糖—金属配合物和有机锡羧酸酯的合成、结构表征及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共分为三部分,分别为含羧基臂糖-稀土配合物的合成及催化DNA降解研究,糖胺-过渡会属配合物的合成及催化PNPP的活性研究,有机锡羧酸酯的合成及其生物活性研究。
     第一部分合成了两个系列的含羧基臂糖-稀土配合物并研究了部分化合物的催化DNA降解的活性。以抗肿瘤活性较好的化合物(5),即(Z)-4-[N-(1’,3’,4’,6’-四-O-苯甲酰基-2’-脱氧-β-D-葡萄糖基)亚氨基]-4-氧代-2-丁烯酸和其类似化合物(6),即邻-(1’,3’,4’,6’-四-O-苯甲酰基-2’-脱氧-2’-氨基甲酰基葡萄糖)-苯甲酸,为配体,分别与La,Nd,Sm,Gd,Dy,Yb的六个稀土氯化物反应,合成了两个系列12个配合物,并通过元素分析,IR,UV,摩尔电导等分析方法研究了配合物的可能结构和配位方式:两类配合物具有类似的配位方式,稀土离子与配体的摩尔比为1:4,配位方式为:配合物中四个配体羧酸中的羧酸根、酰胺羰基和一分子水参与配位,使配合物达到9配位的稳定结构。DNA降解活性显示此类化合物不具有好的降解性能。
     第二部合成了三个系列的糖胺-过渡金属配合物,并研究了它们作为水解酶催化水解PNPP的活性。以配位能力较强的氮原子代替糖环上的氧原子合成了三个糖胺化合物,分别为:N,N’-(1-氨基-1-脱氧-β-D-葡萄糖)丙二胺,N,N’-(1-氨基-1-脱氧-β-D-麦芽糖)丙二胺,N,N’,N”-(1-氨基-1-脱氧-β-D-半乳糖)-三-(2-氨乙基)胺。将这三类配体分别与过渡金属Cu(Ⅱ)、Ni(Ⅱ)反应合成了三类6个配合物,并利用元素分析,JR,UV,摩尔电导等分析方法研究了配合物的可能结构,对于Cu(Ⅱ)配合物而言具有扭曲四边形和三角双锥两种配位方式,而Ni(Ⅱ)配合物的构型均为八面体构型。此外我们还研究了配合物作为水解酶催化水解PNPP的活性,结论为:配合物可以显著加速PNPP的水解;在低pH值时Cu(Ⅱ)配合物催化活性较Ni(Ⅱ)配合物的高,但在高pH值时有所下降;而Ni(Ⅱ)配合物的催化活性则随pH的升高而升高。另外,糖上由羟基参与配位的配合物
This dissertation were divided into three parts; the first one is the synthesis of rare earth coordinating with saccharide derivatives, the second is the synthesis of saccharide-transition metal complexes and its activity on hydrolysis of PNPP, the third is the synthesis of organotin complexes and its antitumour activity.First, we synthesized two series of sacchride-rare earth complexes and studied their activity on hydrolysis of DNA. We found the compound (5) had good antitumour activity, so we use it and its analogue compound (6) as ligands, react with LaCl_3, NdCl_3, SmCl_3, GdCl_3, DyCl_3, YbCl_3 respectively. Then two series of coordination complexes of rare earth ions were synthesized. The saccharide-rare earth complexes were characterized by elementary analysis, FT-IR, UV spectra and molar conductance and we also speculated the possible structure of the complexes. The two series of complexes have similar structure: Ln:L=1 :4, four coordination oxygen atoms are from carboxyl, four coordination oxygen atoms from acylamide, and the other is from H_2O, the coordination number is nine.We synthesis three series of sacchride-trasition metal complexes and studied their activity on hydrolysis of PNPP. We replaced the oxygen atom of the sugar by nitrogen atom, synthesized the stronger binding carbohydrate ligands. They are N, N'-(1- amino-1-deoxy-β-D-glucose)propane diamine, N, N'-(1-amino-1-deoxy-β-D-maltose) propane diamine, N, N", N"-(1-amino-1-deoxy-β-D-galactose)-triaminotriethyl amine. The ligands reacting with CuCl_2 and NiCl_2 gained six complexes. They were all characterized by elementary analysis. FT-IR. UV spectra and molar conductance and we also speculated the possible structure of the complexes. We studied the catalytic activities of glycosylamine-metal complexes on hydrolysis of picolinate. and found that hydrolysis is significantly accelerated in the presence of
