纳米二氧化钛暴露致小鼠生殖毒性及其基因表达的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化钛(TiO_2)是目前国际上生产量最大,在工业、医药卫生、日用化妆品、食品以及环保方面应用最广泛的一种纳米材料。然而随着纳米材料的广泛应用,包括纳米TiO_2在内的纳米材料的潜在环境卫生和职业卫生安全越来越受到人们的高度关注,已成为研究热点。2012年初,美国国家科学院国家研究理事会发布了“工程纳米材料的环境、健康与安全性的研究战略(A Research Strategy forEnvironmental, Health, and Safety Aspects of Engineered Nanomaterials)”报告,提出需要制定整体的研究计划,避免纳米技术快速发展带来的潜在风险(http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=13347)。近年来研究,不仅证实纳米TiO_2暴露可引起动物肝、脾、肺的损伤,尤其是肾和脑的损伤,而且阐明了相应的损伤机制,而肾和脑这两种器官又与生殖系统的功能密切相关。人们长期使用含有纳米TiO_2的化妆品及长期生活或工作在暴露有纳米颗粒的环境下(如生产车间的工人),其纳米颗粒通过皮肤渗透、呼吸和消化系统而进入体内,并可能通过血液循环、血睾屏障在卵巢和睾丸中积累,进而导致生殖系统损伤。但纳米TiO_2暴露对生殖系统的损伤及其机制研究尚不够深入。因此开展纳米TiO_2生殖系统毒性的研究具有非常重要的理论意义和实际意义。鉴于此,本论文以10mg/kg BW的纳米TiO_2(锐钛型5nm)连续灌胃处理雌性和雄性小鼠90天,对其生殖系统的损伤进行了研究;同时结合基因芯片技术深入研究了生殖系统损伤多基因共同作用的分子机制。本研究可为纳米材料长期暴露引起生殖系统的毒性评估提供重要的理论依据。
     论文结果如下:
     (1)用纳米TiO_2(10mg/kg)对雌性小鼠持续灌胃90天后,研究了雌性小鼠卵巢的损伤和卵巢基因表达特征。结果显示纳米TiO_2颗粒能够进入卵巢中积累并且导致卵巢的损伤如卵巢萎缩,初级卵泡和次级卵泡发育障碍,卵巢细胞的不规则排列和卵泡腔的形状不规则。纳米TiO_2颗粒也可进入卵巢细胞甚至细胞核,进而导致细胞凋亡。纳米TiO_2颗粒暴露造成了卵巢组织钙、钠、钾和锌金属元素的含量增加,而镁、铜和铁金属元素的含量下降。纳米TiO_2颗粒暴露导致了性激素的不平衡,如血清孕酮、促黄体生成素、睾酮和促卵泡激素的水平降低,雌二醇的浓度增加,进而引起生育力下降,如交配率、怀孕率、产仔数都显著下降及子代生长发育减慢。同时纳米TiO_2颗粒暴露引起了卵巢严重的氧化性损伤,如ROS大量积累和DNA氧化水平增加。微阵列分析显示,纳米TiO_2处理的小鼠卵巢组织中有223个已知功能基因上调(diffscore≥13, p<0.05),65个已知功能基因下调(diffscore-13, p<0.05)。在本研究中,卵巢的差异基因的功能分别涉及细胞分化、免疫炎症反应、离子运输、代谢过程、氧化应激反应、内固醇代谢、凋亡、信号转导、信号通路、转录、运输等。尤其是与内固醇和性激素代谢过程有关的Akr1c18、Cyp17a1和Lgmn显著上调,这些基因的过表达引起雌二醇浓度上升,以及孕酮、促黄体生成素和睾酮浓度下降,进而抑制卵泡发育和降低雌性小鼠的生育力。另外,纳米TiO_2颗粒暴露后导致卵巢Cyp17a1的表达显著增加也可促进雌二醇的生物合成。
     (2)分析了10mg/kg纳米TiO_2钛颗粒持续90天灌胃雄性小鼠后生殖毒性和基因表达谱变化。结果表明纳米TiO_2颗粒能够通过血睾屏障在睾丸中沉积,并且导致睾丸的损伤和细胞凋亡,如生精管空泡化、生精层的厚度减小,睾丸细胞的不规则排列和支持细胞的空泡化;附睾尾部的精子发生异常的变化,如总的精子浓度和精子活力下降,精子畸形率显著增加,精子损伤严重如头尾断裂;雄性小鼠的生育力显著下降,如低的交配率、妊娠率和少的产仔数。纳米TiO_2的暴露导致睾丸组织中钙和铁的含量下降,锌含量显著增加。同样,纳米TiO_2暴露也造成性激素的不平衡,如雌二醇和孕酮显著增加,而促卵泡激素、促黄体生成素和睾酮水平显著下降。微阵列分析显示与对照比较,纳米TiO_2处理组的小鼠睾丸组织有155个基因明显上调(diffscore≥13, p<0.05),100个基因明显下调(diffscore-13,p<0.05)。对已知功能的差异基因分类,表明差异基因的功能涉及的范畴有精子发生、内固醇代谢过程、凋亡、免疫、细胞分化、氧化应激反应、氧化还原活性、激素活性、离子运输等。尤其是Spata19、Tdrd6和Tnp2表达的显著下调直接与精子发生的抑制有关,而Cyp2e1、Mvd、Sc4mol和Srd5a2与内固醇代谢有关,Cyp2e1表达下调,Mvd、Sc4mol和Srd5a2表达上调。
The dynamical development of the nanotechnology industry has led to thewide-scale production and application of nanomaterials. Among the variousnanomaterials, customarily titanium dioxide nanoparticles (TiO_2NPs), owing to theirlarger surface area to volume ratio and high reactivity, have been used as nontoxic,chemical inert and biocompatible pigment products or photocatalysts in industry,medicine and health, cosmetics, paint industries, and environmental protection.However, the potentially human toxicity and environmental impact of TiO_2NPs haveattracted considerable attention with their increased use in industrial applications. Inearly2012, the National Research Council of the National Academy of Sciences of USAreleased " environment, health and safety research strategy of engineered nanomaterials(A Research Strategy for Environmental, Health, and Safety Aspects of EngineeredNanomaterials)" report. The report presented the need for overall research program toavoid potential risks caused by fast development nanotechnology(http://www8.nationalacademies.org/onpinews/newsitem.aspx? RecordID=13347).Recent studies confirmed that the TiO_2NPs exposure can cause liver, kidney, spleen,lung, and brain damages in animals, and clarify their damage mechanisms, particularly,kidney and brain damages are closely related with function of the reproductive system.Long-term use containing TiO_2NPs cosmetics and long-term living or working in theenvironment (such as workers in workshop) exposure to TiO_2NPs, the NPs canpenetrate through the skin, respiratory and digestive system into the body, and possiblythrough blood circulation and blood-testis barrier are accumulated in the ovaries andtestes, which led to damage of the reproductive system. However, the damage by TiO_2NPs exposure and its mechanism needs to be addressed. Thus, the aims of the presentstudy were to test the hypothesis that TiO_2NPs exerts a toxic effect in the reproductivesystem of mice, and elucidate the synergistic molecular mechanisms of multiple genesactivated by TiO_2NPs-induced toxicity of reproductive system in animals and humans.In this study, ovarian and testicular damages and alterations in gene expression profiles in female and male mice induced by intragastric administration of10mg/kg bodyweight of TiO_2NPs for90consecutive days were examined. This study can provideimportant theoretical basis for assessment of reproductive toxicity for long-termexposure to nanomaterials.
