nd International Symposium on Clathrate and Molecular Inclusion [M], Italy. 1982.45
    [87] Mangia A, Poshini A, Ungaro R, Andreetti G D. 4-Tert-butylcalix[8]arene as a stationary phase in gas-solid chromatography. Anal. lett,, 1983, 16:1027~1031
    [88] 吴采樱,王承明,曾昭睿,卢雪然.全氧冠醚聚硅氧烷毛细管气相色谱固定液的色谱性能和机理研究.高等学校化学学报,1991,12:173~176
    [89] 钟振林.武汉大学博士学位论文,1995
    [90] Chen Y-Y, Zhou Y-S, Tong X-H, Liu Q, Zhong Z L. Calix[4]dithiacrown-5 and its platinum complex. Chemcal Research In Chinese Universities, 1998, 14 (1): 101~103
    [91] Glennon J D, Horne E, Hall K, Cocker D, Kuhn A, Harris S J, McKervey M Silica-bonded calixarenes in chromatography .Π. Chromatographic retention of metal ions and amino acid ester hydrochlorides. J. Chromatogr. A, 1996, 731 (1-2): 47~55
    [92] Mnuk P, Feltl L. Gas-chromatographic study of the inclusion properties of calixarenes .I. p-Tert-butylcalix[4]arene in a micropacked column. J. Chromatogr. A, 1995, 696 (1): 101-112
    [93] Mnuk P, Feltl L, Schuring V. Gas chromatographic study of the inclusion properties of calixarenes .Π. Selective properties of cyclic tetra- to octamers derived from phenol, and some problems associated with the use of calixarenes in capillary gas chromatography. J. Chromatogr. A, 1996, 732 (1): 63~74
    [94] 张伟亚,张少文,张驰,吴采樱,钟振林.杯芳烃衍生聚合物用作毛细管气相色谱固 定相的研究.高等学校化学学报。1997,18(8):1296~1299
    [95] 曾昭睿,王建玲,唐星华,唐善林,卢雪然.两种新型杯[4]芳烃衍生物用作毛细管气相色谱固定相的研究.分析化学,1998,29(1):85~88
    [96] 王建玲,林琳,张伟亚,吴采樱.杯芳烃固定液分子识别的热力学性质.分析测试学报, 1998,17(5):40~42
    [97] 张健,张烃,卢光菊,傅若农,赵郑通.芳羧酸酯液晶和杯芳烃共混柱的气相色谱保留行为.分析化学,1999,29(1):85~88
    [98] Glennon J D, O'Connor K, Srijaranai S, Manley K, Haris S J, Mckeryey M A. Enhance chromatographic selectivity for Na~+ ions on Calixarene-bonded silica phase. Anal. Lett. 1993, 26 (1): 153~162
    [99] Glennon J D, Home E, O'Connor K, Kearney G A, Harris S J, McKervey M A. Chromatographic selectivity for amino acid esters and alkali metal ions on a silica bonded calix[4]arene tetraester stationary phase. Anal. Proc.1994, 31:33~35
    [100] Arena G, Alessando C, Annalinda C, Lenardo M, Domenico S. Synthesis of Calixcrowns and their anchoring to silica gel for the selective separation of Cs~+ and K~+. J. Chem. Soc. Commun. 1996, 19:2277~2278
    [101] Brindle R, Albert K, Harris S J, et al. Silica-bonded Calixarene in chromatography I synthesis and characterization by solid-states NMR spectroscopy. J. Chromatogr. A 1996, 731: 41~46
    [102] Glennon J D, Home E, Hall K, Cocker D, Kuhn A, Harris S J. Silica-bonded Calixarene in chromatography .I. chromatographic retention of metal ions and amino acid ester hydrochlorides. J. Chromatrogr. A, 1996, 731: 47~52
    [103] Healy L O, McEnery M M, McCarthy D G, Harris S J, Glermon J D. Silica-bonded Calixarene in chromatography: enanti separations on molecular basket phase for rapid chiral LC. Anal. Lett., 1998, 31 (9): 1543~1551
    [104] Xiao Y-X, Xiao X-Z, Feng Y-Q, Wang Z-H, Da S-L. High-performance liquid chromatography of sulfonamides and quinolones on p-tert-butyl-Calix[6]arene bonded silica gel stationary phase. Talanta 2002, 56:1141~1151
    [105] Xiao Y-X, Xiao X-Z, Feng Y-Q, Wang Z-H, Da S-L. HPLC of some nucleosides and bases on p-tert-butyl-calix[6]arene-bonded silica gel stationary phase, J. Liq. Chromatogr. 2001, 24 (19): 2925~2942
    [106] Xiao X-Z, Feng Y-Q, Da S-L, Zhang Y. p-tert-butyl-calix[8]arene-bonded silica stationary phase for high performance liquid chromatography. Anal.. Lett. 2000, 33:3355~3372
    [107] Xiao X-Z, Feng Y-Q, Da S-L, Zhang Y. Preparation and evaluation of p-tert-butyl-Calix[4]-arene-bonded silica stationary phases for high performance liquid chromatography. Chromatographia 1999, 49:643~648
    [108] Xu W, Li J-S, Feng Y-Q, Da S-L, Chen Y-Y, Xiao X-Z. Preparation and characterizations of p-tert-butyl-Calix[6]arene bonded silica gel stationary phase for high performance liquid chromatography. Chromatographia 1998, 48:245~250