    complexes over spontaneous hydrolysis. In low pH the Cu(ll) complexes have higher activity, but it is lower when pH is higher. While the Ni(ll) complexes is on the contrary. We also find that when the OH group of the sugar coordination with the metal the hydrolysis activity is higher. So we can decide that the OH group of the sugar play important role in the hydrolysis.Dibutyltin( IV) oxide complex reacts with the cantharidin analogue. 4'-(7-oxabicyclo[2,2,l]-5-heptane-2,3-dicarboximide) benzoic acid and a-(7-oxabicyclo[2,2,l]-5-heptane-2,3-dicarboximide) acetic acid to give the complexes [(p-C8H8NO3-C6H4-COOBu2Sn)2O]2(29), (p-C8H8NO3-C6H4-COO)2SnBu2 (30) and (a-C8H8NO3-CH2-COO)2SnBu2 (31) which have been characterized by IR, 'H NMR, 13C NMR and 119Sn NMR. Single x-ray crystal structure analysis has been determined for the compound 29, which was analogue to most other [(RCOOBu2Sn)2O]2. The dimer features central of Bu4Sn2O2 unit with the two Bu2Sn groups being linked via bridging oxygen atom. Each tin atom adopts distorted trigonal bipyramides via two carbons from a dibutyl moiety and three oxygen atoms from cantharidin analogue and bridging oxygen. In vitro test shows compound 29-31 exhibit high cytotoxicity against P388 and HL-60, but it is lower against A-549. The effects of compounds 29-31 have been tested on human hematopoietic progenitors using clonogenic effect. Cytotoxic concentration and no effect dose concentration have been determined after scoring colonies derived from hematopoietic progenitors incubated 14 days. Results show that compound 29 is less myelotoxic than compound 30 and 31 according cytotoxic and no effect doses.
引文
1.1999科学发展报告,中国科学院,科学出版社,1999
    2.罗纪盛,生物化学,华东师大出版社,1997
    3. P. Charley. P. Saltman. Science. 1963, 139. 1205
    4. J. Deman. M. Marcel, E. Bmyneel, Biochim. Biophys. Acta., 1973, 297, 486
    5. B. Gyurcsik, L. Nagy. Carbohydrates as ligands: coordination equilibria and structure of the metal complexes [J] Coord. Chem. Rev., 2000, 203: 81.
    6. P. F. Predki, D. M. Whitfield, B. Sarkar. Characterization and cellular distribution of acid peptide and oligosaccharide metal2binding compounds from kidneys [J ]. Biochem. J., 1992, 281: 835.
    7. W. I. Weis, K. Drickamer, W. A. Hendrickson, Structure of a C-type mannose-binding protein complexed with an oligosaccharide [J]. Nature, 1992, 360: 127.
    8. U. Piarulli, A. J. Rogers, C. Floriani, et at., Metallohosts derived from the assembly of sugars around transition metals: the complexation of alkali metal cations[J]. Inorg. Chem., 1997, 36: 6127.
