鸡繁殖性状相关基因功能分析及卵巢转录组和miRNAs鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地方家禽遗传资源非常丰富,分别具有特色的优良性状,但繁殖性能普遍较低,成为制约其产业化开发的瓶颈之一。运用传统育种手段,经过长期的持续选择,家禽繁殖性状的选育上已经获得重要的遗传进展,有些品种甚至已接近生理极限。随着分子生物学技术的快速发展,筛选与繁殖性状紧密相关的分子标记或功能基因,为这些性状的选择提供了新的、快捷的途径。
     本研究以山东地方鸡种为研究对象,采用直接测序、PCR-RFLP、RT-PCR和第二代Solexa测序技术,从DNA水平、mRNA水平以及全基因转录组和miRNA水平对鸡繁殖性状的遗传机制进行深入研究。
     一、VLDLR、BMPR-IB和BMP15基因的多态性与遗传效应
     选择山东3个地方鸡种(济宁百日鸡、汶上芦花鸡、莱芜黑鸡)和海兰褐蛋鸡为实验动物,共计1536只,分别检测VLDLR、BMPR-IB和BMP15基因的多态性,并分析与济宁百日鸡繁殖性状的相关性。
     VLDLR基因检测到4个SNPs位点:分别是内含子1内的C2500T (V2500)、外显子6内G8467A (V8467)、内含子15内G12321A (V12321)和内含子17内A13876G(V13876)。V8467位点D1D1基因型个体的43W蛋重极显著高于D2D2基因型个体(P<0.01)。V13876位点B1B1基因型个体的43W蛋重显著高于B2B2基因型个体(P<0.05)。
     BMPR-IB基因检测到3个SNPs位点:分别是内含子2内C217039T(BR217039)、内含子6内T230065C (BR230065)和内含子8内C233062T(BR233062)。BR217039位点E1E1基因型个体的43W产蛋量显著高于E2E2基因型个体(P<0.05)。BR230065位点F1F2基因型个体的开产日龄显著早于基因型F1F1个体(P<0.05)。BR233062位点G1G1基因型个体的开产体重显著高于G2G2基因型个体(P<0.05),43W体重极显著高于G2G2基因型个体(P<0.01)。
     BMP15基因检测到3个SNPs位点:外显子1内A474G (BMP474)和C594T(BMP594),外显子2内T2659C (BMP2659)。BMP474位点H2H2基因型个体的开产体重、开产日龄和43W体重显著高于H1H1基因型个体(P<0.05),H1H2基因型个体具有最早的开产日龄和最高的43W产蛋量。BMP594位点,M1M1和M1M2基因型个体的43W体重显著高于M2M2基因型(P<0.05)。BMP2659位点N1N2基因型个体开产蛋重显著高于N2N2基因型个体(P<0.05)。
     二、VLDLR、BMPR-IB和BMP15基因的表达分析
     本研究分析了VLDLR、BMPR-IB和BMP15基因在济宁百日鸡不同时期卵巢、输卵管、下丘脑、肝脏以及各级卵泡中的表达规律。
     VLDLR基因在各级卵泡中的表达量变化趋势为4mm>6-8mm>15-19mm>33-34mm>23-29mm。同一组织在不同时期的表达量,肝脏和下丘脑中的表达量23W>19W>40W;卵巢中的表达量19W>40W>23W,其中在23W和40W的相对表达量相近。在同一时期在不同组织的表达量,3个时期的表达量均是卵巢>下丘脑>输卵管>肝脏,卵巢中的表达量极显著高于其他3种组织(P<0.01)。
     BMP15基因在各级卵泡中的表达量变化趋势为4mm>6-8mm>15-19mm>23-29mm>33-34mm。不同时期在卵巢中的表达量19W>40W>23W,肝脏中的表达量40W>23W>19W。在同一时期不同组织的表达规律与VLDLR基因相同,均是卵巢>下丘脑>输卵管>肝脏,卵巢中的表达量极显著高于其他3种组织(P<0.01)。
     BMPR-IB基因在各级卵泡中的表达量变化趋势与BMP15基因相同。在不同时期同一组织的表达量,肝脏和下丘脑中的表达量23W>19W>40W,卵巢中的表达量19W>23W>40W。在同一时期不同组织的表达量;19W时的表达量,下丘脑>卵巢>肝脏,23W和40W时的表达量,输卵管>下丘脑>卵巢>肝脏。
     三、高、低产汶上芦花鸡卵巢组织的转录组分析
     采用第二代测序技术对高、低产汶上芦花鸡的卵巢组织进行全基因组水平上的转录组测序,分别获得46,910,566个和62,855,432个reads,比对到参考基因组上的reads分别有38,632,004个和44,399,149个,占总读数的82.35%和70.64%;高、低产个体分别获得有功能注释的基因为4675个和4472个,分别占已有注释基因的82.39%和78.81%;在高、低产个体的卵巢组织中共获得158个差异表达基因,其中79个差异显著的(Q-value<0.05),79个差异极显著(Q-value<0.01)。
     四、高、低产汶上芦花鸡卵巢差异表达miRNAs分析
     采用Illumina Solexa测序方法分析高产、低产汶上芦花鸡个体卵巢组织中差异表达的miRNAs,分别获得高达13.7和10.2百万条短序列读数,其中clean reads分别为13.0和9.8百万条,占源数据的95.06%和95.84%。在高、低产卵巢中均获得已知miRNAs142个,分别获得新miRNAs720个和591个。以低产鸡卵巢为对照,在高产鸡卵巢中共筛选到72个差异表达miRNAs,其中13个表达上调,59个表达下调。
     本研究采用候选基因法分析了VLDLR、BMPR-IB和BMP15基因多态性与繁殖性状的相关性,从时间和空间上对3个候选基因在不同组织中的mRNA表达水平进行了定量分析,并采用第二代深度测序技术筛选了高、低产汶上芦花鸡个体卵巢组织中的差异表达基因和miRNAs,为鸡繁殖性状的关键功能基因筛选及揭示鸡繁殖性状的内在分子遗传机制提供较为科学全面的理论依据。
There are many kinds of the chicken genetic resources and each has unique traitsin our country. Generally, most of them have low reproductive performance, and it isone of the bottlenecks in their industrial development. Using traditional breedingmethods in poultry breeding on reproductive traits has received important geneticprogress, and the reproductive performance of some varieties has even been close totheir physiological limits. With the rapid development of molecular biologytechniques, screening molecular markers or functional genes closely associated withreproductive traits provides a new and efficient way in selecting these traits.
     In this study, the reproductive traits were investigated in Shandong local chickensfrom DNA level, mRNA level, miRNA level and whole genome transcriptome, bydirect sequencing, PCR-RFLP, RT-PCR and second-generation Solexa sequencingtechnology.
     PartⅠ: The polymorphism and genetic effects of VLDLR, BMPR-IB and BMP15genes in Shandong local chickens
     In this study, three Shandong local chicken breeds (Jining Bairi chicken, Laiwublack chicken and Wenshang barred chicken) and Hy-line brown chicken, totally1536individuals, were used to scan the polymorphisms of VLDLR, BMPR-IB and BMP15genes. The associations between polymorphisms and egg production traits wereanalyzed in Jining Bairi chickens.
     In VLDLR gene, four SNPs were found. They were C2500T in intron1, G8467Ain exon6, G12321A in intron15and A13876G in intron17. In V8467site, the eggweight at43W (EW43) of D1D1chickens was significantly higher than D2D2ones(P<0.01). In V13876site, the EW43of B1B1chickens was higher than B2B2ones(P<0.05).
     In BMPR-IB gene, three SNPs were detected. They were C217039T (BR217039)in intron2, T230065C (BR230065) in intron6and C233062T (BR233062) in intron8.In BR217039site, the Egg production at43W (E43) of E1E1chickens was higher than E2E2ones (P<0.05). In BR230065site, the age at first egg (AFE) of F1F2chickens was earlier than F1F1ones (P<0.05). In BR233062site, the significantdifferences of living weight at first egg (LWFE)(P<0.05), living weight at43W(LW43)(P<0.01) and EW43(P<0.01) appeared between G1G1chickens and G2G2ones.