    [109] Glennon J D, O'Connor K, Srijaranai S, Manley K. Enhanced chromatographic selectivity for sodium ions on a calixarene-bonded stationary silica phase. Anal. Lett., 1993, 26:153~162
    [110] Glennon J D, Home E, Hall K, D Cocker, A Kuhn, S J Harris, M A McKervey. Silica-bonded calixarene in chromatography. Ⅱ .Chromatographic retention of metal ions and amino-acid ester hydrochlorides. J.Chromatogr. A, 1996, 731: 47~55
    [111] Arena G,, Contino A, Lombardo G G, Sciotto D, Ungaro R, Casnati A. Peculiar inclusion of trimethylanilium ion by two water soluble calixarenes. J. Chem. Soc. Chem. 1996, 211: 65~67
    [112] 李文智,王霞,窦建民,马春林,陈立仁,李永民.新型杯[4]芳烃高效液相色谱固定相的制备及表征.化学学报,2004,62(4):405~409
    [113] 李文智,王霞,张红丽,李永民,马春林,陈立仁.对-叔丁基杯[4]芳烃键合固定相的制备及表征.分析测试学报,2004,23(1):19~22
    [114] 李文智,敦惠娟,韩小茜,柳春辉,李永民,陈立仁.对-叔丁基杯[6]芳烃键合固定相的制备和评价.色谱,2003,21(5):483~486
    [115] Li L-S, Da S-L, Feng Y-Q, Liu M. Preparation and Characterization of a New p-tert-Butyl- calix[8] arene-bonded Stationary Phase for High-Performance Liquid Chromatography. Analytical Sciences, 2004, 20 (3): 561~564
    [116] Liu M, Li L-S, Da S-L., Feng Y-Q. Preparation of p-tert-Butyl-Calix[8]arene bonded silica stationary phase and separation for steroid hormone medicines. Analytical Letters, 2004, 37 (14): 3017~3031
    [117] Li L-S, Da S-L, Feng Y-Q, Liu M. HPLC separation of neutral, acidic, and basic compounds on a p-tert-butyl-calix[8]arene-bonded stationary phase. Analytical Letters, 2004, 37:2805~2817
    [118] Li L-S, Da S-L, Feng Y-Q, Liu M. Preparation and evaluation of a new calix[4]arene-bonded stationary phase for HPLC. Journal of Liquid Chromatography and Related Technologies, 2004, 27 (14): 2167~2188
    [119] 李来生,刘敏,达世禄,冯钰琦.大黄葸醌衍生物在杯[8]芳烃键合固定相上色谱行为的研究.分析化学.2004,32(4):511~515
    [120] 李来生,达世禄,冯钰琦,刘敏.脱叔丁基杯[8]芳烃键合固定相的制备及其液相色谱性能.高等学校化学学报,2005,26(2):241~243
    [121] 刘敏,达世禄,冯钰琦,李来生.杯[8]芳烃键合硅胶固定相的制备、表征及色谱性能.高等学校化学学报,2004,25(7):1254~1256
    [122] Liu M., Li L-S, Da S-L, Feng Y-Q. High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta, 2005, 66 (2):479~486
    [123] Li L-S, Da S-L, Feng Y-Q, Liu M. Preparation and characterization of a p-tert-butyl-calix[6]-1,4-benzocrown-4-bonded silica gel stationary phase for liquid chromatography. Journal of Chromatography A, 2004, 1040 (1): 53~61
    [124] Friebe S, Gebauer S, Krauss G J, Goermar G., Krueger J. HPLC on calixarene bonded silica gels .I. Characterization and applications of the p-tert-butyl-calix[4]arene bonded material. J. Chromatogr. Sci., 1995, 33:281~289
    [125] Gebauer S, Friebe S, Gubitz G., Krauss G. J. High performance liquid chromatography on calixarene-bonded silica gels. Ⅱ .separation ofregio-and stereoisomers on p-tert-butyl-calix[n] phase. J. Chromatogr. Sci. 1998, 36:383~287
    [126] Lee Y K, Ryu Y K, Ryu J W, Kim B E, Park; J H. Reversed-Phase Liquid hromatography of some Positional Isomers on Calix(6)arene-p-Sulfonate-Bonded Silica. Chromatographia, 1997, 46:507~511
    [127] Healy L O, McEnery M M, McCarthy D G, Harris S J, Glennon J D. Silica-bonded calixarenes in chromatography: Enantioseparations on molecular basket phases for rapid chiral LC. Anal. Lett., 1998,31 (9): 1543-1551
    
    [128] Sokoliess T, Menyes U, Roth U, Jira T. New calixarene-bonded stationary phases in high- performance liquid chromatography: Comparative studies on the retention behavior and on influences of the eluent. J. Chromatogr. A, 2000,898 (1): 35-52
    [129] Sokoliess T, Menyes U, Roth U, Jira T. Separation of cis- and trans- isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A, 2002,948,309-319
    
    [130] Sokoliess T, Schonherr J, Menyes U, Roth U, Jira T. Characterization of calixarene- and resorcinarene-bonded stationary phases I. Hydrophobic interactions. J. Chromatogr. A, 2003, 1021,71-82
    