    9. O. A. Oluboyede, O. A. jayi, Cuur. Ther. Res., 1980, 27, 81
    10.杨志华,孙天松,白英,利兄,不同糖类对铁化学状态及透析率的影响,内蒙古农牧学院学报,1998,19,No.1 55-59
    11. Philip Charley et al., Preparation of Ferric Fructose, undated typescript
    12. J. Lamer, J. D. Price, D. Heimark, et al. Isolation, Structure, Synthesis, and Bioactivity of a Novel Putative lnsulin Mediator. A Calactosmine chiro-lnositol Pseudo-Disaccharide Mn~(2+) Chelate with Insulin-like Activity. J. Med. Chem. 2003, 46, 3283-3291
    13. M. L. Sinnott, Catalytic mechanism of enzymic glycosyl transfer, Chem. Rev. 1990, 90, 1171-1202
    14. J. P. Richard. J. G. Westerfeld. S. Lin, Structure-reactivity relationships for beta.-galactosidase (Escherichia coli. lac Z). I. Broensted parameters for cleavage of alkyl. beta.-D-galactopyranosides. Biochem. 1995, 34, 11703-11712.
    15. J. P. Richard. J. G. Westerfeld. S. Lin. J. Beard, Structure-reactivity relationships for. beta.-galactosidase (Escherichia coli. lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion. Biochem. 1995, 34, 11713-11724
    16. J. P. Richard. R. E. Huber. S. Lin. C. Heo. T. L. Amyes. Structure-Reactivity Relationships for β-Galactosidase (Escherichia coli, lac Z). 3. Evidence that Giu-461 Participates in Bronsted Acid-Base Catalysis of β-D-Galactopyranosyl Group Transfer, Biochem. 1996, 35, 12377-12386.
    17. J. P. Richard, R. E. Huber, C. Heo, T. L. Amyes, S. Lin, Structure-Reactivity Relationships forβ-Galactosidase (Escherichia coli, lac Z). 4. Mechanism for Reaction of Nucleophiles with the Galactosyl-Enzyme Intermediates of E461G and E461Qβ-Galactosidases, Biochem. 1996, 35, 12387-12401.
    18. J. P. Richard, J. Crugeiras, R. W. Nagorski, Imperatives for enzymatic catalysis of isomerization of sugars and sugar phosphates, J. Phys. Org. Chem. 1998, 11, 512-518
    19. R. P. Bandwar, S. J. S. Flora, C. P. Rao, Influence of zinc-saccharide complexes on some haematological parameters in rats, Biometals 1997, 10, 337-341
    20. J. D. Oliver, L. C. Strickland, Structure of a dihydrated, di-tert-butyl alcohol solvated zinc acetate complex with erythromycin A at 188 K, Acta Crystallogr. 1986, C42, 952-956
    21. P. F. Predki, D. M. Whitfield, B. Sarkar, Characterization and cellular distribution of acidic peptide and oligosaccharide metal-binding compounds from kidneys, Biochem. J.. 1992, 281, 835-841
    22. R. Kohn, Collect. Czech. Chem. Commun. 1982, 47, 3424.
    23. P. R. Singh, S. G. Jones, G. R. Gale, M. M. Jones, A. B. Smith, L. M. Atkins, Selective removal of cadmium from aged hepatic and renal deposits: N-substituted talooctamine dithiocarbamates as cadmium mobilizing agents, Chemico-Biol. Interact. 1990, 74, 79-91
    24. J. Haustein, H. Niedorf, G. Krestin, et al. Renal tolerance of gadolinium-DTPA dimeglumine inpatients with chronic renal failure[J]. Invest Radiol, 1992, 27: 153-156.
    25.卓仁禧,吕正荣,魏俊发,等.合成环状多氨多羧酸螯合物造影剂的方法[P].ZL:95119302.3,1995211214.
    26. D. F Rnney. Physically and chemically stabilized polyatomic clusters for magnetic resonance imaging and spectral enhancement [P]. WO: 9217214. 1992210215.
    27. A. Mukhopadhyay. E. Kolehmainen. C. P. Rao. Interaction of saccharides with rare earth metal ions: synthesis and characterization of Pr(Ⅲ)- and Nd(Ⅲ)-saccharide complexes. Carbohydr .Res. 2000. 328. 103-113.
