Al-Zn-Sn系阳极材料的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金牺牲阳极材料中Al-Zn-In系合金由于具有较高的电流效率,腐蚀产物易脱落等优点,被广泛用于海水中钢构件的阴极保护。但在使用过程中In对海洋环境的危害逐渐被认识。目前,国内外学者正在探索开发高性能无铟牺牲阳极材料,并开发出一些具有应用前景的无铟铝合金阳极材料。
     Al-Zn-Sn阳极合金的电流效率较低,腐蚀产物粘附严重且腐蚀形貌不均匀。为改善Al-Zn-Sn阳极合金的综合性能,提高其实际应用价值,本论文通过成分设计,用微量Ga、Bi、Mg和RE对三元Al-7Zn-0.1Sn合金进行微合金化。研究表明微量Ga可显著提高该阳极的电化学性能。如:阳极表面“金属海绵”状形貌消失,腐蚀产物易脱落,析氢腐蚀和晶粒脱落现象得到改善,电流效率从76%提高到95%以上。并获得电流效率达96.4%的Al-7Zn-0.1Sn-0.015Ga阳极合金。在此基础上用适量Bi、Mg、RE对Al-7Zn-0.1Sn-0.015Ga合金进一步优化,开发出电流效率达97.4%且溶解较均匀的Al-7Zn-0.1Sn-0.015Ga-0.1Bi合金。
     为进一步改善Al-Zn-Sn系阳极合金的溶解形貌,提高其综合性能,对合金Al-7Zn-0.1Sn-0.015Ga、Al-7Zn-0.1Sn-0.015Ga-0.1Bi和Al-7Zn-0.1Sn-0.015Ga-2Mg分别进行固溶和退火处理,研究了热处理对Al-Zn-Sn系阳极合金电化学性能的影响。结果表明:退火处理可使这3种阳极合金的析氢速率和腐蚀电流密度增加,电流效率下降,溶解形貌也不均匀;固溶处理可使阳极的电位负移,析氢速率和腐蚀电流密度大幅度降低,电流效率增加或稍有降低,但溶解形貌变得更均匀,表现出更好的综合电化学性能。3种阳极合金经470℃×4h固溶处理后其工作电位均在-1.05V(SCE)左右,电流效率均高于93%,且溶解形貌均匀,具有较高的应用前景。
     通过冷变形结合热处理的方法改变合金的晶粒尺寸,研究了晶粒度对合金电化学性能的影响。结果表明晶粒度与电流效率并不是简单的晶粒越小电流效率越高的关系。在热处理温度相同的情况下(通过“不同变形量+相同热处理”改变合金晶粒大小),无论组织均匀与否阳极合金的电流效率均随晶粒尺寸的减小先增大后逐渐减小,即晶粒尺寸适中(约38μm)的阳极合金电流效率最高,分别为98%(组织不均匀)和97%(组织均匀);在变形量相同的情况下(通过“80%变形+不同温度热处理”改变晶粒尺寸),对组织不均匀的试样,晶粒越小电流效率越高(平均晶粒尺寸约为25μm时电流效率最高,为97.3%);对组织均匀的试样,晶粒越大电流效率越高(平均晶粒尺寸约为167μm时电流效率最高,为96.2%)。晶粒大小对阳极表面溶解状态没有明显的影响。
     通过固溶处理结合不同时效处理的方法改变合金中第二相的形状和大小等,研究了第二相对阳极合金电化学性能的影响。结果表明:棒状、链状、放射状等不规则的第二相可引起严重的晶间腐蚀,导致未溶的第二相和晶粒脱落而降低阳极的电流效率,使腐蚀形貌不均匀;球状、盘状或块状等形状比较规则的第二相有利于改善铝合金牺牲阳极材料的电化学性能。第二相太小,合金活化速度较慢,易造成合金极化;较大的第二相有利于合金的活化,而第二相太大易导致第二相脱落,降低阳极合金电流效率,也不利于提高合金的电化学性能。第二相太多,导致未溶第二相和晶粒脱落越严重,电流效率降低。晶内第二相有利于合金活化和均匀腐蚀,而晶界第二相可促进腐蚀沿晶界纵向发展。具有数量和大小适中、形状较规则、分布均匀第二相的阳极合金具有高的电流效率和均匀的腐蚀形貌,如分布较均匀的尺寸约为400nm盘状第二相的Al-7Zn-0.1Sn-0.015Ga-2Mg合金其工作电位稳定在-1.07V(SCE)左右,电流效率达95%以上,试样表面腐蚀非常均匀。
     在上述研究的基础上,研究了Al-7Zn-0.1Sn-0.015Ga合金在3.5%NaCl溶液中的腐蚀行为并探讨了该合金的溶解机理。合金首先在晶界处的阳极型第二相附近引发点蚀,此时电化学阻抗谱(EIS)的高频段为一表征合金表面双电层电容的容抗弧,低频段为一表征点蚀的感抗弧。然后,合金以点蚀和在点蚀周围的Zn2+、Sn4+、Ga3+引发的溶解-再沉积两种腐蚀形式迅速横向扩展,形成浅而宽的腐蚀区域,此时Nyquist图中除了表征点蚀的感抗弧外,在低频段又出现表征Zn2+、Sn4+、Ga3+引发的溶解-再沉积的容抗弧。随着固溶在合金基体中活性元素溶解和再沉积,点蚀逐渐连成一片发展为均匀溶解,此时Nyquist图中表征点蚀的感抗弧消失,只剩高频段表征合金表面双电层电容的容抗弧及低频表征Zn2+、Sn4+、Ga3+溶解-再沉积的容抗弧。并在此基础上建立了该阳极合金的腐蚀模型。
     通过循环极化测试确定了Al-7Zn-0.1Sn-0.015Ga合金的自腐蚀电位Ecor、点蚀电位Epit、点蚀转变电位Eptp和保护电位Erp,结合这些特征电位的腐蚀形貌观察,研究了该合金的点蚀萌生、扩展、钝化过程,揭示了该合金的点蚀扩展机理。合金第二相界面处由于Cl-的吸附和微腐蚀电池的共同作用优先发生溶解引发点蚀。由于蚀孔内部金属阳离子浓度的增加,氯离子不断向孔内迁移导致孔内氯离子浓度升高,同时由于孔内金属离子浓度的升高并发生水解,使蚀孔内H+浓度升高,蚀孔首先迅速向纵深发展。随着第二相的溶解及孔深增加,腐蚀产物在蚀孔处堆积造成金属离子传质过程的阻力增大,产生浓差极化导致蚀孔底部电位正移,蚀孔底部发生钝化,纵向腐蚀速率减慢;回沉积在蚀孔处Sn周围的Ga和Al形成液态Ga-Al汞齐,分离氧化膜与基体,使铝基体不断暴露溶解,同时也使腐蚀产物不断脱落,维持点蚀坑的横向活化扩展。
     另外,针对Al-7Zn-0.1Sn-0.015Ga合金的点蚀坑在纵深发展到一定程度后发生钝化,而不像传统认为的形成深的腐蚀孔的问题,对合金点蚀孔内酸度值与蚀孔深度的关系进行了模拟计算。通过计算发现点蚀孔内的pH值随腐蚀坑深度的增加而急速降低,即蚀孔内的H+浓度随蚀坑深度增大而快速增加。但在0~10-4cm数量级时pH值变化极小,此深度范围是点蚀孔能否继续深向发展的“壁垒”。Al-7Zn-0.1Sn-0.015Ga合金的第二相一般在0~10-4cm数量级,该合金由于点蚀孔外大量反应产物的沉积致使点蚀孔来不及形成高浓度酸化池便发生钝化,其未能突破小孔的深度“壁垒”,因此,Al-7Zn-0.1Sn-0.015Ga合金表面的点蚀孔不具备深挖的能力。
Al-Zn-I n series alloys ar e widely used as sacri fici al anodes for cat hodeprote ction of ste el compone nts in t he seawater due t o their high currente ffic i e nc y a nd u ni f or m s ur fa c e di ssol ution morphology. However, with theproduction and using of indi um, peopl e graduall y r ealize d that i t i s har mfulto t he environment. At present, ma ny researchers are worki ng on the Alsacri fici al anode wit h hi gh-perfor mance and pollution-fr ee, and a number ofnon-indium anode mat erials have been de velope d.