    [131]刘思敏,吴成泰.葫环联脲新进展.化学进展,2005,17(1):143-150
    [132] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res., 2003,36 (8): 621-630
    [133] Gerasko O A, Samsonenko D G, Fedin V P. Supramolecular chemistry of cucurbiturils.Uspekhi Khimii, 2002,71 (9): 840-861
    [134] Behrend R, Meyer E, Rusche F. Ueber condensationsprodukte aus glycoluril und formaldehyd. Liebigs Ann. Chem., 1905,339:1-37
    [135] Freeman W A, Mock W L, Shih N Y. Cucurbituril. J. Am. Chem. Soc., 1981, 103 (24): 7367-7368
    [136] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. New cucurbituril homologues: syntheses, isolation, characterization and X-ray crystal structures of cucurbit[?juril (n=5, 7 and 8). J. Am. Chem. Soc., 2000,122 (3): 540-541
    [137] Day A, Arnold A P, Blanch R J, Snushall B. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem., 2001,66 (24): 8094-8100
    [138] Flinn A, Hough G C, Stoddart J F, Willimas D J. Decamethylcucurbit[5]uril. Angew. Chem., Int. Ed. Engl., 1992,31 (11): 1475-1477.
    [139] Isobe H, Sato S, Nakamura E. Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative. Org. Lett., 2002,4 (8): 1287-1289
    [140] Day A I, Arnold A P, Blanch R J. A method for synthesizing partially substituted cucurbit[n]uril. Molecules, 2003, 8 (1): 74~84.
    [141] Jansen K, Buschmann H J, Wego A, Dopp D, Mayer C, Drexler H J, Holdt H J, Schollmeyer E. Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril: Synthese, solubility and amine complex formation. J. Inclusion Phenom. Mol. Recognit. Chem., 2001, 39 (3): 357~364
    [142] Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, Lee J W, Kim K. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: Expanding utilization of cucurbit[n]uril. J. Am. Chem. Sot., 2003, 125 (34): 10186~10187
    [143] Kim K, Kim J, Jung I S, Kim S Y, Lee E, Kang J K. US. Patent No. 6365734 B1, 2002
    [144] Lee J W, Kim K. Rotaxane dendrimers. Dendrimers V: functional and hyperbranched building blocks, photophysical properties, applications in materials and life sciences topics in current chemistry, 2003, 228:111~140
    [145] 李刚,冯亚青.葫芦脲.化学通报,2005,68:1~8
    [146] Karcher S, kornmuller A, Jekel M. Effects of alkali and alkaline-earth cations on the removal of reactive dyes with cucurbituril. Acta Hydrochim. Hydrobiol. 1999, 27 (1): 38~42
    [147] Buschmann H J, Cleve E, Jansen K, Wego A, Schollmeyer E. Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J. Incl. Phenom. Macrocycl. Chem., 2001; 40:117~120
    [148] Zhao J Z, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed., 2001, 40 (22): 4233-4235
    [149] Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. A cucurbituril-based gyroscane: A new supramolecular form. Angew. Chem. Int. Ed., 2002, 41 (2): 275~279
    [150] Buschmann H J, Jansen K, Schollmeyer E. Cucurbit[6]uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorganic Chemistry Communications, 2003, 6: 531~534
    [151] Mock W L, Shih N Y. Structure and selectivity in Host-guest complexes of cucurbituril. J. Org. Chem. 1986, 51(23): 4440~4446
    [152] Kim S Y, Jung I S, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K. Macrocycles within Macrocycles: cyclen, dydlam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem. Int. Ed., 2001, 40:2119~2121
    [153] 韩宝航,刘育.葫芦脲:分子识别与组装.有机化学,2003,23(2):139~149
    [154] Isobe H, Tomita N, Lee J W, Kim H J, Kim K, Nakamura E. Ternary complexes between DNA, polyamine, and cucurbituril: A modular approach to DNA-binding molecules. Angew. Chem. Int. Ed., 2000, 39 (23): 4257~4260
    [155] Lira Y B, Kim T, Lee J W, Kim S M, Kim H J, Kim K, Park J S. Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: Noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chemistry, 2002, 13 (6): 1181~1185