     Results are listed as follows:
     (1) In the current study, ovarian injury and gene-expressed characteristics in femalemice induced by intragastric administration of TiO_2NPs (10mg/kg) for90consecutivedays were investigated. Our findings indicated that TiO_2NPs can accumulate in theovary and result in ovarian damage including ovarian atrophy, disturbance of primaryand second follicle development, irregular arrangement of cells, and a shapelessfollicular antrum. TiO_2NPs can enter ovarian cells and even the nuclei of ovarian cells,thus leading to apoptosis. TiO_2NPs exposure caused increases of calcium, sodium,potassium and zinc contents, and decreases of magnesium, copper, and iron contents, animbalance of sex hormones such as decreased levels of serum progesterone, luteinizinghormone, testosterone and follicle-stimulating, and increased concentration of estradiolin the ovary, which resulted in significant decreases in the mating rate, pregnancy rate,and number of fetuses, and inhibition of growth and development of offspring. TiO_2NPsexposure caused severe ovarian oxidative damage, such as overproduction of ROS andincrease level of DNA oxidation (8-OHdg). Microarray analysis showed that in ovariesfrom mice treated with TiO_2NPs compared to controls,223genes of known functionwere up-regulated(diffscore≥13, p <0.05), while65ovarian genes weredown-regulated(diffscore-13, p <0.05). In the present study, functions of differencegene in the ovaries were involved in cell differentiation, immune and inflammatoryresponse, ion transport, metabolic process, oxidative stress, the steroid metabolism,apoptosis, signal transduction, transcription, transport, etc. Especially Akr1c18,Cyp17a1and Lgmn that related to the steroids and sex hormone metabolism processsignificantly up-regulated, over-expression of these genes caused increased levels ofestradiol, progesterone, luteinizing hormone and decreased level of testosterone, therebyinhibited follicular development and reduced fertility of female mice. In addition, TiO_2NPs exposure resulted in a significant increase in the expression of ovarian Cyp17a1,which also can promote the biosynthesis of estradiol.
     (2) In this study, the reproductive toxicity and testicular gene expression profilinginduced by intragastric administration of10mg/kg body weight TiO_2NPs for90 consecutive days were investigated. The results showed that TiO_2NPs can be depositedin the testicles, and cause testicular damage and apoptosis, such as rare sperm, spermbreakages, rarefaction of Sertoli cell and androgone, Sertoli cell apoptosis, androgonenecrosis of the seminiferous tubules, decreased germinative layer thickness, vacuolation,and irregular arrangement of Sertoli cells of the seminiferous tubules, significantdecreases in sperm numbers and sperm motility, and increased abnormal sperm, spermwas severely damaged, such as fracture of the head and tail in the cauda epididymis, thefertility of male mice significantly decreased, such as significant decreases in the matingrate, pregnancy rate, and number of fetuses. TiO_2NPs exposure led to the decline ofcalcium level and increases of iron, zinc contents in testicular tissue. Similarly, TiO_2NPs exposure also caused an imbalance of sex hormones, e.g., estradiol andprogesterone significantly increased, and levels of follicle-stimulating hormone,luteinizing hormone and testosterone were significantly decreased. Microarray analysisshowed that in testes from mice treated with TiO_2NPs compared to controls,155geneswere found to be up-regulated(diffscore≥13, p<0.05), while100genes were found to bedown-regulated (diffscore-13, p<0.05). Functions of difference genes were involved inspermatogenesis, steroid metabolic processes, apoptosis, immune, cell differentiation,oxidative stress, redox activity, hormone activity, ion transport. Of the altered geneexpressions, significantly down-regulated expressions of Spata19, Tdrd6and Tnp2weredirectly related with the suppression of spermatogenesis, and Cyp2e1, Mvd, Sc4mol andSrd5a2were related with steroid metabolic process. Cyp2e1was downregulated, Mvd,Sc4mol and Srd5a2were upregulated. These alterations of gene expressions impairedbalance of sex hormones, and decreased fertility of male mice.