     The curr ent effi ciency of Al-Zn-Sn all oy is l o w, the c orrosion productsadhe re on the alloy sur fac e a n d the c orr osion mor phol ogy i s " metal s ponge"-like. In order to i mprove t he el ectr oche mical per for mance of Al-Zn-Snano de all oy, t he i n flue nce o f G a, Bi, M g a n d Ce e l e me n t s o n t h emicr ostr ucture and electrochemi cal performance of Al-7Zn-0.1Sn anode wasinvestigat ed by means of mi crostr uc t u re obser v ation and electr ochemicalmeasur ements in t hi s paper. The results show t hat trace Ga can signi fi cantl yi mprove t he electr o chemical properties of Al-7Zn-0.1Sn anode. For example," met al sponge"-like mor phology in anode sur face disappeared, corrosionproduct s fall off e asy, the phe nome non of hydrogen a nd grain off wer ei mproved, the cur rent effi ciency increased from76%t o95%. A ndAl-7Zn-0.1Sn-0.015Ga alloy with a curr ent effi ciency of96.4%wasdeve loped. The n, t h e furt her opti miz ati on wit h Bi, M g a nd RE wa s c arriedout on it, Al-7Zn-0.1Sn-0.015Ga-0.1Bi all oy wit h a current effici ency of97.4%and a mor e uni for m-dissol ution was de ve lope d a lso.
     To furt her i mpr ove t he diss oluti o n morphology a nd over allper for mance of Al-Zn-Sn s er ies anode all oys, t he sol ution tr eat ment andanne aling treat me nt were a pplie d t o the all o ys Al-7Zn-0.1Sn-0.015Ga,Al-7Zn-0.1Sn-0.015Ga-0.1Bi and Al-7Zn-0.1Sn-0.015Ga-2M g, i n flu e n c e o fheat treat ment on t he electr o chemical per for mance of Al-Z n-S n ser i e s a no d emat e r i a l s was s t u di e d. T he r e s ul t s s ho w that annealling treament couldma ke t he hydrogen evol ution rate and the c orros ion c urre nt de nsit y of theanode all oys i ncre ased, c urr ent e ffici ency de cr ease d, a n d the mor phol ogywas non-uni for m diss oluti o n. Soluti on t reat ment c oul d make the anodi c pote ntial nega tive shi ft, hydroge n e v oluti on r ate and c orros ion curre ntdensity of the anode all oy s red uce d sig ni fi ca nt l y, alt h oug h t he curr ente fficie nc y incre ase d or sli g htly decr ease d, but more uni for m c orros iona ppe a r a nc e was o bt a i ne d, so the anode alloys s h ow a bett er c o mpr e hensiveper for mance. Afte r soluti on t reat ment for three alloys, the work potentialwer e-1.05V (S CE) or s o, t h e cur r ent e ffic i e nc y wa s hig h e r t ha n93%, a n dthe diss ol ution of a nodes wer e uni for m.
     Effects of grain size on t he electrochemical pr operties of t he Al-Z n-Snseries all oys were inve stigated by means of cold defor mation and heatt r e a t men t met h o d. The r e s ul t s s ho w t hat t he re l at i onship of grain size andcurrent effici ency was not s i m p l y t h a t t h e alloy with s maller grai n size ha sthe hi gher current efficiency. I n the case of the same heat tr eat menttemperat ure (t he gr ain size was changed by “d i ffere nt defor mati o n+sa meheat treat ment”), t he curr ent efficiency of anode alloy first i ncreased andthen decr eased wit h the decrease of grain si z, namely, the all oy wit hmoder ate grains ha d the highest cur ren t effici ency. I n the case of t he samede for ma ti on (t he grain size was alte r ed by “80%de for mati on+di ffer entheat tr eat ment”), for the speci mens wit h non-uni for m struct ure, thespeci me ns wit h s maller grai ns had the hi gher current effici ency; for t hesamples with homogenous structure, the samples with s mall e r grai ns had thelower cur rent effi ci ency. Grain size had no si gni fic ant e ff ect on the anodesur fac e di ssol ution.