    [156] Isobe H, Sato S, Lee J W, Kim H J, Kim K, Nakamura E. Supramolecular modulation of action of polyamine on enzyme/DNA interactions. Chem. Commun., 2005, (12): 1549~1551
    [157] Jeon Y J, Kim S Y, Ko Y H, Sakamoto S, Yamaguchi K, Kim K. Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org. Biomol. Chem., 2005, 3 (11): 2122~2125
    [158] 严琨,吴晓军,秦艺曼,吴成泰.葫[6]环联脲苯基哌嗪包合物与人血清白蛋白(HSA)的结合作用.大环化学和超分子化学研究进展.中国化学会全国第十二届大环第四届超分子化学学术讨论会论文集,2004,254~255
    [159] Jeon Y J, Kim H, Jon S, Selvapalam N, Oh D H, Seo I, Park C S, Jung S R, Koh D S, Kim K. Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J. Am. Chem. Soc., 2004, 126 (49): 15944~15945
    [160] Zhang F, Yajima T, L i Y Z, Xu G Z, Chert H L, Liu Q T, Yamauchi O. Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper (ⅱ) complexes. Angew. Chem. Int. Ed., 2005, 44 (22): 3402~3407
    [161] Schonberger H, Kaps U. Reduction of the wastewater contamination in the textile industry, UBA Texte, 1994, 3/94
    [162] Buschmann H J, Gardberg A, Schollmeyer E. Decoloration of textile wastewater through formation of inclusion complexes with dyes. Part I, Textilveredelun, 1991, 26:153~157
    [163] Buschmann H J, Gardberg A, Schollmeyer E. Textilveredelung, 1991 a, 26:153~156
    [164] Buschmann H J, Gardberg A, Rade D, Schollmeyer E. Textilveredelung, 1991 b, 26:160~165
    [165] Buschmann H J, Gardberg A, Schollmeyer E. Textilveredelung, 1994, 29, 58~60
    [166] Busch.mann H J, Gardberg A, Schollmeyer E. Textilveredelung, 1998, 34 (3/4): 44~47
    [167] Karcher S, Kornmuller A, Jekel M. Removal of reactive dyes by sorption/complexation with cucurbiturii. War. Sci. Tech. 1999, 40 (4-5): 425~433
    [168] Karcher S, Kornmuller A, Jekel M. Cucurbituril for water treatment. Part Ⅰ: Solubility of cucurbituril and sorption of reactive dyes. Wat. Res. 2001, 35(14): 3309~3316
    [169] Kornmuller A, Karcher S, Jekel M. Cucurbituril for water treatment. Part Ⅱ: Ozonation and oxidative regenerationof cucurbituril. Wat. Res. 2001, 35(14): 3317~3324
    [170] 胡英鹏.瓜环合成及其在贵金属回收中的应用研究.西安建筑科技大学硕士学位论文.2006
    [171] Day A I, Arnold A P, Blanch R J. Cucurbiturils and methods for binding gases and volatiles using cucurbiturils, US patent No. 6869466 B2, 2005
    [172] Kellersberger K A, Amderson J D, Ward S M, Krakowiak K E, Dearden D V. Encapsulation of N_2, O_2, methanol or acetonitrile by decamethylcucurbit[5]uril (NH_4~+)_2 complexes in the gas phase: Influence of the guest on "lid" tightness. J. Am. Chem. Soc., 2001, 123 (45): 11316~11317.
    [173] Dantz D A, Meschke C, Buschmann H J, Schollmeyer E. Complexation of volatile organic molecules from the gas phase with cucurbituril and beta-cyclodextrin. Supramolecular chemistry, 1998, 9(2): 79~83.
    [174] Mock W L, Irra T A, Wepsiec J P,Martimaran T L. Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J. Org. Chem., 1983, 48(20): 3619~3620
    [175] Mock W L, Irra T A, Wepsiec J P, Adhya M. Catalysis by cucurbituril: the significance of bound-substrate destabilization for induced triazole formation. J. Org. Chem., 1989, 54: 5302~5308
    [176] Richter A M, Felicetti M. PCT WO 02/096553 A2, 2002
    [177] Jon S Y, Ko Y H, Park S-H, Kim H J, Kim K. A facile stereoselective [2+2] photoreaction mediated by cucurbit[8]uril. Chem. Commun., 2001, 1938~1939
    [178] Xu L, Liu S M, Wu C T, Feng Y Q. Separation of positional isomers by cucurbit[7]uril mediated capillary electrophoresis. Electrophoresis, 2004, 25: 3300~3306
    [179] 魏芳,刘思敏,徐丽,吴成泰,冯钰镝.葫[7]环联脲作为毛细管电泳分离介质的研究.色谱,2004,22(5):476~478
    [180] Liu S M, Xu L, Wu C T, Feng Y Q. Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta, 2004, 64, 929~934
    [181] Nagarajan E R, Oh D H, Selvapalam N, Ko Y H, Park K M, Kim K. Cucurbituril anchored silica gel. Tetrahedron Letter, 2006,47,2073-2075
    [182] Kim K, Balaji R, Oh D H, Ko Y H, Jon S Y. PCT WO2004/072151 Al, 2004; KR 0008453, 2003.