引文
1. Brumfiel G. Nanotechnology: a little knowledge. Nature,424(2003)246–248.
    2. Colvin VL. The potential environmental impact of engineered nanomaterials. NatBiotechnol, l21(2003)1166–1170.
    3.陆荔,马明,张宇,唐萌,顾宁,纳米材料生物安全性研究进展,东南大学学报(自然科学版),34(2004)711-714.
    4.应贤平,纳米颗粒对大气环境和人类健康的影响,环境与职业医学,23(2006)68-70.
    5. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA,Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism ofmultiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett,5(2005)2448–2464.
    6. Zhang TT, Stilwell JL, Gerion D, Ding LH, Elboudwarej O, Cooke PA, Gray JW,Alivisatos AP, Chen FF. Cellular effect of high doses of silica-coated quantum dotprofiled with high throughput GeneExpression Analysis and High Content CellomicsMeasurements. Nano Lett,6(2006)800–808.
    7.汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳,纳米材料生物效应及其毒理学研究进展,中国科学B辑化学,35(2005)1-10.
    8.章军,杨军,朱心强,纳米材料的环境和生态毒理学研究进展,生态毒理学报,,1(2006)350-356.
    9.王莉娟,丁文军,纳米毒理研究进展,中国药理学与毒理学杂志,21(2007)77-80.
    10.朱融融,汪世龙,姚思德,纳米二氧化钛的生物学效应,生命的化学,25(2005)344-346.
    11. Wu CJ. The study of application of different size of nanometer titanium dioxide.Guangzhou Chem. Ind. Technol,2006,34(1):26-27.
    12. Cho M, Chung H, Choi W, Yoon J, Linear correlation between inactivation of E. coliand OH radical concentration in TiO2photocatalytic disinfection. Water Res,2004,38:1069-1077.
    13. Choi H, Stathatos E, Dionysiou DD. Solgel preparation of mesoporousphotocatalytic TiO2films and TiO2/Al2O3composite membranes for environmentalapplications. Appl Catal B-Environ,2006,63:60-67.
    14. Esterkin CR, Negro AC, Alfano OM, Cassano AE. Air pollution remediation in afixed bed photocatalytic reactor coated with TiO2. AIChE J,51(2005)2298-2310.
    15.应贤平,仲伟鉴,纳米二氧化钛颗粒毒理学进展,毒理学杂志,20(2006)334-336.
    16. Jiang J, Oberdorster G, Elder E, Gelein R, Mercer P, Biswas P. Does nanoparticleactivity depend upon size and crystal phase? Nanotoxicol,2(2008)33–42.
    17. Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, ColvinVL. Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity andInflammatory Response Study with Human Dermal Fibroblasts and Human LungEpithelial Cells. Toxicol Sci,92(2006)174-185.
    18. Warheit DB, Webb TR, Reed KL, Frerich S, Sayes CM. Pulmonary toxicity study inrats with three forms of ultrafine-TiO2particles: Differential responses related tosurface properties. Toxicol,230(2007)90-104.
    19. Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, Li YF, Li B, Zhou GQ, Ge CC, GaoYX, Zhao YL, Chai ZF. Potential neurological lesion after nasal instillation of TiO2Nanoparticles in the anatase and rutile crystal phases. Toxicol Lett,183(2008)72-80.
    20. Oberd rster G, Oberd ester E, Oberd rster J. Nanotoxicology: An emergingdiscipline evolving from studies of ultrafineparticles. Environ Health Perspect,113(2005)823-839.
    21. Churg A, Stevens B, Wright JL. Comparison of the uptake of fine and ultrafine TiO2in a tracheal explant system. Am J Physiol,274(1998)181-186.
    22. Oberd ster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K,Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, YangH. Principles for characterizing the potential human health effects from exposure tonanomaterials: elements of a screening strategy. Part FibreToxicol,2(2005)1–60.
    23. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C,Mendez LB, Kleinman M. Particulate matter in polluted air may increasebiomarkers of inflammation in mouse brain. Neurotoxicology,26(2005)133-140.
    24. Kreyling WG, Scheuch G. Clearance of particles deposited in the lungs. In:particle-lung interactions (Gehr P, Heyder J, eds). New York: Marcel Dekker Inc,2000,323-376.
    25. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nano-scaledparticles on endothelial cell function in vitro: studies on viability, proliferation andinflammation, J Mater Sci Mater Med,15(2004)321-325.
    26. Oberdrster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particlepersistence, and lung injury. Environ Health Perspect,102(1994)173-179.
    27. Zhang Q, Kusaka Y, Sato K, Nakakuki K, Kohyama N, Donaldson K. Differences inthe extent of in flammation caused by intra tracheal exposure to three ultrafinemetals: role of free radicals. J Toxicol Environ Health A,53(1998)423-438.
    28. Afaq F, Abidi P, Matin R, Rahman Q. Cytotoxicity, pro-oxidant effects andantioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titaniumdioxide. J Appl Toxicol,18(1998)307-312.
    29. Norihiro K, Masato N, Shigehisa E, Junko M, Kazuhiro Y, Junko N. Comparativepulmonary toxicity study of nano-TiO2particles of different sizes andagglomerations in rats: Different short-and long-termpost-instillation results.Toxicol,264(2009)110–118.