     In BMP15gene, three SNPs were detected. They were A474G (BMP474) in exon1, C594T (BMP594) in exon1and T2659C (BMP2659) in exon2. In BMP474site,the difference of LWFE, AFE and LW43between H1H1chickens and H2H2oneswere significant (P<0.05). The H1H2chickens had earlier AFE and higher E43thanH1H1and H2H2ones. In BMP594site, the LW43of M2M2chickens wassignificantly lower than M1M1and M1M2ones (P<0.05). The egg weight at first egg(EWFE) of N1N2chickens was higher than N2N2ones in BMP2659site (P<0.05).
     Part Ⅱ: Analysis of expression of VLDLR, BMPR-IB and BMP15genes inShandong local chickens
     In this study, we analyzed the expression in ovary, oviduct, hypothalamus, liverand ovarian follicle in different periods in Jining Bairi chickens. For VLDLR gene, theexpression level in ovarian follicle was4mm>6-8mm>15-19mm>33-34mm>23-29mm in diameter. The mRNA level in follicles of4mm and6-8mm indiameter were higher than that in the other follicles (P<0.01). In liver andhypothalamus, the expression level in23W was higher than that in other period, andit was lowest in40W. In ovary, the expression level was19W>40W>23W, themRNA level was similar in23W and40W. In different periods of19W,23W and40W, the trends of mRNA level of different issues was ovary> hypothalamus>oviduct>liver, at the same week, the highest mRNA level was found in ovary, and hadsignificant difference with that in the other issues (P<0.05) or (P<0.01).
     For BMP15gene, the expression level in ovarian follicle was4mm>6-8mm>15-19mm>23-29mm>33-34mm in diameter. The mRNA level in follicles of4mmand6-8mm in diameter were significantly higher than that in the other follicles(P<0.01). In ovary, the expression level was19W>40W>23W, the mRNA level in19W was higher than that in23W and40W (P<0.05). The expression level in liver was40W>23W>19W. In different periods of19W,23W and40W, the trends ofmRNA level of different issues was ovary> oviduct> liver. At the same week, thehighest mRNA level was found in ovary, and had significant difference with that inliver and oviduct (P<0.01).
     For BMPR-IB gene, the expression level in ovarian follicle was4mm>6-8mm>15-19mm>23-29mm>33-34mm in diameter. The mRNA level in follicles of4mmin diameter was significantly higher than that in follicles of15-19mm,23-29mm and33-34mm in diameter (P<0.01). In different developing periods, the expression levelwas23W>19W>40W in liver and hypothalamus, and the mRNA level in23W wassignificantly higher than that in40W (P<0.01). In ovary, the expression pattern was19W>23W>40W, and the mRNA level in19W was higher than that in40W(P<0.05).
     In19W, the trends of mRNA level of different issues was hypothalamus>ovary>liver, and the lower mRNA level was found in liver than that in the other issues(P<0.05). The expression trend was similar in23W and40W, it was oviduct>hypothalamus>ovary>liver, the highest mRNA level was found in oviduct, and hadsignificant difference with that in other issues (P<0.01).
     Part Ⅲ: Transcriptome analysis in high-yield and low-yield ovaries ofWenshang Barred chickens
     In this study, transcriptome of high-yield (HY) and low-yield (LY) ovaries inWenshang Barred chickens were analyzed with the second-generation sequencingtechnology. Solexa sequencing provided a total of46,910,566and62,855,432readsfrom the HY and LY ovary tissue libraries, respectively. There are38,632,004and44,399,149reads mapped to the reference genome of chicken (Gallus gallus)respectively, which account for82.35%and70.64%of the total reads. In total,4675and4472genes, which account for82.39%and78.81%of genes in UCSC, weretermed as expressed genes in HY and LY ovaries. We identified158differentiallyexpressed genes in HY and LY ovaries, the difference of79genes between HY andLY ovaries was significant (Q-value<0.05), and the difference of the other79geneswas significant (Q-value<0.01).
     Part Ⅳ: Ovarian analysis of differentially expressed miRNAs in high-yield andlow-yield ovaries of Wenshang Barred chickens
     The differentially expressed miRNAs in ovary of high-yield (HY) and low-yield(LY) chicken were screened by using Illumina Solexa sequencing method. A total of13.7million and10.2million reads from the HY and LY ovary tissue libraries wereobtained, respectively. After removing the low quality, adaptor, insufficiently taggedand sequences,13.0million and9.8million clean reads were ultimately obtained,account for95.06%and95.84%of the total reads.142known mature miRNAs wereobtained in the HY and LY ovary tissue, respectively.720and591novel miRNAswere identified in the HY and LY ovary tissue, respectively. Compared to the LYovary,72differentially expressed miRNAs were identified in HY ovary, in which13miRNAs were up-regulated and59miRNAs were down-regulated.
     In conclusion, the correlations between VLDLR BMPR-IB and BMP15genepolymorphism and reproductive traits were analyzed using the candidate geneapproach. The expression profile of different issues and in different developmentalstage was quantitatively characterized. Differently expression genes and miRNAswere identified in high-yield and low-yield ovary by the second-generation deepsequencing technology. These data may provide a comprehensive theoretical basis forthe identification of critical genes and revealing the molecular genetic mechanisms ofreproductive traits in chicken.
引文
[1] Lewis PD, Morris TR and Perry GC. Light Intensity and Age at First Egg in Pullets [J].Poultry Science.1999,78:1227-1231.
    [2] Renema RA, Robinson FE, Oosterhoff HH, et al. Effects of photostimulatory light intensityon ovarian morphology and carcass traits at sexual maturity in modern and antique egg-typepullets [J]. Poult Sci.2001a,80(1):47-56.
    [3] Renema RA, Robinson FE. Effects of light intensity from photostimulation in four strains ofcommercial egg layers:1. Ovarian morphology and carcass parameters [J]. Poult Sci.2001b,80(8):1112-1120.
    [4] Renema RA, Robinson FE, Feddes JJ, et al. Effects of light intensity from photostimulationin four strains of commercial egg layers:2. Egg production parameters [J]. Poult Sci.2001c,80(8):1121-1131.
    [5] Lewis PD, Caston L and Leeson S. Rearing photoperiod and abrupt versus gradualphotostimulation for egg-type pullets [J]. Br Poult Sci.2007,48(3):276-283.
    [6]陈辉.不同光照周期对蛋鸡胴体、繁殖性状及血液激素和生化指标的影响[D].保定:河北农业大学,2007.
    [7]潘栋.光照周期对蛋鸡卵巢输卵管形态、生产性能及血液生化指标的影响[D].保定:河北农业大学,2008.
    [8] Gongruttananun N. Influence of red light on reproductive performance, eggshellultrastructure, and eye morphology in Thai-nativehens [J]. Poult Sci.2011,90(12):2855-2863.
    [9] Huber-Eicher B, Suter A and Spring-S t hli P. Effects of colored light-emitting diodeillumination on behavior and performance of laying hens [J]. Poult Sci.2013,92(4):869-873.
    [10] Wolfenson D, Frei YF, Snapir N, et al. Effect of diurnal or nocturnal heat stress on eggformation [J]. Br Poult Sci.1979,20(2):167-174.
    [11] Marsden A, Morris TR and Cromarty AS. Effects of constant environmental temperatures onthe performance of laying pullets [J]. Br Poult Sci.1987,28(3):361-380.
    [12] Mashaly MM, Hendricks GL, Kalama MA, et al. Effect of heat stress on productionparameters and immune responses of commercial laying hens [J]. Poult Sci.2004,83(6):889-894.
    [13] Star L, Decuypere E, Parmentier HK, et al. Effect of single or combined climatic andhygienic stress in four layer lines:2. Endocrine and oxidative stress responses [J]. Poult Sci,2008,87(6):1031-1038.
    [14]谢佳,陈忠,王博,等.热应激对蛋鸡繁殖性能影响研究进展[J].动物医学进展.2011,32(6):112-115.
    [15] I. Rozenboim E. Tako O. Gal-Garber, et al. The Effect of Heat Stress on Ovarian Function ofLaying Hens [J]. Poult. Sci.2007,86(8):1760-1765.