     The s ha p e a nd si z e o f sec o nd p ha s e of anode alloy were changed bysoluti on t reat ment and di ffe rent a ging treat me nt methods. I n fl uences ofsecond phases on the el ectro c he mi c a l p r oper t i e s o f Al scar ifical alloys werestudi ed. The resul ts show t hat t he shape, number, siz e and dist ri buti on ofsecond phases i n a node all o y ha d t he great i mpact on t he per for mance ofaluminum sacri fici al anode all oy. The anodes wit h rod-like and chai nsecond phases were easily corroded along grain boundaries, resulting insecond phases a nd undi ss olved grai n s hedding, r educ eing the anode c urrente fficie nc y and maki ng t he uneven cor r osion mor phol ogy. I n compari son, theanodes with spheri cal, disca l or bl oc k sec ond pha ses had high curre ntefficiency and even corrosi on morphol o g y. I f t h e s e c o n d phases were toosmall, t h e acti vati on r ate of anod e alloy was sl ow, easily led to thepolari zati on of anode all oys. The larger second phases were conducive t o activation alloy and impro v e ment t he e l e c t r oc he mical behavior of anodealloys. While t he oversize s e cond pha s es was not conduci ve t o i mp rove theelectrochemi cal behavi or of anode alloys beca use the s ec ond phase s e asil yshedded off and led to the decrease of cur rent efficiency. The all o y wit habunda nt second phases ha d l ower c urr ent effici ency due to the gr ain andthe undissolved second phases falled off. The second phases at t h e i nnerg r a i n wer e c o n d u c i ve t o t he a c t i va t i on a nd e ve n corrosion of alloy. Wh ereast he sec on d ph a se s on t h e grain boundary could lea d t o t h e l o n g i t u d i n a ldeve lop ment of c or rosion along the grain boundary. The anode all oy withthe me di um number and size, inerr atic shape a n d uni for m dist ribut ion ofsecond phase had the high current effici ency and t h e u n i fo r m c o r r o s i o nmo r p hol o gy. S uc h as Al-7Zn-0.1S n-0.015Ga-2Mg alloy with uni for mdistri buti on of400nm, di sk-sha ped s e cond phase had t he stabili zed wor kingpotential of-1.07V (SCE), i ts curr ent efficiency was more than95%, and it ssur fac e was very uni for m.
     Bas e d o n t h e s e s t u d i e s, the dissolution mechanism of Al-Zn-Sn seriesalloy was investigated by the cor rosion morphol ogy, el ectrochemicali mpedanc e spe ctroscopy testing in3.5%NaCl sol ution at di ffer enti mmer sio n ti me. T he results show that the initial dis sol ution of t h e alloy iscaused by pitting corrosion, and pitting started at the interface of secondpha ses a nd gr ain bounda ri es. At this time, a capa cit ive loop at hi ghfre qu e nc y i n N yq ui st dia gr a m c ha r a c t e r ized t he double-l ayer capaci tance ofalloy, the inductance loop at low fr eque nc y also c orr espond with thecharacterization of the relevant literature to expl ain the passivation ofmetal at pitting stage. Then, the alloy corrosion rapid grew lateralexpansion with two forms of pitting and dissolution-redeposition around thepitting caused by Zn2+, Sn4+, Ga3+. The i n du c t a nc e l o op o f t he EI S a tmedium frequency which characterize the pitting and the second capacitiveloop at l ow frequency which charact eriza t he diss olve d-rede posi t ion al soindicated that the corrosion controlled by the pittin g and dissolved-rede posit i on at this corr osion stage. With further increase of the corrosio ntime, the pittings were connected caused by lateral expansion, and fi nallythe entire alloy surface wa s uni for ml y di ssol v ed. Di ss olved-r ede positi ontook pl ace in t he entire sur face of t he alloy which is t h e major corrosionfor m at t he l at er d i ssol ut i o n sta ge. T he i nduct ance loop at low fr eque nc y disa ppe ar ed, the c apaciti ve loop with gra dual increa se at low fr eque nc ywhi ch characteri za the di ssolved-redep o s i t i o n a l s o indicated that thecorrosion contr olle d by the di ssol ved-r edepositi on.
     Corrosion potential Ec o r, pitting potential Ep i t, pitting change potentialEp t pand protection potential Er pof Al-7Zn-0.1Sn-0.015Ga all oy wereidenti fied by cycli c anodic polari zati on c ur ve s. C o mbi n e d wi t h c or r os i onmorphol ogy at feat ure poi nt s usi ng s c a nn i ng e l e c t r oc he mi c a l mic r osc op y,pitting initiation, expansion, and passivation of Al-Zn-Sn series alloy wereinve stigat ed, and pi tting propagati on m echanism of the all oy wa s re veale d.Location of second phase interface occured pitting preferentially caused b ythe combi ned effect s of t he Cl-a bs orpti on a nd t h e mi cro-c orros ion c ell. Thepits ra pi d de vel opment to the depth at fi r st, because metal cationconcentration within the pits increased, chloride i on c onc e ntrationincrea sed graduall y ca use d by t he mi gration of chloride ions to maintai nelectric al ne utralit y, and met al i o n hydrol yed due to t he met al i onconc entr a tion incr e ase within the pits. with the sec ond phase di ss oluti onand hole depth i ncrea ses, the ma s s transfe r resist an ce of metal ionsincreased caused by i n the corrosion product s accumulat e i n the corrosionhole, resulting in concentration polarization which led to the potential o fhole bottom shifted positive, t he corrosi on r ate in vertical slow down.liqui d Ga-Al a ma l ga m for med be caude o f t h e Ga i o b a c k t o a r o u n d t h erede posit i on Sn vic inity the pits, whi c h s epar at ed t he oxide fil m and thesubstrate, the α-matri x was exposed to di ssol ve c o nst a ntly, and thecorrosion products fe ll off unceasing also, the lateral activation extensionof pits were maintained.
     In addition, the relationship between the depth pitting and the acidityvalue within pit hole for the alloy was calcul ated for t he pi tting of Al-7Zn-0.1Sn-0.015Ga al loy oc curre d pa ssivat ion i n per pendicula r directi o n a fter itexpanded to a cer tain ext e nt, rat her than the traditional view with theformati on of deep corrosion hole s. The res ults show that the hydr oge n i onconc entr a tion i n t h e corr osi on hol e r apid incr eased wit h the increase ofcorrosion pits de pth, but t he change of concentration was ver y s ma l l w he nthe pits depth changed in the ma gnit u de of0-10-4c m. This de pth range i sthe "barriers" whether the pitting holes could continue to develop in dept hdirection. Pitting was passiva ted before forming the acidifi cation tank with high concentrati on because of the l arge deposit ion of re action pr oductsoutsi de t he c orros ion hol e, which failed t o brea k the depth " b arrier"ofcorrsion holes and therefore had not the ability to deep dig.