    30. Bermudez E, Mangum JB, Asharian B, Wong BA, Reverdy EE, Janszen DB, HextPM, Warheit DB, Everitt JL. Long-term pulmonary responses of three laboratoryrodent species to subchronic inhalation of pigmentary titanium dioxide particles.Toxicol Sci,70(2002)86-97.
    31. Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fineparticles in rats. Am J Respir Cell Mol Biol,6(1992)535-542.
    32. Watanabe M, Okada M, KudoY, Tonori Y, Niitsuya M, Sato T, Aizawa Y.Differences in the effects of fibrous and particulate titanium dioxide on alveolarmacrophages of Fischer344rats. J Toxicol Environ Health A,65(2002)1047-1060.
    33. Heinrich U, Fuhst R, Rittinghausen S. Chronic inhalation exposure of Wistar ratsand two different strains of mice to diesel engine exhaust, carbon black, andtitanium dioxide. Inhal Toxicol,7(1995)533-556.
    34. Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed totitanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol,79(1985)179-192.
    35.王燕,康现江,丁士文,穆淑梅,王宇,曹辉彩,纳米二氧化钛对小鼠肝肾的影响,环境与健康杂志,25(2008)112-114.
    36. Huggins CB, Froehlich JP. High concentration of injected titanium dioxide inabdominal lymphnodes. J Exp Med,124(1966)1099-1106.
    37. Duan YM, Li N, Liu J, Ma LL, Wang J, Zheng L, Liu C, Wang XF, Zhao XY, YanJY, Wang SS, Wang H, Zhang XG, Hong FS. Toxicological characteristics ofnanoparticulate anatase titanium dioxide in mice. Biomaterials,31(2010)894-899.
    38. Cui YL, Gong XL, Duan YM, Li N, Hu RP, Liu HT, Hong MM, Zhou M, Wang L,Wang H, Hong FS. Hepatocyte apoptosis and its molecular mechanisms in micecaused by titanium dioxide nanoparticles. J Hazard Mater,183(2010)874-880.
    39. Ma LL, Zhao JX, Wang J, Liu J, Duan YM, Liu HT, Li N, Yan JY, Jie R, Wang H,Hong FS. The acute liver Iinjury in mice caused by nano-Anatase TiO2. NanoscaleRes Lett,4(2009)1275-1285.
    40. Zhao JF, Li N, Wang SS, Zhao XY, Wang J, Yan JY, Ruan J, Wang H, Hong FS. Themechanism of oxidative damage in the nephrotoxicity of mice caused bynano-anatase TiO2. J Exp Nanoscie,5(2010)447-462.
    41. Wang JX, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao YX, Li B, Sun J, Li YF,Jiao F, Zhao YL and Chai ZF. Acute toxicity and biodistribution of different sizedtitanium dioxide particles in mice after oral administratio. Toxicol Lett,168(2007)176-185.
    42. Wang H, ZhaoWK, Fang YL, Wang RB, Li L. A study of killing cancer cells byphotocatalysis of TiO2. Chin J Catalys,20(1999)373-374.
    43. Liu HT, Ma LL, Zhao JF, Liu J, Yan JY, Ruan J, Hong FS. Biochemical toxicity ofmice caused by nano-anatase TiO2particles. Biol Trace Elem Res,129(2009)170-180.
    44. Liu HT, Ma LL, Liu J, Zhao JF, Yan JY, Hong FS. Toxicity of nano-anatase TiO2tomice: liver injury, oxidative stress. Toxicol Environ Chem,92(2010)175-186.
    45. Chen JY, Dong X, Zhao J, Tang GP. In vivo acute toxicity of titanium dioxidenanoparticles to mice after intraperitoneal injection. J Appl Toxicol,29(2009)330–337.
    46. Li N, Duan YM, Hong MM, Zheng L, Fei M, Zhao XY, Wang J, Cui YL, Liu HT,Cai JW, Gong SJ, Wang H, Hong FS. Spleen injury and apoptotic pathway in micecaused by titanium dioxide nanoparticules. Toxicol Lett,195(2010)161-168.
    47. Ma LL, Liu C, Qu CX, Yin ST, Liu J, Gao FQ, Hong FS. Rubisco ActivasemRNA Expression in Spinach: Modulation by Nanoanatase Treatment. Biol TraceElem Res,122(2008)168-178.
    48. Wang JX, Chen CY, Yu HW, Sun J, Li B, Li YF, Gao YX, He W, Huang YY, ChaiZF, Zhao YL, Deng XY, Sun HF. Distribution of TiO2particles in the olfactorybulb of mice after nasal inhalation using microbeam SRXRF mapping techniques.J Radioanal Nucl Chem,272(2007)527–531.
    49. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV,Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brainmicroglia and damages neurons in vitro. Environ Health Perspect,115(2007)1631-1637.
    50. Ma LL, Liu J, Li N, Wang J, Duan YM, Yan JY, Wang H, Hong FS. Oxidative stressin the brain of mice caused by translocated nanoparticulate TiO2delivered to theabdominal cavity. Biomaterial,31(2010)99-105.
    51. Hu RP, Gong XL, Duan YM, Li N, Che Y, Cui YL, Zhou M, Liu C, Wang H, HongFS. Neurotoxicological effects and the impairment of spatial recognition memory inmice caused by exposure to TiO2nanoparticles. Biomaterials,31(2010)8043-8050.
    52. Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM. Nanosized TitaniumDioxide Enhanced Inflammatory Responses In The Septic Brain Of Mouse.Neurosci,165(2010)445–454.
    53.范轶欧,张颖花,刘冰,谭成森,麻懿馨,金一和,TiO2、SiO2、Fe纳米及微米粉体对红细胞毒性作用的比较,中国工业医学杂志,18(2005)67-69.