    [16]李永洙, CUI Yong-quan.热应激对不同品种鸡繁殖性能、血液生殖激素及相关基因mRNA表达量的影响[J].中国农业大学学报.2013,18(1):134-141.
    [17] Keshavarz K. The effect of different levels of nonphytate phosphorus with and withoutphytase on the performance of four strains of laying hens [J]. Poult Sci.2003,82(1):71-91.
    [18]陈文雅,范仕苓,杨久仙,等.肽制品“维他快-L”对蛋种鸡生产性能和繁殖性能的影响[J].饲料工业.2007,28(19):10-12.
    [19]孙喜伟.酸化剂对雪山鸡种鸡繁殖性能和血液生化指标影响的研究[D].合肥:安徽农业大学,2009.
    [20]杨久仙,郭保海,马秋刚,等.肽制剂对罗曼褐种鸡生产性能的影响[J].黑龙江畜牧兽医.2011,13:68-69
    [21] Gous RM, Bradford GD, Johnson SA, et al. Effect of age of release from light or foodrestriction on age at sexual maturity and egg production of laying pullets [J]. Br PoultSci.2000,41(3):263-271.
    [22]张伟.微量元素锌对肉用种公鸡生殖性能的影响研究[D].雅安:四川农业大学,2009.
    [23]杨玉,黄应祥,李清宏,等.不同日粮能量水平对蛋鸡血液FSH、LH、P4和产蛋率的影响[J].畜牧兽医学报.2007,38(11):1195-1203.
    [24] Pérez-Bonilla A, Novoa S, García J, et al. Effects of energy concentration of the diet onproductive performance and egg quality of brown egg-laying hens differing in initial bodyweight [J]. Poult Sci.2012a,91(12):3156-3166.
    [25]张玲,王志跃.不同粗蛋白水平日粮对种公鸡繁殖性能的影响[J].安徽农业科学.2010,38(9):4594-4597.
    [26] Pérez-Bonilla A, Jabbour C, Frikha M, et al. Effect of crude protein and fat content of diet onproductive performance and egg quality traits of brown egg-laying hens with different initialbody weight [J]. Poult Sci.2012b,91(6):1400-1405.
    [27]赵小玲,朱庆.乌骨鸡新品系产蛋性能选育效果及相关分析[J].中国家禽.2004,8(1):130-132.
    [28]张学余,吕莲,陈国宏,等.苏禽乌骨鸡产蛋性能综合选择效果[J].甘肃农业大学学报.2007,42(6):49-52.
    [29]倪建平,周震祥,顾彩菊,等.高繁殖力石岐杂鸡新品系选育(C系)[J].上海交通大学学报(农业科学版).2010,28(6):518-522.
    [30] Li G, Sun DX, Yu Y, et al. Genetic effect of the follicle-stimulating hormonereceptor gene on reproductive traits in Beijing You chickens [J]. Poult Sci.2011,90(11):2487-2492.
    [31] Li WL, Liu Y, Yu YC, et al. Prolactin plays a stimulatory role in ovarian folliculardevelopment and egg laying in chicken hens [J]. Domest Anim Endocrinol.2011,41(2):57-66.
    [32] Li HF, Shu JT, Du YF, et al. Analysis of the genetic effects of prolactin gene polymorphismson chicken egg production [J]. Mol Biol Rep.2013,40(1):289-294.
    [33] Nagaraja SC, Aggrey SE, Yao J, et al. Trait association of a genetic marker near the IGF-Igene in egg-laying chickens [J]. J Hered.2000,91(2):150-156.
    [34] Zhang L, Li DY, Liu YP, et al. Genetic effect of the prolactin receptor gene on egg productiontraits in chickens [J].Genet Mol Res.2012,11(4):4307-4315.
    [35] Barber DL, Sanders EJ, Aebersold R, et al. The receptor for yolk lipoprotein in the chickenoocyte [J]. Journal of Biological Chemistry.1991,266:18761-18770.
    [36] Bujo H, Hermann M, Kaderli MO, et a1. Chicken oocyte growth is mediated by an eightligand binding repeat member of the LDL receptor family [J]. EMBO J.1994,13(2):5165-5175.
    [37] Sakai J, Hoshino A, Takahashi S, et a1. Structure, chromosome location, and expression ofthe human very low density lipoprotein receptor gene [J]. The Journal of BiologicalChemistry.1994,269:2173-2182.
    [38] Oka K, Ishimura-Oka K, Chu MI, et al. Mouse very low density lipoprotein receptor (VLDLR)cDNA cloning, tissue-specific expression and evolutionary relationship with thelow-density-lipoprotein receptor [J]. European Journal of Biochemistry.1994,224:975-982.
    [39] Magrane J, Reina M, Pagan R, et al. Bovine aortic endothelial cells express a variant of thevery low density lipoprotein receptor that lacks the O-linked sugar domain [J]. Journal ofLipid Research.1998,39:2172-2181.
    [40]姚婕.鹅VLDLR基因亚型的序列变异及其组织表达差异研究[D].雅安:四川农业大学,2007.
    [41] Wang C, Li SJ, Yu WH, et al. Cloning and expression profiling of the VLDLR geneassociated with egg performance in duck (Anas platyrhynchos)[J]. Genetics SelectionEvolution.2011,43:29.
    [42] Kosaka S, Takahashi S, Masamura K, et al. Evidence of macrophage foam cell formation byvery low-density lipoprotein receptor: interferon-gamma inhibition of very low-densitylipoprotein receptor expression and foam cell formation in macrophages [J]. Circulation.2001,103(8):1142-1147.
    [43] Wyne KL, Patha RK, Seabra MC, et a1. Expression of the VLDL receptor in endothelial cells[J]. Arteriosclerosis, Thrombosis and Vascular Biology.1996,16(3):407-415.
    [44] Marziali G, Perrotti E, Ilari R, et al. Trascriptional regulation of the ferritin heavy-chain gene:the activity of the CCAAT binding factor NF-Y is modulated in heme-treated friend leukemiacells and during monocyte-to-macrophage differentiation [J]. Molecular and Cellular Biology.1997,17:1387-1395.
    [45] Hussain MM. Structural, biochemical and signaling properties of the low density lipoproteinreceptor gene family [J]. Front Biosci.2001,6:417-428.
    [46]高凌,张木勋,鲍力,等.极低密度脂蛋白受体在糖尿病患者脂肪组织中的分布和表达[J].中华内分泌代谢杂志.2002,3(18):188-190.
    [47]陆泽元,林怿昊,邵豪,等.血脂紊乱类型与胰岛素抵抗的关系[J].中华内分泌代谢杂志.2004,5(20):447-449.
    [48]赵雪花,屈伸. VLDLR受体在AS模型兔组织中的分布和表达[J].医学分子生物学杂志.2007,4(6):494-497.
    [49]刘学芹.鸡OVR基因一个片段的PCR扩增克隆与鉴定[J]].中国家禽.2000,22(7):6-7.
    [50]沈世学.鸡卵细胞OVR基因的SNP研究[D].武汉:华中农业大学,2002.
    [51]姚婕,王继文.鹅VLDLR基因亚型的序列变异分析[C].中国畜牧兽医学会2006学术年会论文集(上册).2006:102-106.
    [52]詹慧琴,俸艳萍,沈世学,等.鸡卵细胞卵黄生成受体基因(OVR)SNPs检测及其与蛋用性状的关联分析[J].农业生物技术学报.2009,17(6):967-971.
    [53]曹顶国,周艳,雷秋霞,等.鸡VLDLR基因多态性与蛋黄性状的关联分析[J].畜牧兽医学报.2012,43(6):849-856.
    [54]张龙超.鸡蛋品质性状遗传参数及相关候选基因研究[D].北京:中国农业大学,2007.
    [55] Rosen V, Thies RS, Lyons K. Signaling pathways in skeletal formation: a role for BMPreceptors [J]. Annals of the New York Academy of Sciences.1996,785:59-69.
    [56] Rosen Rosenzweig BL, Imamura T, Okadome T, et al. Cloning and characterization of ahuman type II receptor for bone morphogenetic proteins [C]. Proc Natl Acad Sci USA.1995,92(17):7632-7636.