    [183] Mock W L, Pierpont J. A cucurbituril-based molecular switch. J. Chem. Soc., Chem. Commun. 1990,21:1509-1511
    [184] Jun S I, Lee J W, Sakamoto S, Yamaguchi K, K Kim. Rotaxane-based molecular switch with fluorescence signaling. Tetrahed. Lett., 2000,41 (4): 471-475
    [185] Lee J W, Kim K P, K Kim. A kinetically controlled molecular switch based on bistable [2] rotaxane. Chem. Commun., 2001,11:1042-1043
    [186] Kim S Y, Jung I S, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K. Macrocycles within macrocycles: Cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem. Int. Ed. Engl., 2001,40 (11): 2119-2121
    [187] Park K M, Whang D, Lee E S, Heo J S, Kim K. Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. Chem. Eur. J., 2002, 8 (2): 498-508
    [188] Lee E S, Heo J S, Kim K. A three-dimensional polyrotaxane network. Angew. Chem. Int. Ed., 2000, 39 (15): 2699-2701
    
    [189] Park K M, Kim S Y, Heo J S, Whang D, Sakamoto S, Yamaguchi K, Kim K. Designed self-assembly of molecular necklaces. J. Am. Chem. Soc., 2002,124 (10): 2140-2147
    [190] Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supra- molecular assemblies. Chem. Soc. Rev., 2002,31 (2): 96-107
    [191] Buschmann H J, Wego, A.; Schollmeyer E, Dopp D. Synthesis of cucurbituril- spermine- [2]rotaxanes of the amide-type. Supramol. Chem., 2000,11 (3): 225-231
    [192] Meschke C, Buschmann H J, Schollmeyer E. Synthesis of mono-, oligo- and polyamide- cucurbituril rotaxanes. Macromol. Rapid Commun., 1998,19 (1): 59-63
    [193] Meschke C, Buschmann H J, Schollmeyer E. Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril. Polymer. 1999,40 (4): 945-949
    
    [194] Jeon Y M, Whang D, Kim J, Kim K. A simple construction of a rotaxane and pseudorotaxane: Syntheses and X-ray crystal structures of cucurbituril threaded on substituted spermine. Chem. Lett., 1996, 7: 503-504
    [195] Roh S G, Park K M, Park G J, Sakamoto S, Yamaguchi K, Kim K. Synthesis of a five- membered molecular necklace: A 2+2 approach. Angew. Chem. Int. Ed., 1999, 38 (5): 638~641
    [196] Tan Y B, Choi S W, Lee J W, Ko Y H, Kim K. Synthesis and characterization of novel sidechain pseudopolyrotaxanes containing cucurbituril. Macromolecules. 2002, 35 (18): 7161~7165
    [197] Lim Y B, Kim T, Lee J W, Kim S M, Kim H J, Kim K, Park J S. Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA: Noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem., 2002, 13 (6): 1181~1185.