    28. A. Mukhopadhyay. E. Kolehmainen. C. P. Rao. Lanthanide-saccharide chemistry: synthesis and characterization of Ce(Ⅲ) -saccharide complexes. Carbohydr Res. 2000, 324, 30-37
    29. Limin Yang, Ying Zhao, Yizhuang Xu, Xianglin Jin. Shifu Weng, Wen Tian. Jinguang Wu, Guangxian Xu, Complexation of trivalent lanthanide cations by D-ribose in the solid state. The crystal structure and FT-1R study of PrCl3 a-D-ribopyranose·5 H2O. Carbohydr .Res. 2001,334,91-95
    30. Yunlan Su, Limin Yang, Xianglin Jin, Shifu Weng, Jinguang Wu, Complex of trivalent lanthanum ion with galactitol in the solid state: the crystal structure and an FT-IR study of LaCl3 ·galactitol·6H2O. Journal of Molecular Sructure, 2002, 616, 221-230
    31. Limin Yang, Yizhuang Xu, Xin Gao, Shiwei Zhang, Jinguang Wu, Complexation of trivalent lanthanide cations by erythritol in the solid state. The crystal structure and FT-IR study of 2EuCl3·2C4H+(10)O_4·7H2O. Carbohydr .Res. 2004, 339, 1679-1687
    32. Limin Yang, Ying Zhao, Wen Tian, Xianglin Jin, Shifu Weng, Jinguang Wu, Complexation of trivalent lanthanide cations by galactitol in the solid state. The crystal structure and an FT-IR study of 2NdCl3galactitoll4H2O. Carbohydr .Res. 330, 2001, 125-130.
    33. Limin Yang, Dongliang Tao, Ying Sun, Xianglin Jin, Ying Zhao, Zhanlan Yang, Shifu Weng, Jinguang Wu, Guangxian Xu, Complexation of trivalent lanthanide cations by inositol in solid state. The crystal structure and Raman spectra study of NdC13inositol·9H2O. Journal of Molecular Sructure, 2001, 560, 105-113
    34. Limin Yang, Jianguang Wu, Shifu Weng, Xianglin Jin, Interactions between metal ions and carbohydrates: FT-IR and Raman spectra study of NdCl3-a-D-ribopyranose·5H2O. Journal of Molecular Structure, 2002, 612, 49-57
    35. Limin Yang, Wen Tian, Ying Zhao, Xianglin Jin, Shifu Weng, Jinguang Wu, Guangxian Xu, Sugar interaction with metal ions. The crystal structure and Raman spectra study of SmCl3 -galactitol complex. J. Inorg. Biochem. 2001. 83. 161-167
    36. H. Junicke, C. Bruhn. D. StrOhl. R. Kluge, D. Steinborn. The First Platinum(lV) Complexes
     with GlucopyranosideLigands. A New Coordination Mode of Carbohydrates. Inorg. Chem. 1998. 37. 4603-4606
    37. H. Junicke. C. Bruhn. R. Kluge. A. S. Serianni. Dirk Steinborn. Novel Platinum(Ⅳ)-Carbohydrate Complexes: Melal Ion Coordinalion Behavior of Monosaccharides in Organic Solvents. J. Am. Chem. Soc. 1999, 121. 6232-6241