    [57]董文杰.牛骨形态发生蛋白受体IB基因(BMPR-IB) cDNA的克隆及序列分析[D].呼和浩特:内蒙古农业大学,2007.
    [58] Mulsant P, Lecerf F, Fabre S, et al. Mutation in bone morphogenetic protein receptor-IB isassociated with increased ovulation in Booroola ewes [C]. Proc. Natl. Acad. Sci.2001,98:5104-5109.
    [59] Montgomery GW, Galloway SM, Davis GH, et al. Genes controlling ovulation rate in sheep[J]. Reproduction.2001,121:843-852.
    [60] Chen D, Ji X., Harris MA, et al. Differential Roles for Bone Morphogenetic Protein (BMP)Receptor Type IB and IA in Differentiation and Specification of Mesenchymal PrecursorCells to Osteoblast and Adipocyte Lineages [J]. The Journal of Cell Biology,1998,142(1):295-305.
    [61] Singhatanadgit W and Olsen I. Endogenous BMPR-IB signaling is required for earlyosteoblast differentiation of human bone cells [J]. In Vitro Cell Dev Biol Anim.2011,47(3):251-259.
    [62] Yuan G, Li L, Zou D, et al. Expression of bone morphogenetic proteins and their receptors inthe normal adult rat spinal cord [J]. Zhong Nan Da Xue Xue Bao (Yi Xue Ban).2011,36(7):662-670.
    [63] Yamauchi K, Varadarajan SG, Li JE, et al. Type Ib BMP receptors mediate the rate ofcommissural axon extension through inhibition of cofilin activity [J]. Development.2013,140(2):333-342.
    [64] Bokobza SM, Ye L, Kynaston HE, et al. Reduced expression of BMPR-IB correlates withpoor prognosis and increased proliferation of breast cancer cells [J]. Cancer GenomicsProteomics.2009,6(2):101-108.
    [65] Liu S, Yin F, Fan W, et al. Over-expression of BMPR-IB reduces the malignancy ofglioblastoma cells by upregulation of p21and p27Kip1[J]. J Exp Clin Cancer Res.2012,31:52.
    [66]闫亚东.小尾寒羊BMPR-IB基因单核苷酸多态性及其与产羔性能关系的研究[D].泰安:山东农业大学,2004.
    [67]方翟,吴建,徐建峰,等.绵羊BMPR-IB基因在分子标记育种中的应用效果[J].新疆农业科学.2010,47(1):189-194.
    [68]方鸿滨,王永,字向东. BMP15基因和BMPR-IB基因与乐至黑山羊繁殖性状之间关系的初步研究[J].西南民族大学学报(自然科学版).2010,36(2):206-209
    [69]杨华,杨永林,刘守仁,等.绵羊BMPR-IB基因单核苷酸多态性分析[J].西北农业学报.2010,19(9):7-11.
    [70] Zhang NB, Tang H, Kang L, et al. Associations of single nucleotide polymorphisms inBMPR-IB gene with egg production in a synthetic broiler line [J]. Asian-AustralasianJournal of Animal Sciences.2008,21(5):628-632.
    [71] Chen D, Zhao M and Mundy GR. Bone morphogenetic proteins [J]. Growth Factors.2004,22(4):233-241.
    [72] Knight PG and Glister C.Local roles of TGF-beta superfamily members in the control ofovarian follicle development [J]. Animal Reproduction Science.2003,78:165-183.
    [73] Pierre A, Pisselet C, Dupont J, et al. Molecular basis of bone morphogenetic protein-4inhibitory action on progesterone secretion by ovine granulosa cells [J]. Journal of MolecularEndocrinology.2004,33:805-817.
    [74] Jennifer L. Dube, Pei Wang, Julia Elvin, et al. The Bone Morphogenetic Protein15Gene IsX-Linked and Expressed in Oocytes [J]. Archive.1998,12(12):1809-1817.
    [75] Yan C, Wang P, DeMayo J, et al. Synergistic roles of bone morphogenetic protein15andgrowth differentiation factor9in ovarian function [J]. Mol Endocrinol.2001,15(6):854-866.
    [76] Guéripel X, Brun V and Gougeon A. Oocyte bone morphogenetic protein15, but not growthdifferentiation factor9, is increased during gonadotropin-induced follicular development inthe immature mouse and is associated with cumulus oophorus expansion [J]. BiolReprod.2006,75(6):836-843.
    [77]刘志伟. GDF9与BMP15在异育银鲫卵母细胞发育过程中的作用初探[D].上海:上海海洋大学,2012.
    [78] Laissue P, Christin-Maitre S, Touraine P, et al. Mutations and sequence variants in GDF9and BMP15in patients with premature ovarian failure [J]. Eur J Endocrinol.2006,54(5):739-744.
    [79] Di Pasquale E, Rossetti R, Marozzi A. Identification of new variants of human BMP15genein a large cohort of women with premature ovarian failure [J]. J Clin Endocrinol Metab.2006,91(5):1976-1979.
    [80]马丽丽,刘春莲,徐仙.骨形态发生蛋白-15基因与卵巢早衰关系的研究进展[J].实用妇产杂志.2012,28(5):344-346.
    [81]孙瑞珍,程琳,单智焱,等.卵泡发生过程中GDF-9和BMP-15(GDF-9B)的作用[J].现代生物医学进展.2009,9(17):3351-3353.
    [82] Galloway SM, McNatty KP, Cambridge LM, et al. Mutations in an oocyte-derived growthfactor gene (BMP15) cause increased ovula-tion rate and infertility in a dosage-sensitivemanner [J]. Nature Genetics.2000,25(3):279-283.
    [83] Hanrahan PJ,Gregan SM,Mulsant P, et al. Mutations in the genes for oocyte-derived growthfactors GDF9and BMP15are associated with both increased ovulation rate and sterility inCambridge and Belclare sheep (Ovis aries)[J]. Biology of Reproduction.2004,70(4):900-909.
    [84] Bodin L, Di Pasquale E, Fabre S, et al. A novel mutation in the BMP15gene causingdefective protein secretion is associated with both increased ovulation rate and sterility inLacaune sheep [J]. En-docrinology.2007,148(1):393-400.
    [85]何远清,储明星,王金玉,等.6个山羊品种高繁殖力候选基因BMP15多态性研究[J].安徽农业大学学报.2006,33(1):61-64
    [86]储明星,孙洁,陈宏权,等.绵羊BMP15基因FecXL突变的检测[J].中国农学通报.2007,23(10):85-88.
    [87]李春苗,黎寿丰,赵振华,等. BMP15外显子1SNPs检测及其与邵伯鸡母系产蛋性状的关联性分析[J].畜牧兽医学报.2012,43(11):1825-1832.
    [88] Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4encodes smallRNAs with antisense complementarity to lin-14[J]. Cell.1993,75:843-854.
    [89] David P Bartel. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function [J].Cell.2004,116:281-297.
    [90] Wightman B, Ha I and Ruvkun G. Posttranscriptional regulation of the heterochronic genelin-14by lin-4mediates temporal pattern formation in C. elegans [J]. Cell.1993,75,855-862.
    [91] Wightman B, Burglin TR, Gatto J, et al. Negative regulatory sequences in the lin-143-untranslated region are necessary to generate a temporal switch during Caenorhabditiselegans development [J]. Genes Dev.1991,5:1813-1824.
    [92] Reinhart BJ, Slack FJ, Basson M, et al. The21-nucleotide let-7RNA regulatesdevelopmental timing in Caenorhabditis elegans [J]. Nature.2000,403(6772):901-906.
    [93] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding forsmall expressed RNAs [J]. Science.2001,294:853-858.
    [94] Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probableregulatory roles in Caenorhabditis elegans [J]. Science.2001,294:858-862.
    [95] Lee RC, and Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J].Science.2001,294:862-864.
    [96] Griffiths-Jones, S., Bateman, A., Marshall, M., et al.. Rfam: An RNA family database [J].Nucleic Acids Res.2003,31:439-441.
    [97] Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation [J]. RNA.2003,9:277-279.