引文
[1]吴荫顺,曹备.阴极保护和阳极保护-原理、技术及工程应用[M].北京:中国石化出版社,2007,1-2
    [2]众院士.2009年我国因海洋腐蚀造成的经济损失超过一万亿元[EBOL]. http://blog.sina.com.cn/s/blog_620eda8c0100mee4.ht ml,2011-2-19
    [3]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007,1-3
    [4]何业东,齐慧滨.材料腐蚀与防护概论[M].北京:机械工业出版社,2005,487
    [5]刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006,1-19
    [6]侯德龙,敖宏,何德山,等.阴极保护技术与牺牲阳极材料的进展[J].中国稀土学报,2002,20(spec):207-210
    [7]火时中.电化学保护[M].北京:化学工业出版社,1988,2-5
    [8]中国腐蚀与防护学会《金属腐蚀手册》编辑委员会.金属腐蚀手册
    [M].上海:上海科学技术出版社,1987,9-12
    [9]黄永昌.电化学保护技术及其应用-第五讲船舶的阴极保护[J].腐蚀与防护,2000,21(7):324-328
    [10]中国腐蚀与防护学会.金属的腐蚀与防护[M].北京:国防工业出版社,2002,172-173
    [11]万冰华,费敬银,王少鹏,等.牺牲阳极材料的研究、应用及展望[J].材料导报,2010,24(10):87-93
    [12] Bounoughaz M, Sa lhi E, Benzine K, et al. A comparati ve st udy of theelectrochemi cal behaviour of Algerian zine and zinc from acommerci al sacri ficial anode [J]. Journal of Ma t erials Sci ence,2003,38(6):1139-1145
    [13]武江,刘贵甫,张洁.耐高温锌基合金牺牲阳极的研制[J].有色矿冶,2007,23(3):34-39
    [14]巢国辉,黎文献,余琨.镁基牺牲阳极腐蚀行为研究[J].腐蚀科学与防护技术,2006,18(2):98-100
    [15] Oli ver O, Robi nson H A. Pe rfor ma nc e o f ma gn e si um galvanic anodesin underg round service [J]. Cor rosi on,1952,8(3):114-119
    [16]侯德龙,宋月清,李德富,等.铝基牺牲阳极材料的研究与开发[J].稀有金属,2009,33(1):96-100
    [17] Shyeb H A, Wanb F M. Electrochemical behavi or of a l u mi n u m a l l o y s[J]. Journal of Ap pl ied Elec tr oche mistr y,2005,43(4):655-660
    [18]万冰华,费敬银,王磊,等.复合牺牲阳极材料的研究与应用[J].热加工工艺,2010,39(16):96-98
    [19]郝小军.在特殊介质中应用的牺牲阳极的研究[硕士学位论文].广州:华南理工大学,1999,3-4
    [20] El Shaye b H A, El Wahab Abd F M, El Abedin S Z. Effect of galliumions on the el ectr oche mical behav i o u r o f Al, Al-S n, Al-Zn a n dAl-Zn-Sn alloys in chlori de soluti ons [J]. Corr osion Science,2001,43(4):643-654
    [21]马正青,黎文献,肖丁德,等.新型铝合金阳极电化学性能与组织研究[J].材料保护,2005,35(5):10-12
    [22]史鹏飞,尹鸽平,夏保佳,等.碱性铝-空气电池用铝合金阳极的研究[A].见:中国化学与物理电源学会第十九届年会论文集[C].郑州:中国电子协会,1990,1-8
    [23]林顺岩,王彬.高性能铝合金阳极材料的研究与开发[J].铝加工,2002,25(2):6-9
    [24]刘仁培,董祖珏,潘永明.6082和ZL101铝合金低熔共晶测试与分析[J].焊接学报,2005,25(10):28-31
    [25]刘功浪,林顺岩,游文,等.阳极铝合金熔炼铸造工艺研究[J].铝加工,2000,23(6):9-13
    [26] Sal ina s D R, Bes s one J B. Electroc he mic al be havior of Al-5%Zn-0.1%Sn sacrificial anode in aggr essive media: i nfluence of its alloyingelement s and its solidi ficati o n st ruct ur e [J]. Cor rosion,1991,47(9):665-673
    [27]蔡年生.电池用铝合金的开发应用[J].铝加工,1996,30(4):156-162
    [28]董保光,卢国琦.某些添加剂对负极氢过电位的影响[J].蓄电池,1989,(4):11-13
    [29] Ki ng B J. Al-Si-Mn-Li a n ode for hi gh temper ature galvanic cell [P].US.19640399414.1964-09-25
    [30] Hansen M. Constitution of Binary Al loys [M]. Ne w Yor k: Mc Gra w-Hill Book Comp any Inc,1958,68-71
    [31] Maclennan D F. Corrosion o f a l u mi n u m a l l o y s i n purity water in therange150℃~340℃[J]. c orr osion,1961,17(5):117-121
    [32] Mac kee c A B, Br own R H. Res ista n ce of aluminum to corrosion insoluti on c ontai ning various a nions and cati ons [J]. corr os ion,1947,3(12):595-599
    [33] Deltomb le E, Pourbaix M. The el ectr o chemical behaviour of aluminum[J]. Corrosion,1958,14(11):496-501
    [34] Burgbac her J A. Re cent deve lop m ent in cathodic protection ofoffshore structure [J]. Materi als Per for ma nce,1968,7(2):27-31
    [35] Gr andsta ff C M, Crai g L. Offs hor e testing of aluminum anodes [J].Material Per for mance,1971,10(5):29-35
    [36] Redi ng J T, Ne wport T T. The in fl uenc e of alloyi ng ele ment s onaluminum anode i n sea wat e r [J]. Mat erials Pr otection,1966,5(12):15-19
    [37]郑文升,蔡振月.微量合金元素对铝合金牺牲阳极电化学性能影响的研究[A].见:海洋工程腐蚀与防护学术交流论文集[C].青岛:中国腐蚀与防护学会,1987,113-117
    [38] Mu oz A G, Saidman S B, Bessone J B. Cor r os i on o f a n Al-Zn-I n al l oyin chlori de media [J]. Corrosion Sc ience,2002,44(10):2171-2182
    [39] El Shayeb H A, El Waha b Abd F M, El Abe din S Z. Ele ctroc he mi calbeha viour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chl ori desoluti ons containi ng i ndi um i ons [J]. J our nal of Appl ied Elect ro-chemistry,1999,29(4):473-480
    [40] Sai d ma n S B, Bes son e J B. Cath odi c polarizat ion characteristics andactivation of aluminum in sodi um c hlori de s oluti ons cont aini ngindi um and zi nc ions [J]. Jour nal of Applied Electrochemistry,1997,27(6):731-737
    [41] Sai d ma n S B, Be ssone J B. Anodic beha viour of indium i n sodi umchlori de soluti ons [J]. Electr ochimica Acta,1991,36(14):2063~2067
    [42] B e ss one J B. T he a c t i va t i on o f aluminium by me rcury ions i nnon-aggre ssive me dia [J]. Cor rosi on Science,2006,48(12):4243-4256