    [198] He X Y, Li G, Chen H L. A new cucurbituril-based metallo-rotaxane. Inorg. Chem. Commun., 2002, 5 (9): 633~636
    [199] 何旭阳,李婧,高燕,陈慧兰.新型金属轮烷自组装体系的表征及配位平衡研究.无机化学学报.2003,19:153~158
    [200] One W, Kaifer A E. Molecular encapsulation by cucurbit[7]uril of the apical 4,4'-bipyridinium residue in Newkome-type dendrimers. Angew. Chem. Int. Ed., 2003, 42 (19): 2164~2167
    [201] Day A I, Blanck R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. A cucurbituril-based gyroscane: A new supramolecular form. Angew. Chem., Int. Ed., 2002, 41 (2): 275~279
    [202] Schalley C A. Of molecular gyroscopes, matroshka dolls, and other "Nano"-Toys. Angew. Chem., Int. Ed. 2002, 41 (9): 1513~1515
    [203] Lee J W, Ko Y H, Park S H, Yamaguchi K, Kim K. Novel pseudorotaxane-terminated dendrimers: Supramolecular modification of dendrimer periphery. Angew. Chem., Int. Ed. 2001, 40 (4), 746~749
    [204] Ong W, Kaifer A E. Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. J. Org. Chem., 2004, 69 (4): 1383~1385
    [205] Choi S, Lee J W, Ko Y H, Kim K. Pseudopolyrotaxanes made to order: Cucurbituril threaded on polyviologen. Macromolecules. 2002, 35 (9): 3526~3531
    [206] Kim K, Jeon W S, Kang J K, Lee J W, Jon S Y, Kim T, Kim K. A pseudorotaxane on gold: Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew. Chem. Int. Ed., 2003, 42 (20): 2293~2296
    [207] Jeon W S, Ziganshina A Y, Lee J W, Ko Y H, Kang J K, Lee C, Kim K. A pseudorotaxanebased molecular machine: Reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angew. Chem. Int. Ed., 2003, 42 (34): 4097~4100
    [208] Day A I, Arnold A P, Blanch R J. Cucurbiturils and method for synthesis. PCT Int. Appl. WO 200068232 A 1 16 Nov 2000
    [209] Day A I, Blanch R J, Coe A, Arnold A P. The effects of alkali metal cations on product distributions in cucurbit[n]uril synthesis. J. Incl. Phenom. Macrocyclic Chem., 2002, 43: 247~250
    [210] Oh K S, Yoon J, Kim K S. Structure stabilities and self-assembly of cucurbit[n]uril (n=4~7) and Decamethylcucurbit[n]uril (n=4~6): A Theoretical study. J. Phys. Chem. B, 2001, 105 (40): 9726~9731
    [211] Chakraborty A, Xu A X, Witt D, Lagona J, Fettinger J, Fettinger J C, Isaacs L. Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J Am. Chem. Soc., 2002, 124 (28):8297~8306
    [212] Miyahara Y, Abe K, Inazu T. "Molecular" Molecular sieves: lid-Free decamethylcucubit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed. Engl., 2002, 41: 3020~3023
    [213] 赵云洁,薛赛凤,祝黔江,陶朱,张建新,魏赞斌,龙腊生,胡茂林,肖洪平,Day A I.对称四取代六元瓜环的合成及其2,2-联吡啶主客体化合物.科学通报,2004,49(11):1046~1051
    [214] Lagona J, Fettinger H C, Isaacs L. Cucurbit[n]uril Analogues, Org. Lett., 2003, 5: 3745~3747
    [215] 夏宇正,焦书科.甘脲的合成与鉴定.北京化工学院学报(自然科学版),1990,17(3):73~76
    [216] 侯昭升,谭业邦,王成威,黄玉玲,周其凤.葫芦脲与主链聚紫精的超分子自组装制备准聚轮烷及其性质研究.高等学校化学学报,2005,26:773~777
    [217] Atwood J L, Barbour L J, Heaven M W, Raston C L. Synthesis of 2-imino-5-phenylimidazolidin-4-one and the structure of its trifluoroacetate salt. J. Chem. Crystallogr., 2003, 33 (3): 175~179
    [218] Kolbel M, Menger F M. Materials based on glycoluril. Adv. Mater., 2001, 13 (14): 1115~1119
    [219]-stronger侯昭升,谭业邦,黄玉玲,周其凤.葫芦脲超分子(准)聚轮烷的研究进展.高分子通报,2005,3:47~54
    [220] 余仲建,龙义成,罗崇健.新型高分子多孔小球的研究.化学学报,1990,48:287~294
    [221] 余晓冬,方华,韩惠敏,吴采樱.新型杯[4]芳烃气相色谱固定相的研究.分析科学学报, 2001, 17: 441~444
    [222] Shen Y F, Lee M L. High-efficiency solvating gas chromatography using packed capillaries. Anal. Chem., 1997, 69: 2541~2549
    [223] 傅若农.色谱分析概论.北京,化学工业出版社,1999