    [98] Grosshans H and Slack FJ. Micro-RNAs small is plentiful [J]. J Cell Biol.2002,156(1):17-22.
    [99] Lagos-Quintana M, Rauhut R, Meyer J, et al.. New microRNAs from mouse and human [J].RNA.2003,9:175-179.
    [100] Lim LP, Lau NC, Weinstein EG, et al...The micro-RNAs of Caenorhabditis elegans [J].Genes Dev.2003a,17,991-1008.
    [101] Lim LP, Glasner ME, Yekta S, et al..Vertebrate microRNA genes [J]. Science.2003b,299,1540.
    [102] Lagos-Quintana M, Rauhut R, Yalcin A, et al.. Identification of tissue-specific microRNAsfrom mouse [C]. Curr Biol.2002,12(9):735-739.
    [103] Rougvie AE. Control of developmental timing in animals [J]. Nat. Rev. Genet.2001,2:690-701.
    [104] Pasquinelli AE, Ruvkun G. Control of developmental timing by micrornas and their targets[J]. Annu Rev Cell Dev Biol.2002;18:495-513.
    [105] Banerjee D, Slack F. Control of developmental timing by small temporal RNAs: a paradigmfor RNA-mediated regulation of gene expression [J]. Bioessays.2002,24(2):119-29.
    [106] Moss EG. Heterochronic genes and the nature of developmental time [J]. Curr Biol.2007,17(11): R425-34.
    [107] Chen CZ, Li L, Lodish HF, et al.. MicroRNAs modulate hematopoietic lineagedifferentiation [J]. Science.2004,303:83-86.
    [108] Grishok A, Pasquinelli AE, Conte D, et al..Genes and mechanisms related to RNAinterference regulate expression of the small temporal RNAs that control C. elegansdevelopmental timing [J]. Cell.2001,106:23-34.
    [109] Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for theRNA-interference enzyme Dicer in the maturation of the let-7small temporal RNA [J].Science.2001,293:834-838.
    [110] Ketting RF, Fischer SE., Bernstein E, et al. Dicer functions in RNA interference and insynthesis of small RNA involved in developmental timing in C. elegans [J]. Genes Dev.2001,15:2654-2659.
    [111] Wienholds E, Plasterk RH. MicroRNA functions in animal development [J]. FEBSLett.2005,579(26):5911-22.
    [112] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II [J].EMBO J.2004,23:4051-4060.
    [113] Cai X, Hagedorn CH and Cullen BR. Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs [J]. RNA.2004.10,1957-1966.
    [114] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature.2003,425:415-419.
    [115] Lee Y, Jeon K, Lee JT, etal. MicroRNA maturation: stepwise processing and subcellularlocalization. EMBO J.2002,21(17):4663-4670.
    [116] Lund E, Guttinger S, Calado A., et al. Nuclear export of microRNA precursors [J]. Science.2004,303:95-98.
    [117] Yi R, Qin Y, Macara IG. et al. Exportin-5mediates the nuclear export of pre-microRNAsand short hairpin RNAs [J]. Genes Dev.2003,17:3011-3016.
    [118] Bohnsack MT, Czaplinski K and Gorlich D. Exportin5is a RanGTP-dependentdsRNA-binding protein that mediates nuclear export of pre-miRNAs [J]. RNA.2004,10:185-191.
    [119] Gwizdek C, Ossareh-Nazari B, Brownawell AM, et al. Exportin-5mediates nuclear exportof minihelix-containing RNAs [J]. J Biol Chem.2003,278(8):5505-5508.
    [120] Kim VN. MicroRNA precursors in motion: exportin-5mediates their nuclear export [J].Trends Cell Biol.2004,14(4):156-159.
    [121] Knight SW and Bass BL A role for the RNase III enzyme DCR-1in RNA interference andgerm line development in C. elegans [J]. Science.2001,293(5538):2269-2271.
    [122] Basyuk E, Suavet F, Doglio A, et al.. Human let-7stem-loop precursors harbor features ofRNase III cleavage products [J]. Nucleic Acids Res.2003,31:6593-6597.
    [123] Khvorova A, Reynolds A and Jayasena SD. Functional siRNAs and miRNAs exhibit strandbias [J]. Cell.2003,115:209-216.
    [124] Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzymecomplex. Cell.2003,115:199-208.
    [125] Hutvagner G. Small RNA asymmetry in RNAi. Small RNA asymmetry in RNAi: functionin RISC assembly and gene regulation [J]. FEBS Lett.2005,579(26):5850-5857.
    [126] Ambros, V. MicroRNAs: tiny regulators with great poten-tial [J]. Cell.2001,107:823-826.
    [127] Moss EG. MicroRNAs: hidden in the genome [C]. Curr. Biol..2002,12: R138-R140.
    [128] Parpart S, Wang XW. MicroRNA Regulation and its Consequences in Cancer [C]. CurrPathobiol Rep.2013,1(1):71-79.
    [129] Farazi TA, Hoell JI, Morozov P, et al. MicroRNAs in Human Cancer [C]. Adv Exp MedBiol.2013,774:1-20.
    [130] Marilena V. Iorio, Manuela Ferracin, Chang-Gong Liu, et al., MicroRNA Gene ExpressionDeregulation in Human Breast Cancer [J]. Cancer Res.2005,65:7065-7070.
    [131] Yin R, Zhang S, Wu Y, et al. MicroRNA-145suppresses lung adenocarcinoma-initiatingcell proliferation by targeting OCT4[J]. Oncol Rep.2011,25(6):1747-54.
    [132] Roybal JD, Zang Y, Ahn YH, et al. miR-200Inhibits lung adenocarcinoma cell invasionand metastasis by targeting Flt1/VEGFR1[J]. Mol Cancer Res.2011,9(1):25-35.
    [133] Zhang JG, Guo JF, Liu DL, et al. MicroRNA-101exerts tumor-suppressive functions innon-small cell lung cancer through directly targeting enhancer of zeste homolog2[J]. JThorac Oncol.2011,6(4):671-678.
    [134] Wang R, Wang ZX, Yang JS, et al. MicroRNA-451functions as a tumor suppressor inhuman non-small cell lung cancer by targeting ras-related protein14(RAB14)[J].Oncogene.2011,30(23):2644-58.
    [135] Zheng B, Liang L, Huang S, et al. MicroRNA-409suppresses tumour cell invasion andmetastasis by directly targeting radixin in gastric cancers [J]. Oncogene.2012,31(42):4509-4516.
    [136] Li X, Zhang Y, Shi Y, et al. MicroRNA-107, an oncogene microRNA that regulates tumourinvasion and metastasis by targeting DICER1in gastric cancer [J]. J Cell Mol Med.2011,15(9):1887-1895.
    [137] Panda H, Pelakh L, Chuang TD, et al. Endometrial miR-200c is altered duringtransformation into cancerous states and targets the expression of ZEBs, VEGFA, FLT1,IKKβ, KLF9, and FBLN5[J]. Reprod Sci.2012,19(8):786-796.
    [138] Delpu Y, Lulka H, Sicard F, et al..The Rescue of miR-148a Expression in PancreaticCancer [J]. An Inappropriate Therapeutic Tool. PLOS ONE.2013,8(1): e55513.
    [139] Mouradian MM. MicroRNAs in Parkinson's disease [J]. Neurobiol Dis.2012,46(2):279-284.
    [140] Natalie J. Beveridgea, Murray J. Cairnsa. MicroRNA dysregulation in schizophrenia [J].Neurobiology of Disease.2012,46(2):263-271
    [141] Guay C, Roggli E, Nesca V, et al. Diabetes mellitus, a microRNA-related disease?[J].Transl Res.2011,157(4):253-264.
    [142] Bunt VDM, Gaulton KJ, Parts L, et al.The miRNA Profile of Human Pancreatic Islets andBeta-Cells and Relationship to Type2Diabetes Pathogenesis [J]. PLOS ONE.2013,8(1):e55272.
    [143] Garg M. MicroRNAs stem cells and cancer stem cells [J]. World J Stem Cells.2012,4(7):62-70.
    [144] Guan D, Zhang W, Zhang W, et al. Switching cell fate, ncRNAs coming to play [J]. CellDeath Dis.2013,4: e464.