    [43] Reboul M C, Gi me nez P H, Ra me au J J. Activation me chanism forsacri fi ci al Al-Z n-H g a no des [J]. Mat er i al Per for ma nce,1980,19(5):3539-3546
    [44] Al-Saffar A H, Ashwor t h V, B a i r a mo A K. T he effect of mo lybdenumion implantation on the general and pitting corrosion behavior of purealuminum and a high strength aluminum alloy [J]. Corrosi on Science,1980,20(1):127-131
    [45] Cr aig A L. Offs hore test ing of al uminum anodes [J]. Mat eri al sProt ection a nd Per for mance,1971,10(5):29-35
    [46] Hought on C J, As hworet h V. The pe rfor mance of comm ercial zinc andaluminum anodes in hot sea-bed mu d [J]. Mat erials Per for man ce,1982,21(7):20-30
    [47] Br esli n C B, F rie ry L P. T he s yn erg istic interaction between indiumand zinc in the activation of aluminium in aqueous electrolytes [J].Cor rosi on scie nce,1994,36(2):231-240
    [48] Norris J C, Alexander M R, Blomfield J, et al. Quantit ati ve anal ysi s ofindi um and ir on at the sur face of a commer cial Al-Zn-I n sacri fici alanode [J]. Sur face and Inter fa ce Analys is,2000,30(1):170-175
    [49] Gudi c S, Radose vi c J, Klis ki c M. Study of passivation of Al and Al-Snalloys in borate buffer sol utions using electr oche mical i mpedancespectr oscopy [J]. Electrochi mica Acta,2002,47(18):3009-3016
    [50] Gudi c S, Radose vi c J, Kr pa n-Li sica D, et al. Anodi c fi l m gr owt h onaluminium and Al-Sn alloys in borate buffer solutions [J]. Electro-chimica Acta,2001,46(16):2515-2526
    [51] Ponc hel B M. Per for mance of Al-Zn-Sn alloy anodes in sea servive [J].Material s Prot ection,1968,7(3):38-41
    [52] Breslin C B, Carroll W M. Electr ochemical behavior of aluminiumactivated by Gallium in aqueous electrolytes [J]. Corrosion Science,1992,33(11):1735-1746
    [53] Tuck C D S, Hu nt er J A, Sa ma ns G M. The e l e c t r oc h e mi c a l b e ha vio r o fAl-Ga all oys i n al kaline and neut ral electr ol ytes [J]. Jour nal o fElectr ochemi cal Society,1987,123(12):2970-2981
    [54] Fla mini D O, Saidma n S B, Bessone J B. Al umini u m acti v ationproduced by Gallium [J]. Corrosion Science,2006,48(6):1413-1425
    [55] Fla mini D O, Sai d ma n S B, Bes so ne J B. Elect r odeposition of galliumand zinc onto alu minium: I n fluence of the el ectr ode posited metals onthe activation process [J]. Thin Sol i d F i l ms,2007,515(20-21):7880-7885
    [56] Fla mini D O, Saidma n S B. Polarisati on be ha vi our of Al-Zn-Ga all oyin chloride me dium [J]. Journal of Appl ied El ectr oche mistry,2008,38(5):663~668
    [57]李振亚,秦学,余远彬,等.含镓、锡的铝合金在碱性溶液中的阳极行为[J].物理化学学报,1999,15(4):381-384
    [58] Fla mini D O, Cunci L, Saidma n S B. Electr ochemi cal characteri sationo f gall iu m-al u min i u m a mal g a ms [J]. Materials Chemistry and Physics,2008,108(1):33~38
    [59] Kulkarni A G, Gur rappa I, Kar nik J A. Bismuth acti vat ed al uminiu malloy anodes [J]. Bulletin Electrochemistry,1991,7(5):549-553
    [60] Mur ai T, Mi ura C, Ta mur a Y. On alu mini u m gal va n ic a nod es [J].Bulletin Bismuth Institution,1977,13(3):17-20
    [61] Gurrappa I, Karni k J A. The effect on tin-acti vated al umi num-al l oyanodes of the addi t ion o f b i s mu t h [J]. Cor r o s i on Prevention Control,1994,41(5):117-121
    [62]白芸. A l-Zn-I n-Si-Mg系合金牺牲阳极的金相学研究[J].鞍山师范学院学报,1999,1(3):94-98
    [63]齐公台,郭稚弧,林汉同.微量镁对Al-Zn-In合金牺牲阳极显微组织的影响[J].材料导报,2000,11(11):62-64
    [64]马克毅,宋曰海,郭忠诚. Al-Zn-I n系高性能牺牲阳极材料的研究[J].昆明理工大学学报(理工版),2005,30(2):20-23
    [65]丁振斌,孔小东,朱梅五.不同镁含量铝基牺牲阳极材料的组织与性能研究[J].材料保护,2004,37(5):50-53
    [66] Kulkarni A G, Gurr appa I. Effect o f ma gne si u m a ddi t i on o n t he su r fa c efree energy and anode capacit y of i ndi um activat ed al uminium all oys[J]. Bri tis h Cor rosi on Jo urnal,1993,28(1):67–70
    [67] Ta mada A, Ta mura Y. The el ectrochemical char acteristi cs ofalumini u m gal vani c anodes i n ar ctic seawater [J]. Corrosion Science,1993,34(2):261–277
    [68]《稀土》编写组.稀土[M].北京:北京冶金工业出版社,1985,134-135
    [69]翟秀静,符岩,郎晓珍,等.添加元素对铝基牺牲阳极的影响[J].有色金属,2006,58(1):42-45
    [70] Ma J L, Wen J B. The e ff ects of la ntha num on mic ros tructur e a ndelectrochemi cal pr operti es of Al-Zn-I n based sacri ficial anode all oys[J]. Corrosion Science,2009,51(9):2115-2119
    [71]齐公台,郭稚弧,魏伯康,等.添加稀土元素高温铝合金牺牲阳极研究[J].中国海上油气(工程),1997,9(5):27-31
    [72]齐公台,郭稚弧,魏伯康,等.混合稀土对铝基牺牲阳极结构及性能的影响[J].材料保护,1998,31(4):9-10
    [73] E ma my M, Key v a n i A, M a h t a R. Effect of oxide inclusions onelectrochemi cal properti es of alu mi ni u m sacri fi ci al a no des [J].Jour nal of Materi als Sc ienc e a nd Te chnology,2009,25(1):95-101