    54.韩瑜,尹龙萍,龙玲,刘睿,黄碧兰,袁正,刘士远,2种纳米材料在小鼠体内分布及毒性作用,中国公共卫生,25(2009)835-836.
    55.郭利利,刘晓慧,秦定霞,高利,张红梅,刘嘉茵,崔毓桂,纳米二氧化钛对雄性小鼠生殖系统的影响,中华男科学杂志,15(2009)517-522.
    56. Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki K, Nihei Y, Takeda K. Theeffects of nanoparticles on mouse testis Leydig cells in vitro.Toxicology in Vitro.22(2008)1825-1831.
    57. Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY.Biodistribution of gold nanoparticles and gene expression changes in the liver andspleen after intravenous administration in rats. Biomaterials,3(2010)2034-2042.
    58. Yoshida S, et al. Effect of nanoparticles on the male reproductive system of mice.International J Androl.32(2009)337-342.
    59. Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, Snyder SE, Yan B. Repeatedadministrations of carbon nanotubes in male mice cause reversible testis damagewithout affecting fertility. Nat Nanotechnol,5(2010)683-689.
    60.薛猛,朱融融,孙晓宇,汪世龙,纳米氧化钛的发育毒性研究,材料导报:研究篇,23(2009)103-106.
    61. Sakai H, Ito E, Cai RX, Yoshioka T, Kubota Y, Hashimoto K. Intracellular Ca2+concentration change of T24cell under irradiation in the presence of TiO2ultrafineparticles. Biochem Biophys Acta,1201(1994)259-265.
    62. Wu J, Sun J, Xue Y. Involvement of JNK and P53activation in G2/M cell cyclearrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells.Toxicol Lett,199(2010)269-276.
    63. Tang Y, Xie GM, Lei CH. Influence of nanoparti-cles TiO2on ultrastructure ofmouse monocyte cells.Chinese Journal of Anatomy,2009,32(1):16-18.
    64.羊富光,汤莹,于洋,范晓燕,许珊,沈亚峰,刘关省,杨勇骥,二氧化钛纳米颗粒对人角质形成细胞超微结构的影响及毒性效应,解剖学杂志,32(2009)148-151.
    65. Noreen Parks. New Nano-headache [EB/O1][2006-6-15] http://sciencenow.sciencemag. org/cgi/content/full/2006/615/1.
    66. Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL. Nanotoxicity of TiO2nanoparticles to erythrocyte in vitro. Food Chem Toxicol,46(2008)3626–3631.
    67. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediatedgenotoxicity induced by titanium dioxide nanoparticles in human epidermal cells.Toxicol in Vitro,25(2011)231-241.
    68. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen Jeremy JW, Yang PC.Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEBJ,20(2006)1732-1741.
    69. Oberdoerster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C:Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol,16(2004)437-445.
    70. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A,Nagy JB, Lison D: Respiratory toxicity of multi-wall carbon nanotubes. ToxicolAppl Pharmacol,207(2005)221-231.
    71. Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. MolAspects Med,25(2004)169-182.
    72. Vinzents PS, Moler P, Soensen M, Knudsen LE, Hertel O, Jensen FP, Schibye B,Loft S: Personal exposure to ultrafine particles and oxidative DNA damage. EnvironHealth Perspect,113(2005)1485-1490.
    73. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV,Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brainmicroglia and damages neurons in vitro. Environ Health Perspect,115(2007)1631-1637.
    74. Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Aleniusa H. Engineerednanomaterials cause cytotoxicity and activationon mouse antigen presenting cells.Toxicol,267(2010)125–131.
    75. Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV,Miki-Yoshida M, Orrantia-Borunda E, Solis FJ. TEM evidence of ultrastructuralalteration on Pseudomonas aeruginosa by photocatalytic TiO2thin films. JPhotochem Photobiol B,70(2003)45-50.
    76. Xiong XL, Wu ML, Li SP. The in fluence of cell cycle of human hepatom a cell bynanometer titanium dioxide. Cancer Res Prev Treat,30(2003)300.
    77. Wu CJ. The study of application of different size of nanometer titanium dioxide.Guangzhou Chem Ind Technol,34(2006)26-27.
    78. Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM. Disturbed mitotic progressionand genome segregation are involved in cell transformation mediated by nano-TiO2long-term exposure. Toxicol Appl Pharmacol,241(2009)182–194.
    79. Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in theabsence of photo activation can induce oxidative damage to human bronchialepithelial cells. Toxicol,213(2005)66-73.
    80. Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles triggerp53-mediated damage response in peripheral blood lymphocytes. Environ MolMutagen,49(2008)399–405.
    81. Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW. Titanium dioxide nanoparticlesinduce apoptosis through the JNK/p38-caspase-8-Bid pathway inphytohemagglutinin-stimulated human lymphocytes. Biochem Biophys ResCommun,386(2009)682–687.
    82. Rahman Q, Lohani M, Dopp E, Pemsel H, Jones L, Weiss DG, Schiffmann D.Evidence that ultra fine titanium dioxide induces micronuclei and apoptosis insyrian hamster embryo fibroblasts. Environ Health Perspect,110(2002)797-800.
    83. Shi YL, Wang F, He JB, Yadav ST, Wang H. Titanium dioxide nanoparticles causeapoptosis in BEAS-2B cells through the caspase8/t-Bid-independent mitochondrialpathway. Toxicol Lett,196(2010)21-27.
    84. Liu SH, Xu LJ, Zhang T, Ren GG, Yang Z. Oxidative stress and apoptosis inducedby nanosized titaniumdioxide in PC12cells. Toxicol,267(2010)172–177.