    [145] Shenoy A, Blelloch R. MicroRNA induced transdifferentiation [J]. F1000Biol Rep.2012,4:3.
    [146] Melton C, Blelloch R. MicroRNA Regulation of Embryonic Stem Cell Self-Renewal andDifferentiation [C]. Adv Exp Med Biol.2010,695:105-117.
    [147] Huo JS, Zambidis ET. Pivots of pluripotency: the roles of non-coding RNA in regulatingembryonic and induced pluripotent stem cells [J]. Biochim Biophys Acta.2013,1830(2):2385-2394.
    [148]邢变枝,陈红,湛彦强,等.小鼠胚胎干细胞定向分化为神经干细胞过程中microRNA的变化[J].中国组织化学与细胞化学杂志.2009,18(1):23-28.
    [149] Ren J, Jin P, Wang E, et al. MicroRNA and gene expression patterns in the differentiationof human embryonic stem cells [J]. J Transl Med.2009,23;7:20-36.
    [150] Tsai ZY, Singh S, Yu SL, et al. Identification of microRNAs regulated by activin A inhuman embryonic stem cells [J]. J Cell Biochem.2010,109(1):93-102.
    [151]文通,魏云峰,王梦洪,等. microRNA-1诱导大鼠骨髓间充质干细胞向心肌样细胞分化[J].基础医学与临床.2011,31(1):41-46.
    [152] Sun ZH, Wei Q, Zhang YF, et al. MicroRNA profiling of rhesus macaque embryonic stemcells [J]. BMC Genomics.2011,12:276-286.
    [153] Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1is regulated byTwist and is required in muscles during larval growth [J]. Genes Dev.2005,19(19):2343-2354.
    [154] Tang F, Kaneda M, O'Carroll D, et al. Maternal microRNAs are essential for mouse zygoticdevelopment [J]. Genes Dev.2007,21(6):644-648.
    [155] Yin VP, Thomson JM, Thummel R, et al. Fgf-dependent depletion of microRNA-133promotes appendage regeneration in zebrafish [J]. Genes Dev.2008,22(6):728-733.
    [156] Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essentialfor erythropoiesis [C]. Proc Natl Acad Sci USA.2008,105(9):3333-3338.
    [157] Zhu Y, Wang DS, Wang F, et al.. A comprehensive analysis of GATA-1-regulated miRNAsreveals miR-23a to be a positive modulator of erythropoiesis [J]. Nucl. Acids Res.2013,41(7):4129-4143.
    [158] Pang RT, Liu WM, Leung CO, et al. miR-135A regulates preimplantation embryodevelopment through down-regulation of E3Ubiquitin Ligase Seven In Absentia Homolog1A (SIAH1A) expression [J]. PLOS ONE.2011,6(11): e27878.
    [159] Liu WM, Pang RT, Chiu PC, et al. Sperm-borne microRNA-34c is required for the firstcleavage division in mouse [C]. Proceedings of the National Academy of Sciences of theUnited States of America.2012a,109:490-494.
    [160] Liu WM, Pang RT, Cheong AW, et al. Involvement of microRNA lethal-7a in theregulation of embryo implantation in mice [J]. PLOS ONE.2012b,7(5): e37039.
    [161] Burnside J, Ouyang M, Anderson A, et al. Deep Sequencing of Chicken microRNAs [J].BMC Genomics.2008,9:185-193.
    [162] Lian L, Qu LJ, Chen YM, et al. A Systematic Analysis of miRNA Transcriptome inMarek’s Disease Virus-Induced Lymphoma Reveals Novel and Differentially ExpressedmiRNAs [J]. PLOS ONE.2012,7(11): e51003.
    [163] Wang Y, Brahmakshatriya V, Lupiani B, et al. Integrated analysis of microRNAexpression and mRNA transcriptome in lungs of avian influenza virus infected broilers [J].BMC Genomics.2012,13:278.
    [164]欧阳伟,王永山,王永强,等.传染性法氏囊病病毒感染细胞内源性microRNA表达差异分析[J].中国兽医学报.2012,32(3):329-336.
    [165] Bannister SC, Tizard ML, Doran TJ, et al. Sexually dimorphic microRNA expressionduring chicken embryonic gonadal development [J]. Biol Reprod.2009,81(1):165-176.
    [166] Huang P, Gong Y, Peng X, et al. Cloning, identification, and expression analysis at thestage of gonadal sex differentiation of chicken miR-363and363*[C]. Acta BiochimBiophys Sin (Shanghai).2010,42(8):522-529.
    [167]黄潘,龚炎长,彭秀丽,等.鸡胚性分化早期性别差异表达miRNAs的表达谱分析[J].农业生物技术学报.2010,18(6):1149-1155.
    [168] Bannister SC, Smith CA, Roeszler KN, et al. Manipulation of estrogen synthesis altersMIR202*expression in embryonic chicken gonads [J]. Biol Reprod.2011,85(1):22-30.
    [169] Cutting AD, Bannister SC, Doran TJ, et al. The potential role of microRNAs in regulatinggonadal sex differentiation in the chicken embryo [J]. Chromosome Res.2012,20(1):201-213.
    [170] Darnell DK, Kaur S, Stanislaw S, et al. MicroRNA expression during chick embryodevelopment [J]. Dev Dyn.2006,235(11):3156-3165.
    [171] Glazov EA., Cottee PA., Barris WC., et al. A microRNA catalog of the de-velopingchicken embryo identified by a deep sequencing approach [J]. Genome Research.2008,18(6):957-964.
    [172] Hicks JA., Tembhurne P, and Liu HC.. MicroRNA ex-pression in chicken embryos [J].Poultry Science.2008,87(11):2335-2343.
    [173] Hicks JA, Tembhurne PA, Liu HC. Identification of microRNA in the developing chickimmune organs [J]. Immunogenetics.2009,61(3):231-240.
    [174] Li T, Wu R, Zhang Y, et al. A systematic analysis of the skeletal muscle miRNAtranscriptome of chicken varieties with divergent skeletal muscle growth identifies novelmiRNAs and differentially expressed miRNAs [J]. BMC Genomics.2011,12:186.
    [175] Lin S, Li H, Mu H, et al. Let-7b regulates the expression of the growth hormone receptorgene in deletion-type dwarf chickens [J]. BMC Genomics.2012,13:306.
    [176] Ho KJ, Lawrence WD, Lewis LA, et al. Hereditary hyperlipidemia in nonlaying chickens[J]. Arch. Pathol.1974,98,161-172.
    [177] George R, Barber DL, Schneider WJ. Characterization of the chicken oocyte receptor forlow and very low density lipoproteins [J]. J Biol Chem.1987,262(35):16838-16847.
    [178] Nimpf J, Radosavljevic MJ, Schneider WJ. Oocytes from the mutant restricted ovulator henlack receptor for very low density lipoprotein [J]. J Biol Chem.1989,264(3):1393-1398.
    [179] Bujo H, Yamamoto T, Hayashi K et al. Mutant oocytic low density lipoprotein receptorgene family member causes atherosclerosis and female sterility [C]. Proc Natl Acad SciUSA.1995,92(21):9905-9909.
    [180]龚炎长,彭中镇,师守坤.鸡卵细胞卵黄生产受体及其研究进展[J].湖北农业科学.1998,1:56-58.
    [181]刘学芹.鸡OVR基因片段的FCR-SSCP和PCR-RF-SSCP研究[D].武汉:华中农业大学,2001.
    [182]陈燕,耿照玉,陈兴勇,等.文昌鸡OVR基因内含子2的多态性及其与产蛋性能关系的研究[C].中国畜牧兽医学会家禽学分会第十二次学术讨论会论文集.2005:68-71.
    [183]陈媛媛. VLDL相关基因的多态性及血清VLDL浓度对肉种母鸡繁殖性能的影响[D].雅安:四川农业大学,2011.
    [184]丁红梅,邵根宝,徐银学.内含子与基因表达调控[J].畜牧与兽医.2006,38(3):50-53.
    [185]王悦冰,郎志宏,黄大昉.内含子对真核基因表达调控的影响[J].生物技术通报.2008,4:1-4.