    [74] Shibli S M A, Dilimon V S, Moha n As ha. De velopment of ni ckelincorporated aluminum alloy matrix a s a n e ff i c i e nt sa c r i fi c i a l a no d e[J]. Journal of Appl ied Elec tr oc he mistr y,2007,37(9):1015-1019
    [75]郝小军.铝锌系合金电化学性能的研究[博士学位论文].天津:天津大学,2004,4-5
    [76] Li n J C, Shih H C. I mp r ove me nt o f t he c u r r e nt e ff i c i e nc y o f a nAl-Zn-I n anode by heat-tr eat ment [J]. Jour nal of the Elect roche mica lSoci ety,1987,134(4):817-823
    [77]朱元良,赵艳娜,齐公台,等.热处理对铝合金牺牲阳极电化学性能的影响[J].中国有色金属学报,2006,16(7):1300-1305
    [78]齐公台,郭稚弧,魏伯康,等.固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响[J].金属热处理学报,2000,21(4):68-72
    [79]廖海星,齐公台,喻克雄.固溶处理对含RE牺牲阳极组织与性能的影响[J].材料热处理学报,2004,25(3):54-56
    [80]焦孟旺,文九巴,赵胜利,等.固溶温度对Al-Zn-In-Mg-RE合金电化学性能的影响[J].特种铸造及有色合金,2008,25(12):978-979
    [81] Pai K B, Ra ma n R, P ai K M, et al. Effect of heat t reat ment s onAl-Zn-Sn alloys as sacrificial anode [J]. Journal of t he Electr o-chemical Soci ety of India,1981,30(2):109-115
    [82] Le nnox T J, Pe ter son M H, Gr oover R E. A st udy of el ectrochemicalefficienci es of al umi num ga l va ni c a n ode s i n s eawater [J]. Materi al sProt ection,1968,7(2):33-38
    [83] Sal ina s D R, Garc iaa S G, Bessone J B. Infl uence of alloying elementsand microstructure on aluminum sacri ficial anode per for mance: caseof Al-Zn [J]. Journal of Applied Electr o chemist ry,1999,29(9):1063-1071
    [84]郭炜,文九巴,赵胜利,等.固溶处理对Al-Zn-Bi-Sn合金组织和电化学性能的影响[J].热处理,2008,23(6):38-42
    [85] Reboul M C, Gi me nez P H, Ra menu J J. Pr oposed acti vat ionme cha nis m for Al a nod es [J]. Co rrosion,1984,40(7):366-371
    [86] Sai d ma n S B, Bess one J B. Acti vati on of aluminium by indi um ions inchlori de s oluti ons [J]. Ele ctr ochi mi ca Acta,1997,42(3):413-420
    [87] Bessone J B, Fla mi ni D O, Saidma n S B. Co mpr ehensive model for theactivati on me cha n is m of Al–Zn a lloys pr oduced by i ndi u m[J]. Corrosion Science,2005,47(1):95-105
    [88] Ve nugopal A, Raja V S. Evidenc e of dis soluti on rede posit i onmechanism acti vati on of alumi num by indium [J]. British CorrosionJour nal,1996,31(4):318-320
    [89]吴益华.合金元素在铝基牺牲阳极活化过程中的作用[J].中国腐蚀与防护学报,1989,9(2):111-116
    [90] Ma J L, We n J B. Li G X. St udy o n the corrosion behavior of Al-Zn-In-Mg-Ti alloys in Na Cl aqueous soluti ons [J]. Corrosion Science,2010,52(2):534-539
    [91] Keir D S, Pr yor M J, Sperr y P R. Galvanic corrosion characteristics ofaluminium alloyed with group IV met al s [J]. J our nal o f Ele ct ro-chemical Soci ety,1967,114(8):777-784
    [92] Ve nu go p al A, Vel ucha my P, S elv a m P, et al. X-r ay photoelectr onspectr osc opic st udy of t he oxide fil m on an aluminum-tin alloy in3.5%s odi um c hlori de sol ution [J]. Cor rosion,1997,53(10):808-815
    [93]孙鹤建,火时中.铟在铝基牺牲阳极溶解过程中的作用[J].中国腐蚀与防护学报,1987,7(2):115-120
    [94]丁振斌,孔小东,朱梅五.铝合金微观组织对其性能的影响[J].材料保护,2002,35(7):7-10
    [95] Despic A R. El ectrochemical power conversi on [A]. I n: Pr oc o f t he29th I UPAC Congress Col o gne [C]. Fed e r a l R e p u b l i c o f Ger ma n y,1983,62-68
    [96] Gurrappa I. The surface free energy and anode efficiency ofalumini u m all oys [J]. Corrosion Prevention&Co ntrol,1993,40(4):111-117
    [97] Gurrappa I. Aluminium al l oys for cathodic proteetion [J]. CorrosionRe venti on&Control,1997,44(6):69-80
    [98]韩莉.高镁铝合金阳极材料的活性溶解特性及电化学性能研究[硕士学位论文].西安:西安建筑科技大学,2007,5-6
    [99]孔小东,朱梅五,丁振斌.铝合金牺牲阳极研究进展[J].稀有金属,2003,27(3):376-381
    [100] Schrieber C F, Re ding J T. Fiel d testing a new al uminium anode:Al-Hg-Zn gal vani c anode f or seawat er applications [J]. MaterialsProt ection,1967,(6):33-36
    [101] Ro h ma n C L. Ele c t r i c ally controlled lock [P]. US19670634322,1967-04-27
    [102] Gur rappa I. Cat h odic pr ot ection of cool ing wat er s yste ms a ndselecti on of appr opriate mat e rials [J]. J our nal of Material s Processi ngTechnology,2005,16(6):256–267
    [103] Sakano T, To da K, Ha nada M. Tests on t he e ff e c t o f indium for highperfor mance aluminium anodes [J]. Materials Protecti on,1966,(5):45-50
    [104] GB/T4948-2002铝-锌-铟系合金牺牲阳极[S].北京:中国标准出版社,2002
    [105]铟-百度百科[EB OL]. htt p://baike. ba idu.com/v iew/30685.ht m,2011-02-20
    [106] Shi bli S M A, Jabeera B, M anu R. De velopme n t of high per for manc ealumini u m all oy sacri ficial anodes reinforced with meta l oxi des [J].Material s Letter s,2007,61(14-15):3000-3004