    [224] Heo J, Kim J, Whang D, Kim K. Inorg. Columnar one-dimensional coordination polymer formed with a metal ion and a host-guest complex as building blocks: potassium ion complexed cucurbituril. Chemi. Acta 2000, 297: 307~312
    [225] 李光源,李宝惠,张卉,陈鸿琪.β-环糊精及其包结物作为气相色谱固定相分离混合物研究.理化检验-化学分册,2001,37:360~363
    [226] Rekharsky M V, Yamamura H, Inoue C, Kawai M, Osaka I, Arakawa R, Shiba K, Sato A, Ko Y H, Selvapalam N, Kim K, Inoue Y. Chiral recognition in cucurbituril cavities. J. Am. Chem. Soc., 2006, 128: 14871~14880
    [227] 傅若农.气相色谱固定相的演变.化学试剂,2006,28(1):11~15
    [228] 许国旺.现代实用气相色谱法[M].北京,化学工业出版社,2004
    [229] 仲维科,郝戬,樊耀波,王敏健.食品农药残留分析进展.分析化学,2000,28(7):904~910
    [230] 张伟亚,吴采樱,王建玲,张少文.一种新型主链杯芳冠醚聚硅氧烷毛细管气相色谱固定相.色谱,1997,15(3):204~205
    [231] Christopher N C, Paul H M H. A facile preparation of thioglycolurils from glycolurils, and regioselectivity in thioglycoluril template-directed crossed-claisen condensations. J. Org. Chem., 1997, 62 (25): 8834~8840
    [232] 黄姣,陈小明,罗和安,罗伟宁.一种β-环糊精衍生物作为手性固定相的研究.分析科学学报,2005,21(6):646~648
    [233] 邓爱华,陈小明,杨拥平.谷氨酸衍生化β-环糊精气相色谱手性固定相的合成及其在毛细管气相色谱中的应用.分析化学,2002,30(11):1325~1329
    [234] 申永强,薛赛凤,赵云洁,祝黔江,陶朱.笼状化合物—瓜环与六次甲基四胺自组装结构的NMR研究.科学通报,2003,48(22):2333~2337
    [235] Samsonenko D G, Virovets A V, Lipkowski J, Gerasko O A, Fedin V P. Distortion of the cucurbituril molecule by an included 4-methylpyridinum cation. J. Struc. Chem., 2002, 43 (4): 664~668
    [236] Samsonenko D G, Gerasko O A, Lipkowski J, Virovets A V, Fedin V P. Synthesis and crystal structure of the nanosized supramolecular Sm-Ⅲ complex with macrocyclic cavitand cucurbituril {[Sm (H_2O)(4)](2)(C36H36N24O12)(3)}Br-6 center dot 44H(2)O. Russ. Chem. Bull., 2002, 51 (10): 1915~1918
    [237] 王秋丽,薛赛凤,陶朱,祝黔江 六元瓜环对尼古丁捕集作用的测试.贵州大学学报,2005,22(2):161~165
    [238] 赵晓东,室内环境污染治理方法比较研究.辽宁城乡环境科技,2006,26(5):5~8
    [239] 张昱昆,黄华存,室内甲醛污染与控制.环境治理,2006,1:29~33
    [240] 严玉梅,捕捉类人类健康的杀手—甲醛.广东建材,2006,7:113~116
    [241] Wei F, Liu S-M, Xu L, Cheng G,Z, Wu C-T, Feng Y-Q. The formation ofcucurbit[n]uril (n=6, 7) complexeswith amino compounds in aqueous formic acid studied by capillary electrophoresis. Electrophoresis 2005, 26: 2214~2224
    [242] 曾启华,祝黔江,薛赛凤,牟兰,陶朱.六、七、八元瓜环与苯胺系列衍生物的相互作用.化学学报,2006,64(20):2101~2106
    [243] 李来生,葛小辉,黄志兵,李艳平.光谱法研究羟基葫芦[6]脲与对氨基苯磺酸的分子识别作用.应用化学,2006,23(7):747~752
    [244] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril family. Angew. Chem., Int. Ed., 2005, 44 (31): 4844~4870
    [245] 马培华,陶朱,薛赛凤,祝黔江,王仕魁,袁尚伟,张建新,周欣.六~八元瓜环与三种N-苄基取代笼状客体的相互作用.有机化学,2007,27(3):414~419
    [246] 王上文,李来生,许丽丽,刘超.荧光光谱法研究羟基葫芦[6]脲与二苯胺磺酸钠的分子识别作用.南昌大学学报(理科版),2007,31(1):73~78
    [247] Mock W L. In Comprehensive Supramolecular Chemistry, Vol. 2, Ed.: Vogtle, F., Elsevier Press, New York, 1996, pp. 477-493
    [248] Schill G. Catenanes, Rotaxanes and Knots. Academic Press, New York, 1971, Chapter 3
    [249] Mock W L, Pierpont J. A cucurbituril-based molecular switch. J. Chem. Soc., Chem. Commun., 1990, 21: 1509~1511
    [250] Brindle R, Albert K, Harris S J, Troltzsch C, Home E, Glennon J D. Silica-bonded calixarenes in chromatography: I. Synthesis and characterization by solid-state NMR spectroscopy. J. Chromatogr. A. 1996, 731: 41~46
    [251] Zhang Q, Zou H F, Wang H L, Ni J Y. Synthesis of a silica-bonded bovine serum albumin Strazine chiral stationary phase for high performance liquid chromatographic resolution of enantiomers. J. Chromatogr. A, 2000, 866: 173~181
    [252] Han X X, Yao T L, Liu Y, Larock R C, Armstrong D W. Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases. J. Chromatogr. A, 2005, 1063: 111~120