    85. Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potentialof nanoparticles in mammalian cells using a Flow Cytometric Light Scatter Analysis.Environ Sci Technol,41(2007)3018-3024.
    86. Di Virgilio AL, Reigosa M, Arnal PM, Fernández Lorenzo de Mele M.,Comparative study of the cytotoxic and genotoxic effects of titanium oxide andaluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J HazardMater,177(2010)711-718.
    87.侯娟,万旭英,王飞,许桂凤,刘珍,张天宝,纳米级二氧化钛对体外大鼠腔前卵泡生长发育成熟的影响,第二军医大学学报,30(2009)869-873.
    88. Stelzer R, Hutz RJ. Gold nanoparticles enter rat ovarian granulosa cells andsubcellular organelles, and alter in-vitro estrogen accumulation. J Reprod Dev55(2009)685-690.
    89. Boca SC, Potara M, Toderas F, Stephan O, Baldeck PL, Astilean S. Uptake andbiological effects of chitosan-capped gold nanoparticles on Chinese Hamster Ovarycells. Mat Sc Eng C–Mat,31(2011)184-189.
    90. Liu XH, Ding XQ, Cui YG, Chen L, Li H, Chen Z, Gao L, Li Y, Liu J. The effect ofcalcium phosphate nanoparticles on hormone production and apoptosis in humangranulosa cells, Reprod. Biol. Endocrinol,8(2010)32-39.
    91. Jiang J, Wang J, Zhang XM, Huo KF, Wong HM, Yeung KWK, Zhang WJ, Hu T,Chu PK. Activation of mitogen-activated protein kinases cellular signal transductionpathway in mammalian cells induced by silicon carbide nanowires. Biomaterials,31(2010)7856-7862.
    92. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H.Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungsand in cultured cells. Environ Health Perspect,113(2005)1555-1560.
    93. Li N, Ma LL, Liu J, Wang H, Zheng L, Duan YM, Liu HT, Zhao XY, Wang SS,Hong FS, Xie YN. Interaction Between Nano-Anatase TiO2and Liver DNA fromMice In Vivo. Nanoscale Res Lett,5(2010)108-115.
    94. Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D.The affect of zincoxide and titanium dioxide nanoparticles in the comet assay with UVAphotoactivation of human sperm and lymphocytes. Nanotoxicol,3(2009)33–9.
    95. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J.Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients.FEBS Lett,418(1997)87-90.
    96. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S. Photo-irradiated titaniumdioxide catalyzes site specific DNA damage via generation of hydrogen peroxide.Free Radic Res,38(2004)439-447.
    97. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucle icacids photosensitized bytitanium dioxide. Free Radic Biol Med,23(1997)851-858.
    98. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJW, Yang PC.Titanium dioxide nanoparticles induce emphysema-like lung injury in mice.TheFASEB J,13(2010)2393-2395.
    99. Yang P, Lu C, Hua N, Du Y. Titanium dioxide nanoparticles co-doped with Fe3+andEu3+ions for photocatalysis, Mater. Lett,57(2002)794-801.
    100. Hu RP, Zheng L, Zhang T, Cui YL, Gao GD, Cheng Z, Cheng J, Hong MM, TangM, Hong FS.Molecular mechanism of hippocampal apoptosis of mice followingexposure to titanium dioxide nanoparticles. J Hazard Mater,191(2011)32-40.
    101. National Institutes of Health (NIH). Guide for the Care and Use of LaboratoryAnimals.National Academy Press, Washington, D.C.,1996.
    102. Gui SX, Zhang ZL, Zheng L, Cui YL, Liu XR, Li N, Hong FS.Molecularmechanism of kidney injury of mice caused by exposure to titanium dioxidenanoparticles. J Hazard Mater,195(2011)365-370.
    103. Sang XZ, Zheng L, Sun QQ, Li N, Cui YL, Hu RP, Gao GD, Cheng Z, Cheng J,Gui SX, Liu HT, Zhang ZL, Hong FS.The chronic spleen injury of mice followinglong-term exposure to titanium dioxide nanoparticles. J Biomed Mater. Res Part A,100(2012)894-902.
    104.康格非,巫向前,临床生物化学和生物化学检验,北京:人民卫生出版社,1998,第二版133.
    105. Richards JS, Rolfes AI. Hormonal regulation of cyclic AMP binding to specificreceptor proteins in rat ovarian follicles. J Biol Chem,225(1980)5481-5489.
    106. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2functions in an antioxidant pathway to prevent apoptosis. Cell,75(1993)241-251.
    107. Nel A, Xia T, Madler L, Li N.Toxic potential of materials at the nanolevel. Sci,311(2006)622-627.
    108. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J.Redox control ofcell death, Antioxid. Redox. Signal,4(2002)405-414.
    109. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B, Mitochondria, oxidative stress andcell death. Apoptosis,12(2007)913-922.
    110. Sun QQ, Tan DL, Zhou QP, Liu XR, Cheng Z, Liu G, Zhu M, Sang XZ, Gui SX,Cheng J, Hu RP, Tang M, Hong FS.Oxidative damage of lung and its protectivemechanism in mice caused by long-term exposure to titanium dioxidenanoparticles.J Biomed Mater Res Part A, DOI:10.1002/jbm.a.34190(in press).
    111. Grollman AP, Moriya M. Mutagenesis by8-oxoguanine: an enemy within. TrendsGenet,9(1993)246-249.
    112. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease:induction, repair and significance. Mutat Res,567(2004)1-6.
    113. Wang JX, Zhu XS, Zhang XZ, Zhao Z, Liu HA.Disruption of zebrafish (Daniorerio) reproduction upon chronic exposure to TiO2nanoparticles. Chemosphere,83(2011)461-467.