    38. P. Bitha, R. G. Child. J. J. Hlavka, el al. Eur. Pat. EP,. 1986. 186 085
    39.郭振楚,韩亮,胡博,李双牛 氨基葡萄糖及羧甲基氨基葡萄糖与铁(Ⅱ)、锌(Ⅱ)、钴(Ⅲ)、铜(Ⅱ)、配合物的光谱特征 光谱学与光谱分析 2002,22,No.6,963-966
    40.郭振楚,刘福清,彭校宗 壳寡糖与镧、铈配合物的合成、表征及应用 中国稀土学报 2003,21,98-101
    41.叶勇,胡继明,曾云鹗 D-氨基葡萄糖金属配合物对DNA作用的谱学研究 光谱学与光学分析 2001,21,623-626
    42. S. Yano, S. Inoue, R. Nouchi, K. Mogami, et al. Antifungal nickel(Ⅱ) complexes derived from amino sugars against pathogenic yeast, Candida albicans, Journal of Inorganic Biochemistry 1998, 69, 15-23
    43. I. Brudzinska, Y. Mikata, M. Obata, C. Ohtsukiand, S. Yano, Synthesis, structural characterization, and antitumor activity of palladium(Ⅱ) complexes containing a sugar unit, Bioorganic & Medicinal Chemistry Letters 2004, 14, 2533-2536
    44. Y. Mikata, Y. Shinohara, K. Yoneda, Y. Nakamura, et al. Unprecedented Sugar-Dependent In Vivo Antitumor Activity of Carbohydrate-Pendant cis-Diamminedichloroplatinum(Ⅱ) Complexes. Bioorganic & Medicinal Chemistry Letters 2001, 11, 3045-3047
    45. A. K. Sah, C. P. Rao, E. K. Wegelius, E. Kolehmainen, K. Rissanen, Synthesis, characterization and the first crystal structure of the Zn(Ⅱ) complex of 4,6-O-ethylidine-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine Carbohydrate Research 336 (2001) 249-255
    46.刘义,冯英,谢昌礼,屈松生等,微量热法研究D-氨基葡萄糖西佛碱及其配合物对细菌的作用 武汉大学学报(自然科学版)1995,41,434-438
    47.叶勇,胡继明,曾云鹗 N-β-萘酚醛-D-氮基葡萄糖希夫碱金属配合物与DNA作用的谱学研究 无机化学学报 2000,16,951-958
    48.黄永华,龙姝.蔡红革,叶勇 N-β-萘酚酫-D-氨基葡萄糖希夫碱甘氨酸金属配合物与DNA作用的谱学研究 湖南农业大学学报(自然科学版)2002,28,156-158
    49.杨延民,翁诗甫,吴谨光,徐光宪 D-葡萄糖与氯化稀土配合物的合成及红外光谱研究,高等化学学报,1994,15,646
    50.吴翌,龙腊生,稀土-果糖-高氯酸及稀土-果糖-硼酸配合物的研究 兰州大学学报(自然科学版),1998,34,72
    51.张永安,张英锋,赵慧春 稀土-氨基葡萄糖-咖啡酸配合物的合成与表征 北京师范大学学报(自然科学版),2000,36,82
    52. D. T. Sawyer, Ph. D. Thesis, University of California, LosAngeles, Clif., 1956
    53. G. A. Melson, W. F. Dickering, Aust. J. Chem. 1968, 21, 2889
    54. T. Mohan Das, Chebrolu P. Rao, Erkki Kolehmainen, Interaction of metal ions with N-glycosylamines: isolation and characterization of the products of 4,6-O-benzylidene-N-(o-carboxyphenyl)-β-D-glucopyranosylamine with different metal ions, Carbohydrate Research 2001, 335, 151-158
    55. N. Jansco, G. A. Jansco, Naunyn-Schnieberg's Arch, Exp. Path. Pharmacol. 1960, 238, 83
    56.陈淑英,张新怀,王金玉等,具有生物活性的金属配合物研究(Ⅵ)——对氨基水杨酸稀土配合物的合成、性质、抗结核菌及毒性研究。高等化学学报,1988,9(8):758-763
    57.杨正银,王流芳,吴集贵等,某些稀土希夫碱配合物的抗肿瘤活性药理研究 科学通报,1992,37(9):813-816
    58.刘术侠,刘彦勇,于恩波,等.Keggin结构钨磷酸稀土镥盐杂多蓝的合成及抗艾滋病病毒(HIV-1)活性的研究[J].高等学校化学学报,1996,17(8):1188—1190.