    [253] 韩小茜,温晓光,管永红,赵丽,李丛芬,陈立仁,李永民.键合纤维素(4-甲基苯甲酸酯)手性固定相的制备及其手性拆分.分析化学,2004,32(10):1287~1290
    [254] 姚礼峰,冯钰锜,达世禄.多齿配体改性的氧化锆色谱固定相表面吸附方式的研究.高等学校化学学报,2005,26(2):244~246
    [255] Rosini C, Bertucci C, Pini D, Altemura P, Salvadori P. Cinchona alkaloids for preparing new, easily accessible chiral stationary phases.1.11-(10, 11-dihydro-6'-methoxy-cinchonan-9-ol)-tiopropylsilanized silica. Tetrahedron Lett., 1985, 26 (28): 3361~3364
    [256] Gebauer S, Friebe S, Scherer C, Gubitz G, Krauss G. J. High performance liquid chromatography on calixarene-bonded silica gels. Ⅲ. Separations of cis/trans isomers of proline containing peptides. J. Chromatogr. Sci., 1998, 36 (8): 388~394
    [257] 邹汉法,张玉奎,卢佩章,高效液相色谱法[M].分析化学丛书,第三卷,科学出版社,北京,1998
    [258] Mccalley D V. Comparison of the performance of conventional C-18,phases with others of alternative functionality for the analysis of basic compounds by reversed-phase highperformance liquid chromatography. J. Chromatogr. A, 1999, 844: 23~28
    [259] O'Gara J E, Walsh D P, Alden B A, Casellimi P, Walter T H. Systematic study of chromatographic behavior vs alkyl chain length for HPLC bonded phases containing an embedded carbamate group. Anal. Chem., 1999, 71 (15): 2992~2997
    [260] 江苏新医学院.中药大辞典[M].上海,上海科学技术出版社,1994:111~115
    [261] 赵锦卉,耿淑清.浅谈大蒜的抗菌作用.黑龙江医药,2000,13(2):112
    [262] 季宇彬.抗癌中药药理与应用[M].哈尔滨,黑龙江科学技术出版社,1999
    [263] 李来生,杨汉荣,陈雄泉,许丽丽.银离子液质联用柱后衍生法分析大蒜粉中的二烯丙基含硫化物成分.分析化学,2006,34(8):1183~1186
    [264] 杨汉荣.大蒜新素二烯丙基三硫化物键合硅胶液相色谱固定相的制备与表征.南昌大学硕士学位论文,2007
    [265] Lubert S著.唐有祺,张惠珠,吴相钰译.生物化学[M].北京,北京大学出版社,1990
    [266] 杨建新.全取代嘌呤化合物库及新杂环新杂环嘧啶并[4,5-b][1,4]苯并二氮卓的合成. 吉林大学硕士学位论文,2005
    [267]Wang S D, McClue S J, Ferguson J R, Hull J D, Stokes S, Parsons S, Westwood R, Fischer P M. Synthesis and configuration of the cyclin-dependent ldnase inhibitor roscovitine and its enantiomer.Tetrahedron: Asymmetry, 2001, 12 (20): 2891~2984
    [268]廖斌,张莉,廖清江.2001年世界上市的新药.药学进展,2002,26(3):190~192
    [269]Howard A D, McAllister. G, Feighner S D, Qingyun L, Nargund R P, Uan der Ploeg L H T, Patchett A A. Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol. Sci., 2001, 22, 132~140
    [270]Simek .P, Jegorov A, Dusbabek F. Determination of purine-bases and nucleosides by conventional and. microbore high-performance liquid-chromatography and gas-chromato-graphy with an ion-trap detector. J. Chromatogr. A, 1994, 679 (1): 195~200
    [271]Fan H, Li S P, Xiang J J, Lai C M, Yang F Q, Gao J L, Wang Y T. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured Cordyceps by pressurized liquid extraction and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analytica Chimica Acta, 2006, 567(2): 218~228
    [272]Wemer A. Reversed-phase and ion-pair separations of nucleotides, nucleosides and nucleobases-analysis of biological samples in health and disease. J. Chromatogr., 1993, 618: 3~14
    [273]赵涛,刘绮萍,程介克.九种嘌呤碱的毛细管区带电泳分离.高等学校化学学报,1996,17(6):883~886
    [274]刘小花,汪振辉,周濑萍.胶束电动毛细管色谱分离测定嘌呤衍生物.分析科学学报,2005,21(2):139~142
    [275]战佩英,吴燊,于世丽.2-氨基-6-氯嘌呤的合成.通化师范学院学报,2003,24(2):45~47
    [276]Yi X G, Liu C B, Wu Z S, Chert J H, Wen H L. Dimethyl 2-[2-(2-amino-6-chloropurin-9-yl)-ethyl]malonate. Acta Crystallogr E, 2007, 63: o1113~o1114
    [277]Brown P R, Robb C S, Geldart S E. Perspectives on analyses of nucleic acid constituents: the basis ofgenomics. J. Chromatogr. A, 2002, 965:163~173
    [278]盛贻林.茶叶中咖啡因提取实验方法的比较及改进.生物学杂志,2007,24(1):75~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700