    [107] Shi bl i S M A, Ar c ha na S R, As hra f M. Dev e l o p me n t of nano ceriumoxid e i nc orp orate d alu mi ni u m all oy sacri fi ci al an od e for ma rin eappli cation [J]. Cor rosion Sci ence,2008,50(8):2232-2238
    [108] Shibli S M A, Binoj K K. De velopment of MnO2-inc or porat ed highperfor mance aluminum alloy matrix sacrificial anodes [J]. J our nal ofApplie d Electroc he mist ry,2009,39(2):159-166
    [109] Shibli S M A, Gireesh V S. Activati o n o f alu mi ni u m all oy s acri fi ci alanodes by selenium [J]. Corrosion Sci ence,2005,47(8):2091-2097
    [110] Kar a minezhaad M, Jafari A H, Sarrafi A. Infl uenc e of bis mut h onelectrochemi cal behavi or of sacri fi ci al alu mi n u m an od e [J]. A nt i-Cor rosi on Met ho ds and Materials,2006,53(2):102-109
    [111] Oro zco R, Ge nesc a J, Juarez-Islas J. Effect of Mg Cont ent on thePer for ma nce of Al-Zn-Mg Sa crificia l Anodes [J]. J our nal of Materi alsEngine eri ng and Pe rfor ma nce,2007,16(2):229-235
    [112]秦学,李振亚,余远彬.铝合金阳极活化机理研究进展[J].电源技术,2000,24(1):53-56
    [113] Battocchi D, Simo es A M, Tall ma n D E. Electr oc h e mi cal be havi our ofMg-ric h pri me r in t he pr otec t ion of Al alloys [J]. Corrosion Science,2006,48(5):1292-1306
    [114] GB/T17848-1999牺牲阳极电化学性能试验方法[S].北京:中国标准出版社,1999
    [115]李启中.金属电化学保护[M].北京:中国电力出版社,1997,45
    [116]齐公台,郭稚弧,魏伯康.不同锡含量高温铝基牺牲阳极的电化学性能[J].材料保护,1999,32(10):29-30
    [117]齐公台,郭稚弧,林汉同,等.含RE高温铝基牺牲阳极中镁量的确定[J].中国海上油气(工程),1999,11(6):28-30
    [118] Nestori di M, Pl etcher D, Wo od R J K, et al. The st udy of al umini u manodes fo r high power density Al/air batteries with brine electrolytes[J]. Journal of Po wer So urce s,2008,178(1):445-455
    [119] So ng Y W, Sh an D Y, Chen R S, et al. Effect s of second phases on t h ecorrosion be havi our of wr ought Mg-Zn-Y-Zr alloy [J]. CorrosionScie nce,2010,52(5):1830-1837
    [120]廖海星,齐公台,喻克雄.含稀土高温铝合金牺牲阳极的研究与应用[J].石油化工腐蚀与防护,2004,21(4):19-21
    [121]刘斌.晶界偏析对铝合金牺牲阳极电化学性能及溶解行为的影响
    [硕士学位论文].武汉:华中科技大学,2006,18-19
    [122]袁传军,梁成浩,安晓雯. Ga对A l-Zn-I n合金牺牲阳极电化学性能影响[J].大连理工大学学报,2004,44(4):502-505
    [123]马力,李威力,曾红杰,等.低驱动电位Al-Ga合金牺牲阳极及其活化机理[J].中国腐蚀科学与防护学报,2010,30(4):229-332
    [124]赵月红,林乐耘,刘增才,等.铝合金牺牲阳极微观组织的不均匀性对其腐蚀的影响[J].稀有金属,2000,24(5):341-345
    [125] Pan g J, Bricen o A, Cha nder S. St ud y of pyrite/soluti on i nter face byi mpedanc e spectroscopy[J]. Jour nal of t he Electrochemi cal Soci et y,1990,137(11):3447-3455
    [126]郝小军,宋诗哲.铝锌合金在3%NaCI溶液中的电化学行为[J].中国腐蚀与防护学报,2005,25(5):213-217
    [127] Fan X G, Jan g D M, Men g Q C, et al. The micr ostructural evolution ofan Al–Zn–Mg–Cu alloy during homogenization [J]. Materials Letters,2006,60(12):1475-1479
    [128] Mondolfo L F. Aluminum alloys: structure a nd pr opertys [M]. Ne wYor k: But terworth s Press,1976,138-142
    [129]长崎诚三,平林真编著.二元合金状态图集[M].刘安生译.北京:冶金工业出版社,2004,92-93
    [130]朱颖.铝锌铟锡系合金牺牲阳极性能研究[J].材料保护,1986,19(4):20-24
    [131]马景灵.微合金化铝基阳极材料的组织与性能[博士学位论文].兰州:兰州理工大学,2009,35-47
    [132] So ng Y W, S han D Y, Che n R S, et al. Corrosion char act erization o fMg-8Li alloy in NaCl soluti on [J]. Corros ion Scie nce,2009,51(5):1087-1094
    [133]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270
    [134]马景灵,文九巴,李旭东,等.热处理对Al-Zn-I n-M g-Ti合金组织与电化学性能的影响[J].材料热处理学报,2008,29(3):113-117
    [135]王国伟,文九巴,马景灵,等. Ga对Al-Zn-Sn系阳极合金电化学性能的影响[J].材料热处理学报,2010,31(8):30-34
    [136]廖海星,齐公台,喻克雄.铝合金牺牲阳极电流效率损耗的微观分析[J].腐蚀科学与防护技术,2004,16(5):325-327
    [137]屈钧娥,齐公台.铝阳极电流效率的影响因素[J].中国国海上石油气,2001,13(5):11-13
    [138]赵婷婷,冉伟,齐公台.铝合金牺牲阳极电流效率的损耗分析[J].材料保护,2007,40(4):58-61
    [139]齐公台,郭稚弧,魏伯康,等.固溶处理对Al-Zn-I n-Sn-Mg阳极组织与电化学性能的影响[J].金属热处理学报,2000,21(4):68-73
    [140]龙萍,李庆芬.固溶处理对Al-Zn-In-Si-Sn阳极电化学性能的影响分析[J].装备环境工程,2005,2(2):12-16
    [141]齐公台,郭稚弧,张华民,等.铝合金牺牲阳极金相组织与电化学性能关系研究[J].腐蚀科学与防护技术,1997,9(7):231-235
    [142]王国伟,文九巴,马景灵,等.再结晶退火对电池用Al阳极材料的电化学性能影响[J].热加工工艺,2010,39(10):153-155
    [143] Haumu G B, Eli ezer D, Wa gner L. The relation between severe plast i cde for ma ti on micr ostru ct ur e a nd c or r os i on behavior of AZ31ma gn esiu m all oy [J]. Jo urna l o f Al l oys a nd Compound s,2009,468(1-2):222-229
    [144]丁振斌,孔小东,朱梅五.铝合金阳极微观组织对其性能的影响[J].材料保护,2002,35(7):8-10
    [145] Pai K B, Pai K M, Ro y D L. Rol e o f o xi de fil m for med on Al-Z n-Snsacri fi ci al ano de s [J]. J our nal o f t he El ectrochemical Soci ety of Indi a,1983,32(1):22-26
    [146] Ve nugopa l A, Raj a V S. AC i mpedance study on the activationme chanism of aluminum by i ndiu m a n d zi nc in3.5%Na Cl medium [J].Cor rosi on Sc ienc e,1997,39(12):2053-2065
    [147]刘斌,齐公台,冉伟.模拟偏析相Al2Zn在3%Na Cl溶液中的电化学行为[J].中国腐蚀与防护学报,2007,27(2):92-96