    [186]黄宝春,曹国军,邵宁生.内含子miRNA反馈调节宿主基因的表达与功能研究进展[J].军事医学科学院院刊.2009,33(6):580-582.
    [187]陈兵,文建凡.内含子在生物信息学研究和基因工程中的应用[J].生命的化学.2010,30(1):59-63.
    [188]王生宝. BMPR-IB基因在绵羊群体中的多态性分析及其与产羔数的相关性研究[D].兰州:甘肃农业大学,2010.
    [189]宋一萍.猪BMP15和BMPR-IB基因的遗传变异及其与产仔性能关系的研究[D].泰安:山东农业大学,2010.
    [190]储明星,桑林华,王金玉,等.小尾寒羊高繁殖力候选基因BMP15和GDF9的研究[J].遗传学报.2005,32(1):38-35.
    [191] Shabir M, Ganai TA, Misra SS, et al. Polymorphism study of growth differentiation factor9B (GDF9B) gene and its association with reproductive traits in sheep [J]. Gene.2013,515(2):432-438.
    [192]吴井生. OPN和BMP15基因对小梅山猪产仔数的遗传效应研究[D].扬州:扬州大学,2008.
    [193]李霖,陈涛,王鹏,等.兔BMP15基因单核苷酸多态性及其与产仔性能的相关性研究[J].安徽师范大学学报(自然科学版).2009,32(6):565-568.
    [194]康丽.鸡卵泡发育相关基因和miRNA的鉴定及功能分析[D].泰安:山东农业大学,2009.
    [195] Wyne KL; Pathak RK; Seabra MC. Expression of the VLDL Receptor in Endothelial Cells.Arteriosclerosis [J], Thrombosis, and Vascular Biology.1996,16:407-415.
    [196] HAN D, HAUNERLAND NH, WILLIAMS TD. Variation in yolk precursor receptormRNA expression is a key determinant of reproductive phenotype in the zebra finch(Taeniopygia guttata)[J]. The Journal of Experimental Biology.2009,212(9):1277-83.
    [197]杨朋坤.不同品种鸡蛋胆固醇沉积规律和相关基因表达的研究[D].郑州:河南农业大学.2011.
    [198]何小龙,高连枝,王峰,等.骨形态发生蛋白15基因mRNA在牛不同组织中的表达分析[J].畜牧与饲料科学.2009,30(2):129-131.
    [199]王瑶,陈阿琴,杨志刚,等.日本白鲫BMP15和GDF9基因片段的克隆及组织表达分析[J].上海海洋大学学报.2012,21(5):693-700.
    [200] Hosoe M, Kaneyama K, Ushizawa K, et al. Quantitative analysis of bone morphogeneticprotein15(BMP15) and growth differentiation factor9(GDF9) gene expression in calf andadult bovine ovaries [J]. Reprod Biol Endocrinol.2011,9:33.
    [201] Eckery DC, Whale LJ, Lawrence SB, et al. Expression of mRNA encoding growthdifferentiation factor9and bone morphogenetic protein15during follicular formation andgrowth in a marsupial, the brushtail possum (Trichosurus vulpecula)[J]. Mol CellEndocrinol.2002,192(1-2):115-126.
    [202] Paradis F, Novak S, Murdoch GK, et al. Temporal regulation of BMP2, BMP6, BMP15,GDF9, BMPR1A, BMPR1B, BMPR2and TGFBR1mRNA expression in the oocyte,granulosa and theca cells of developing preovulatory follicles in the pig [J].Reproduction.2009,138(1):115-129.
    [203]孙瑞珍. GDF-9、BMP15及其受体在成年小鼠和猪卵泡中的表达[D].呼和浩特:内蒙古农业大学,2010.
    [204]张宁波.鸡繁殖性状相关基因及卵巢组织差异表达基因研究[D].泰安:山东农业大学,2007.
    [205]王峰.蒙古牛骨形态发生蛋白(BMPs)基因克隆和组织表达研究[D].呼和浩特:内蒙古农业大学,2008.
    [206] Onagbesan OM, Bruggeman V, Van As P, et al. BMPs and BMPRs in chicken ovary andeffects of BMP-4and-7on granulosa cell proliferation and progesterone production in vitro[J]. Am J Physiol Endocrinol Metab.2003,285(5): E973-83.
    [207] Xu Y, Li E, Han Y, et al. Differential expression of mRNAs encoding BMP/Smad pathwaymolecules in antral follicles of high-and low-fecundity Hu sheep [J]. Anim ReprodSci.2010,120(1-4):47-55.
    [208] Costa JJ, Passos MJ, Leit o CC, Levels of mRNA for bone morphogenetic proteins, theirreceptors and SMADs in goat ovarian follicles grown in vivo and in vitro [J]. Reprod FertilDev.2012,24(5):723-732.
    [209] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics [J].Nat Rev Genet.2009,10:57-63.
    [210] Li Z, Zhang Z, Yan P, et al. RNA-Seq improves annotation of protein-coding genes in thecucumber genome [J]. BMC Genomics.2011,12:540-550.
    [211] Zhao CZ, Xia H, Frazier TP, et al. Deep sequencing identifies novel and conservedmicroRNAs in peanut (Arachis hypogaea L.)[J]. BMC Plant Biol.2010,10(1):3-14.
    [212] Sultan M, Schulz MH, Richard H, et al. A global view of gene activity and alternativesplicing by deep sequencing of the human transcriptome [J]. Science.2008,321:956-960.
    [213] Filichkin SA, Priest HD, Givan SA, et al.Genome-wide mapping of alternative splicing inArabidopsis thaliana [J]. Genome Res.2009,20:45-58.
    [214] Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genomedefined by RNA sequencing [J]. Science.2008,320:1344-1349.
    [215] Shendure J, Ji H. Next-generation DNA sequencing [J]. Nat Biotechnol.2008,26(10):1135-1145.
    [216] Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technicalreproducibility and comparison with gene expression arrays [J]. Genome Res.2008,18(9):1509-1517.
    [217] Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammaliantranscriptomes by RNA-Seq [J]. Nat Methods.2008,5(7):621-628.
    [218] Peng Z, Cheng Y, Tan BC, et al. Comprehensive analysis of RNA-Seq data revealsextensive RNA editing in a human transcriptome [J]. Nat Biotechnol.2012,30:253-260.
    [219] Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in thehuman transcriptome by high-throughput sequencing [J]. Nat Genet.2008,40:1413-1415.
    [220] Ramani AK, Calarco JA, Pan Q, et al. Genome-wide analysis of alternative splicing inCaenorhabditis elegans [J]. Genome Res.2010,21:342-348.
    [221] Gan X, Stegle O, Behr J, et al. Multiple reference genomes and transcriptomes forArabidopsis thaliana [J]. Nature.2011,477:419-423.
    [222]林萍,曹永庆,姚小华,等.普通油茶种子4个发育时期的转录组分析[J].分子植物育种.2011,9(4):498-505.
    [223] Zhang GJ, Guo GW, Hu XD, et al. Deep RNA sequencing at single base-pair resolutionreveals high complexity of the rice transcriptome [J]. Genome Res.2010,20(5):646-654.
    [224] Lu TT, Lu GJ, Fan DL, et al. Function annotation of the rice transcriptome atsingle-nucleotide resolution by RNA-seq. Genome Res.2010,20:1238-1249.
    [225] Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammaliantranscriptomes by RNA-Seq [J]. Nat Methods.2008,5(7):621-628.
    [226] Fraser BA, Weadick CJ, Janowitz I, et al. Sequencing and characterization of the guppy(Poecilia reticulata) transcriptome [J]. BMC Genomics.2011,12:202
    [227] Santure AW, Gratten J, Mossman JA, et al. Characterisation of the transcriptome of a wildgreat tit Parus major population by next generation sequencing [J]. BMCGenomics.2011,12:283.
    [228] Chu JH, Lin RC, Yeh CF, et al. Characterization of the transcriptome of an ecologicallyimportant avian species, the Vinous-throated Parrotbill Paradoxornis webbianusbulomachus(Paradoxornithidae; Aves)[J]. BMC Genomics.2012,13:149.