    114. Graham JD, Clarke CL. Physiological action of progesterone in target tissues.Endocrine Rev,18(1997)502-519.
    115. Iwamasa J, Shibata S, Tanaka N, Matsuura K, Okamura H.The relationshipbetween ovarian progesterone and proteolytic enzyme activity during ovulation inthe gonadotrophin-treated immature rat. Biol Reprod,46(1992)309-313.
    116. Vendola KA, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growthfactor-I, insulin-like growth factor-I receptor gene expression in the primate ovary.Human Reprod,14(1999)2328-2332.
    117. Vendola KA, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgenspromote oocyte insulin-like growth factor1expression and initiation of follicledevelopment in the primate ovary. Biol. Reprod,61(1999)353-357.
    118. Lyon MF, Glenister PH. Reduced reproductive performance in androgen-resistantTfm/Tfm female mice. Proc. R. Soc. Lond B Biol. Sci,208(1980)1-12.
    119. Richards JS, Jonassen JA, Rolfes AI, Kersey K, Reichert LE Jr. Adenosine3',5'-monophosphate, LH receptor and progesterone during granulosa celldifferentiation: effects of oestradiol and FSH. Endocrinol,104(1979)765-773.
    120.张桥,卫生毒理学基础,北京:人民卫生出版社,2001,249-252.
    121.祝寿芬,裴秋玲,现代毒理学基础,北京:中国协和医科大学出版社,2003,212-214.
    122. Kacharmina JE, Crino PB, Eberwine J. Preparation of cDNA from single cells andsubcellular regions, Cdna Preparation Characterization,303(1999)3-18.
    123.周爱儒,查锡良,生物化学,北京:人民卫生出版社,第6版,2003,444-445.
    124. Pilger A, Rüdiger HW.8-Hydroxy-2′-deoxyguanosine as a marker of oxidativeDNA damage related to occupational and environmental exposures. Int ArchOccup Environ. Health,80(2006)1-15.
    125. Ishida M, Chang KT, Hirabayashi I, Nishihara M, Tkahashi M, Cloning of mouse20a-Hydroxysteroid Dehydrogenase cDNA and its mRNA localization duringpregnancy. J Reprod Dev,45(1999)321-329.
    126. Krozowski Z. The short-chain alcohol dehydrogenase superfamily: variations on acommon theme, J Steroid Biochem Mol Biol,51(1994)125-130.
    127. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J and GhoshD. Short-chain dehydrogenases/reductases(SDR). Biochem,34(1995)6003-6013.
    128. Penning TM.Molecular endocrinology of hydroxysteroid dehydrogenases.EndocrRev,18(1997)281-305.
    129. Ke LD, Chen Z, Yung WKA. A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards. Mol Cell Probes,14(2000)127-135.
    130. Liu WH, Saint DA. Validation of a quantitative method for real time PCR kinetics.Biochem. Biophys. Res. Commun,294(2002)347-353.
    131. Livak KJ, Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(T)(-Delta Delta C) method. Methods,25(2001)402-408.
    132. Mao J, Duan RW, Zhong L, Gibori G, Azhar S. Expression, purification andcharacterization of the rat luteal20alpha-hydroxysteroid dehydrogenase.Endocrinol,138(1997)182-190.
    133. Perez GI, Robles R, Knudson CM, Flaws JA, Korsmeyer SJ, Tilly JL.Prolongation of ovarian lifespan into advanced chronological age byBax-deficiency. Nat. Genet,21(1999)200-203.
    134. Gougeon A. Regulation of ovarian follicular development in primates: facts andhypotheses. Endocr Rev,17(1996)121-155.
    135. Johnson AL. Intracellular mechanisms regulating cell survival inovarian follicles,Anim. Reprod Sci,78(2003)185-201.
    136. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJW. Involvement of apoptosis inovarian follicular atresia and postovulatory regression. Endocrinol,129(1991)2799-2801.
    137. Hughes Jr FM, Gorospe WC. Biochemical identification of apoptosis (programmedcell death) in granulosa cells: evidence for a potential mechanism underlyingfollicular atresia. Endocrinol,129(1991)2415-2422.
    138. Hsueh AJW, Eisenhauer K, Chun SY, Hsu SY, Billig H. Gonadal cell apoptosis,Recent Prog Horm. Res,51(1996)433-455.
    139. Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO. Interaction between theC. elegans cell-death regulators CED-9and CED-4. Nature,385(1997)653-656.
    140. Yuan J, Horvitz HR, The Caenorhabditis elegans cell death gene ced-4encodes anovel protein and is expressed during the period of extensive programmed celldeath. Development,116(1992)309-320.
    141. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell deathgene ced-3encodes a protein similar to mammalian interleukin-1-convertingenzyme. Cell,75(1993)641-652.
    142. Hengartner MO, Horvitz HRC. Elegans cell survival gene ced-9encodes afunctional homolog of the mammalian protooncogene bcl-2, Cell,76(1994)665-676.
    143. Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE,Huang DC, Strasser A. BMF: a proapoptotic BH3-only protein regulated byinteraction with the myosin V actin motor complex, activated by anoikis, Sci,293(2001)1829-1832.
    144. Kanda H, Miura M. Regulatory roles of JNK in programmed cell death, J Biochem,136(2004)1-6.
    145. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the BCL2family induces Bax-dependent apoptosis, Proc. Natl. Acad. Sci. USA,100(2003)2432-2437.
    146. Cheng CY, Mruk DD, Cell junction dynamics in the testis: Sertoli-germ cellinteractions and male contraceptive development. Physiol Rev,82(2002)825-874.