    59. E. Vicke, E. Sucker, Nd salt of 3-salfoisonicotimic acid as an antithrombotic[J]. Klin. Wschr, 1950, 28:74
    60.李晓滨,周爱儒,俞文华,陈兴安,柠檬酸镧对人肺癌PG细胞、人胃癌BGC-823细胞的作用 中国稀土学报 2000.18(2):156-159
    61.刘勇 氨基糖衍生物及其稀土配合物的合成和结构表征 中国海洋大学硕士学位论文 2003
    62. W. J. Geary. The use of conductivity measurements organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971. 7. 81-122
    63. P. A. Brady. J. K. M. Sanders. Chem. Soc. Rev.. 1997. 26. 367
    64. Y. Murakami. J. I. Kikuchi. Y. Hisaeda, O. Hayashida. Artificial Enzymes Chem. Rev., 1996, 96, 721
    65. T Wagner-Jauregg, B E Hackley, T A Lies, et al. Model Reactions of Phosphoruscontaining Enzyme Inactivators. Ⅳ. The Catalytic Activity of Certain Metal Salts and Chelates in the Hydrolysis of Diisopropyl Fluorophosphate J. Am. Chem. Soc., 1955, 77(4): 922.
    66. R Breslow, B Zhang. d. Am. Chem. Soc., 1992, 114 (14): 5882~5883; 1997, 119: 1676~1681
    67. T subouch iA, T C Bruice. J. Am. Chem. Soc., 1994, 116 (25): 11614~11615
    68. A. Sreedhara, John D. Freed, J. A. Cowan, Efficient Inorganic Deoxydbonucleases. Greater than 50-Million-Fold Rate Enhancement in Enzyme-Like DNA Cleavage, J. Am. Chem. Soc. 2000, 122, 8814-8824
    69. R. Breslow, D. Berger, D. L. Huang, Bifunctional Zinc-hnidazole and Zinc-Thiophenol Catalysts. J. Am. Chem. Soc, 1990, 112(9): 3686.
    70. J A Michael, D L. Huang. J. Chem. Soc. structc. Chem. Commun, 1979. 234.
    71.郭振楚,韩亮,胡博,氨基葡萄糖的Ni(Ⅱ),Fe(Ⅲ)和Zn(Ⅱ)配合物的合成及光谱表征,光谱学与光谱分析,22(2002)963
    72. Michael R. Wagner, F. Ann Walker, Spectroscopic study of 1: 1 copper(Ⅱ) complexes with Schiff base ligands derived from salicylaldehyde and L-Histidine and its analogues. Inorg. Chem. 1983, 22, 3021-3028
    73. Wei Zhang, Tao Jiang, Sumei Ren, Zhongwei Zhang, Huashi Guan, Jingsheng Yu Metal-Nsaccharide chemistry: synthesis and structure determination of two Cu(Ⅱ) complexes containing glycosylamines. Carbohydrate Research, 339(2004) 2139-2143
    74. Brown, N. M.; "Tin-based antitumour drugs", Berlin: Springerverlag, 1990, P69
    75. Crowe, A. J., Smith, P. J.. Chem. Biol. Inteact., 1980, 32: 171
    76. Gielen, M, Acheddad, M, Mahieu Betal,. Main Group Metal Chem. 1991, 14: 74
    77. Pettina, C., Pellei. M., Marchetti. F., Santini. C. Miliani. M.. Polyhedron 1998, 17, 561
    78. Huber F. Roger G. carl L. et al. J. chem. Soc., Dalton. Trans. 1985. 52
    79. Gielen M. et al. Silcom Germanium Tin and lead compounds 1986. 9. 349
    80.胡盛志等,Inorg Chim. Acta. 1990.173:1
    81. Gielen M., Biesmans M.. Vos D.. Willem R.. J. Organometal. Chem. 2000. 79. 139-145
    82. Kemmer M., Dalil H.. Biesmans M. et al. J. Organometal, Chem. 2000. 608. 63-70
    83. Casini A.. Messori L.. Orioli P., Gielen M. et al. J. Inorg. Biochem. 2001. 85. 297-300
    84. Crowe A. J., Smith P. J., et al. Inorg. Chem. Aca., 1984, 93(4), 179-184
    85.刘福龙,江涛,左代姝,有机化学,2002,22.No.10,761
    86. G. K. Sandhu, N. Sharma. E. R. T. Tiekink, J. Organometal. Chem. 403(1991)119
    87. J. HoleCek, M. Nadvornik, K. Handlir, A. LyCka, J. Organometal. Chem. 315(1986) 299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700