    [229] Li XX, Ding H, Wei RD, et al. Deep sequencing-based transcriptome profiling analysis ofbacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes inmarine fish [J]. BMC Genomics.2010,11:472
    [230] Zhao CZ, Cees Waalwijk, Pierre JGM de Wit, et al. RNA-Seq analysis reveals new genemodels and alternative splicing in the fungal pathogen Fusarium graminearum. BMCgenomics [J].2013,14:21.
    [231] Wang XW, Luan JB, Li JM, et al. De novo characterization of a whitefly transcriptome andanalysis of its gene expression during development [J]. BMC Genomics2010,11:400
    [232] Wang B, Guo GG, Wang C, et al. Survey of the transcriptome of Aspergillus oryzae viamassively parallel mRNA sequencing [J]. Nucleic Acids Research.2010,1-13.
    [233]刘倩宏,韩文瑜.深度测序技术分析布鲁菌感染巨噬细胞RAW264.7早期转录组学变化[J].畜牧兽医学报.2012,43(11):1810-1817.
    [234] Sandford EE, Orr M, Balfanz E, et al. Spleen transcriptome response to infection with avianpathogenic Escherichia coli in broiler chickens [J]. BMC Genomics.2011,12:469-481.
    [235] Nie QG, Sandford EE, Zhang XQ, et al. Deep Sequencing-Based Transcriptome Analysis ofChicken Spleen in Response to Avian Pathogenic Escherichia coli (APEC) Infection [J].PLOS ONE.2012,7(7): E41645.
    [236] Li TG, Wang SY, Wu RM, et al. Identification of long non-protein coding RNAs in chickenskeletal muscle using next generation sequencing [J]. Genomics.2012,99(5):292-298.
    [237] Li Q, Wang N, Du Z, et al. Gastrocnemius transcriptome analysis reveals domesticationinduced gene expression changes between wild and domestic chickens [J]. Genomics.2012,100(5):314-319.
    [238]李莲英,崔焕芹,何树银,等.优良品种—汶上芦花鸡[J].家禽科学.2008,5:24-26.
    [239]蔡泉,张贝,王长涛,等.汶上芦花鸡品种调查报告[J].中国家禽.2008,30(10):57-58.
    [240]周艳,曹顶国,雷秋霞,等.寿光鸡和汶上芦花鸡肉用性能比较分析[J].山东农业科学.2012,44(10):110-112.
    [241] Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly fromRNA-Seq data without a reference genome [J]. Nat Biotechnol.2011,29(7):644-652.
    [242] Martin JA. Wang Z. Next-generation transcriptome assembly [J]. Nat Rev Genet.2011,12(10):671-682.
    [243] Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associatedwith an inherited mutation of human bone morphogenetic protein-15(BMP15) gene [J]. AmJ Hum Genet.2004,75(1):106-111.
    [244]]Yan CG, Wang P, Janet DM, et al. Synergistic role of bone mor-phogenetic protein-15andgrowth differentiation factor9in ovarian function [J]. Mol Endocr.2001,15(6):854-866.
    [245] Galloway SM, McNatty KP, Cambridge LM, et al. Mutations in an oocyte-derived growthfactor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitivemanner [J]. Nat Genet.2000,25(3):279-283.
    [246] Kobayashi Y, Horiguchi R, Nozu R, et al. Expression and localization of forkheadtranscriptional factor2(Foxl2) in the gonads of protogynous wrasse, Halichoerestrimaculatus [J]. Biol Sex Differ.2010,1(1):3-11.
    [247] Schmidt D, Ovitt, CE Anlag K. et al. The murine winged-helix transcription factor Foxl2isrequired for granulosa cell differentiation and ovary maintenance [J]. Development.2004,131:933-942.
    [248] Govoroun MS, Pannetier M, Pailhoux E, et al. Isolation of chicken homolog of the FOXL2gene and comparison of its expression patterns with those of aromatase during ovariandevelopment [J]. Dev Dyn.2004,231(4):859-870.
    [249] Hudson QJ, Smith CA, Sinclair AH. Aromatase inhibition reduces expression of FOXL2inthe embryonic chicken ovary [J]. Dev Dyn.2005,233(3):1052-1055.
    [250] Li H, Gilbert ER, Zhang Y, et al. Expression profiling of the solute carrier gene family inchicken intestine from the late embryonic to early post-hatch stages [J]. Anim Genet2008,39:407-424.
    [251] Lim HC, Jeong WY, Lim WS, et al. Differential Expression of Select Members of the SLCFamily of Genes and Regulation of Expression by MicroRNAs in the Chicken Oviduct [J].Biol Reprod.2012,87(6):145.
    [252] Deng X, Sagata N, Takeuchi N, et al. Association study of polymorphisms in the neutralamino acid transporter genes SLC1A4, SLC1A5and the glycine transporter genes SLC6A5,SLC6A9with schizophrenia [J]. BMC Psychiatry.2008,8:58.
    [253] Ueno T, Tabara Y, Fukuda N, et al. Association of SLC6A9gene variants with humanessential hypertension [J]. J Atheroscler Thromb.2009,16(3):201-206.
    [254] Fork C, Bauer T, Golz S, et al. OAT2catalyses efflux of glutamate and uptake of orotic acid[J]. Biochem J.2011,436(2):305-312.
    [255] Eiden LE, Sch fer MK, Weihe E, et al. The vesicular amine transporter family (SLC18):amine/proton antiporters required for vesicular accumulation and regulated exocytoticsecretion of monoamines and acetylcholine [J]. Pflugers Arch.2004,447(5):636-640.
    [256] Khare P, Mulakaluri A, Parsons SM. Search for the acetylcholine and vesamicol bindingsites in vesicular acetylcholine transporter: the region around the lumenal end of thetransport channel [J]. J Neurochem.2010,115(4):984-993.
    [257] Masuda S, Terada T, Yonezawa A,et al. Identification and functional characterization of anew human kidney-specific H+/organic cation antiporter, kidney-specific multidrug andtoxin extrusion2. J Am Soc Nephrol.2006,17(8):2127-2135.
    [258] Ohta KY, Inoue K, Yasujima T, et al. Functional characteristics of two human MATEtransporters: kinetics of cimetidine transport and profiles of inhibition by variouscompounds. J Pharm Pharm Sci.2009,12(3):388-396.
    [259] Li H, Ji J, Xie Q, et al. Aberrant expression of liver microRNA in chickens infected withsubgroup J avian leukosis virus [J]. Virus Res.2012,169(1):268-271.
    [260]潘英姿.肉鸡铬代谢相关miRNA的鉴定与分析[D].硕士学位论文,2012,华中农业大学,武汉.
    [261] Blaszezyk J, TroPea JE, Bubunenko M et al.Crystallogra and modeling studies of RNase Ⅲsuggest a mechanism for double-stranded RNA cleavage [J]. Structure.2001,9(12):1225-1236.
    [262]罗宗刚.猪不同发育阶段microRNA转录组的鉴定[D],博士学位论文,2011,四川农业大学,四川,雅安.
    [263] Ro S, Song R, Park C, et al. Cloning and expression profiling of small RNAs expressed inthe mouse ovary [J]. RNA.2007,13(12):2366-2380.
    [264] Zhao H, Rajkovic A. MicroRNAs and mammalian ovarian development [J]. Semin ReprodMed.2008,26(6):461-468.
    [265] Lim CH, Jeong W, Lim W, et al. Differential Expression of Select Members of the SLCFamily of Genes and Regulation of Expression by MicroRNAs in the Chicken [J]. OviductBiol Reprod December2012,87(6):145-153.
    [266] Zhang J, Ji X, Zhou D, et al. miR-143is critical for the formation of primordial follicles inmice [J]. Front Biosci.2013,18:588-597.
    [267] Yu DB, Jiang BC, Gong J, et al. Identification of Novel and Differentially ExpressedMicroRNAs in the Ovaries of Laying and Non-Laying Ducks [J]. Journal of IntegrativeAgriculture.2013,12(1):136-146.
    [268]方心灵,束刚,王松波,等.禁食及恢复采食状态下鸡下丘脑差异表达miRNA的鉴定[J].畜牧与兽医.2012,44:135-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700