    [148] Li J F, Zhen g Z Q, Che n W J, et al. Si mul ation st udy on functi onme cha nis m o f so me pr ecipit at es i n loc al ized corrosion of Al all oys [J],Cor rosi on Sc ienc e,2007,49(6):2436-2449
    [149]李劲风,郑子樵,任文达.第二相在铝合金局部腐蚀中的作用机制[J].材料导报,2005,19(2):81-84
    [150] Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behaviorand localized cor rosion associat ed with Al7Cu2Fe particles inaluminum alloy7075-T651[J]. Corrosion Science,2006,48(12):4202-4215
    [151] Ashok S R, Venkat aramani A, Parthi ban G T, et al. Per for mance o falumini u m anodes under heat treat ment [J]. Corrosi on on Prevent ion&Control,2002,49(2):60-63
    [152] Clar k J B. Transmi ssion el ectron micr osc opy st udy of a g e ha rde ni ngin a Mg-5wt.%Zn alloy [J]. Acta Metallurgica,1965,13(12):1281-1289
    [153]朱祖芳.铝合金阳极氧化工艺技术应用手册[M].北京:冶金工业出版社,2007,12-13
    [154] Tuc k C D S, Hu nte r J A, Sc a ma ns G M. Ele ctr oche mical be ha vor o fAl-Ga all oys in al kaline a n d neutr al electrol yt es [J]. Jo urnal o f t h eElectr ochemi cal Society,1987,134(12):2970-2981
    [155] Slavica Mate ic S, Vi ekr una A, Ra do evic J, Kr nic N. Be havi our ofAl-Ga alloy during cathodic polarizat ion [J]. Jour nal of Applie dElectr oc h e mi stry,2010,40(3):621-630
    [156] Aragon E, Cazenave-Vergez L, Lanza E, et al. I n fluence of alloyingele ment s on ele ctroche mic al beha viour o f t er nar y Al-Zn-Ga a l l o y s f o rsacri fi ci al ano de s [J]. Bri t i s h Corr osi on Journa l,1997,32(4):263-268
    [157] Bre sl i n C B, C a r r o l l W M. Ele c t r oc h e mi c a l be havi our o f a l u mi ni u mactivat ed by galli um i n aqeous electrolytes [J]. Corrosion Science,1992,33(11):1735-1739
    [158] Ca bot P L, Garri do J A, Pereze A H. EI S study of heat-tr eat edAl-Zn-Mg alloys in the passi ve and tr a nspassi ve potenti al region [J].Electr oc h i mic a Act a,1995,40(4):447-454
    [159] Paik J K, Lee J M, Ko M J. Ulti mat e shear strength of pl ate element swith pit corrosion wastage [J]. Thi n-Wa l l ed St r uctur es,2004,42(8):1161-1176
    [160] Harlow D G, We i R P. A probability model for the growth ofcorrosion pins in aluminum alloys induced by constituent particles [J].Engineeri ng Fr acture Mechanic s,1998,59(3):305-325
    [161]王慧,吕国志,张有宏.铝合金腐蚀损伤演化数学模型[J].航空学报,2007,28(6):1355-1358
    [162]李付绍,安茂忠,刘光洲,等.硫酸盐还原菌对18-8不锈钢点蚀行为的影响[J].金属学报,2009,45(5):536-540
    [163] Zaid B, Saidi D, Benzaid A. Effe cts of pH and chloride concentratio non pitting corrosion of AA6061aluminum alloy [J]. CorrosionScie nce,2008,50(7):1841-1847
    [164] Yasuda M, Weinberg F, Tr omans D. Pit t i n g Cor r o s i o n o f Al a n d Al-CuSingle Cr ystals [J]. J our nal of Electr oche mical Societ y,1990,137(12):3708-3715
    [165]杨铁军,李国明,陈珊,等.低合金钢点蚀扩展过程中的自催化作用[J].腐蚀与防护,2010,31(7):540-545
    [166] Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pittingcorrosion behavior of friction stir welded joint of AA2024-T3alumini u m alloy [J]. Corrosi on Sci enc e,2010,53(2):620-626
    [167]许刚,曹楚南,林海潮,等.纯铝在Na Cl溶液中活化溶解时电化学行为研究[J].腐蚀科学与防护技术,1998,10(6):323-324
    [168] Tavares S S M, Pardal J M, Li maa L D, et al. Charact erization ofmicrostructure, chemical composition, corrosion resistance andtoughness of a mu ltipass weld joint of superduplex stainless stee lUNS S32750[J]. Material s Charact er ization,2007,58(7):610-616
    [169] Mohammed A. Amin. Uniform and pitti ng corrosion events induced bySCN a nions on Al a lloys surfaces and the effe ct of UV light [J].Electr ochi mica Act a,2011,56(5):2518-2531
    [170] Monica Trueba, Stefano P Trasatti. Study of Al alloy corrosion inneutral NaCl by the pitting scan technique [J] Materials Chemistryand Physics,2010,121(3):523-533
    [171]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004,291-293
    [172] Mehdi F N, Mohammad H S, Mehdi E. On the chloride-induced pittingof ultr a fine gr ains5052al umi num al loy produced by a c cumul ativeroll bonding process [J]. Journal of Alloys an d Compounds,2011,509(14):4696-4700
    [173]刘贵立.递归法研究钛合金应力腐蚀机理[J].金属学报,2007,43(3):249-253
    [174] Meng Qi ngjia ng. Effect of Cu c ont ent on c orros ion beha vior andchromate conversi on coat ing prote c t i o n o f7X X X s eries al l oys [硕士学位论文]. Ohio: The Ohio State University,2003,60-61
    [175] Sh yer H A, Wan b F M, Abe dins Z E. Electr ochemical behavior ofaluminum alloys [J]. Journal of Ap plied Electroche mistry,1999,29(4):473-478
    [176]赵旭辉.铝阳极氧化膜电化学阻抗谱特征研究[博士学位论文].北京:北京化工大学,2005,63-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700