    147.陈泳梅,叶世隽,黄玉苓,大鼠睾丸支持细胞雄激素结合蛋白mRNA在生精周期中的表达,中国医学科学院学报,22(2000)287-289.
    148.王海涛,杨祥良,徐辉碧,活性氧的信号分子作用,生命的化学,21(2001)39-41.
    149. Rao AV, Shaha C, Role of glutathione S-transferases in oxidative stress inducedmale germ cell apoptosis. Free Radic Biol Med,29(1997)1015-1027.
    150. Saleh RA, Agarwal A. Oxidative stress and male infertility:From research bench toclinical practice. J Androl,23(2002)737-752.
    151. Tremellen K. Oxidative stress and male infertility-a clinical perspective. Hum.Reprod Update,14(2008)243-258.
    152.王心如,周宗灿,毒理学基础,人民卫生出版社,2003年,第4版,224-238.
    153. Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemicaland toxic responses and implications for risk assessment. Crit Rev Toxicol,24(1994)87-149.
    154. Rodamilans M, Osaba MJ, To-Figueras J, Rivera Fillat F, Marques JM. Leadtoxicity on endocrine testicular function in an occupationally exposed population.Hum. Toxicol,7(1988)125-128.
    155. Li CM, Taneda S, Taya K, Watanabe G, Li Xz, Fujitani Y, Ito Y, NakajimaT, Suzuki AK. Effects of inhaled nanoparticle-rich diesel exhaust on regulation oftesticular function in adult male rats. Inhal Toxicol,21(2009)803-811.
    156. Ramdhan DH, Itoa Y, Yanagibaa Y, Yamagishia N, Hayashia Y. Nanoparticle-richdiesel exhaust may disrupt testosterone biosynthesis and metabolism via growthhormone. Toxicol Lett,191(2009)103-108.
    157.朱善良,陈龙,高伟等,大鼠慢性镉染毒后精子生产量和精子运动能力研究,生殖与避孕,22(2002)14.
    158.王灿,张朝红,氯化汞对小鼠精子毒作用的研究,中华劳动卫生职业病杂志,12(1994)290-291.
    159. Hayes AW.Principles and Methods of Toxicology. Raven Press Ltd, N.Y,1994,937-1006.
    160. Thielemans BF, Spiessens C, D’Hooghe T, Vandrschueren D&Legius E, Geneticabnormalities and male infertility. Gynecology and Reproductive Biology,81,(1998)217-225.
    161. Russell LD, Ettlin RA,Sinha HAP&Clegg ED. Mammalian spermatogenesis. In:Histological and Histo-pathological Evaluation of the Testis,1990,1-40.
    162. Toshimori K. Biology of spermatozoa maturation: an overview with anintroduction to this issue. Microsc Res Tech,61,(2003)1-6.
    163. Hecht NB.Molecular mechanisms of male germ cell differentiation. BioEssays20(1998)555-561.
    164. Miyamoto T, Sengoku K, Hasuike S, Takuma N, Hayashi H, Yamashita T, IshikawaM. Isolation and expression analysis of the human testis-specific gene,SPERGEN-1, a spermatogenic cell-specific gene-1. J Assist Reprod Genet,20(2003)101-104.
    165. Doiguchi M, Mori T, Toshimori K, Shibata Y&Iida H. Spergen-1might be anadhesive molecule associated with mitochondria in the middle piece ofspermatozoa. Dev Biol.252(2002)127-137.
    166. Yasuhiro M, Naoko I, Kouichi K, Hiromi N, Hiroyuki M, Yasushi M, Minoru K,Kiyomi M, Akihiko O, Hiromitsu T and Yoshitake N. Cloning and characterizationof a mousespergen-1localized in sperm mitochondria. Int J Androl,27(2004)152-160.
    167. Meinhardt A, Wilhelm B,&Seitz J. Expression of mitochondrial marker proteinsduring spermatogenesis. Hum Reprod Update,5(1999)108-119.
    168. Smith JM, Bowles J, Wilson M, Teasdale RD, Koopman P. Expression of thetudor-related gene Tdrd5during development of the male germline in mice. GeneExpr Patterns,4(2004)701-705.
    169. Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N.Tudor-related proteins TDRD1/MTR-1, TDRD6and TDRD7/TRAP: domaincomposition, intracellular localization, and function in male germ cells in mice.Dev Biol,301(2007)38-52.
    170. Vasileva A, Tiedau D, Firooznia1A, Müller-Reichert T, and Jessberger R. Tudordomain protein Tdrd6is required for spermiogenesis, chromatoid bodyarchitecture and regulation of miRNA expression. Curr Biol,19(2009)630-639.
    171. Zhao M, Shirley CR, Mounsey S and Meistrich ML. Nucleoprotein transitionsduring spermiogenesis in mice with transition nuclear protein Tnp1and Tnp2mutations. Biol Reprod,71(2004)1016-1025.
    172. Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, BehringerRR, Boissonneault G, Yanagimachi R, and Meistrich ML. Transition nuclearproteins are required for normal chromatin condensation and functional spermdevelopment. Genesis,38(2004)200-213.
    173. Lee SST, Buters JTM, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role ofCYP2E1in the hepatotoxicity of acetaminophen. J Biol Chem,271(1996)12063-12067.
    174. Himmelstein MW, Acquavella JF, Recio L, Medinsky MA, Bond JA. Toxicologyand epidemiology of1,3-butadiene. Crit. Rev. Toxicol,27(1997)1-108.
    175. Leung GS, Kawai M, Tai JK, Chen J, Bandiera SM, Chang TK. Developmentalexpression and endocrine regulation of CYP1B1in rat testis. Drug Metab Dispos,37(2009)523-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700