龙门山前山断裂带超长周期大地电磁测深观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用新型的超长周期大地电磁测深仪LEMT417与V8多功能电法仪相结合,在龙门山前山断裂带进行宽频带超长周期大地电磁观测,并且采用先进的大地电磁资料处理与解释技术,对龙门山前山断裂带剖面进行分析,研究得到较为可信的龙门山前山断裂带深部电性结构,总结前人的工作成果,发挥大地电磁测深的优势,针对龙门山断裂带的一些热点问题进行了探讨和研究。
     文章首先介绍了龙门山前山冲断带剖面的工作情况,该剖面南起雅安天全,北至广元,全长500km;回顾了龙门山地区的研究历史和大地电磁测深的发展历程,结合超长周期仪器工作的特点,在断裂带沿线位置布置工作点,总共完成测深点12个,每个测深点均同步完成了常规大地电磁测深仪(即V8多功能电法仪)与超长周期大地电磁测深仪(即LEMT417)的采集工作,并且简单介绍了超长周期资料处理流程,对两套仪器的数据进行了科学的拼接与处理,得到了宽频带的大地电磁测深资料。
     对于剖面资料进行定性分析和解释是本文的重点之一。通过张量阻抗的旋转得到剖面最佳电性主轴方向,在北段和中段最佳主轴方向为北西向,而在南段则偏转为北东向;利用Mohr圆分析和极化图分析方法,对所有12个测点进行分析,得到了二维偏离角和各向异性角,结论是剖面整体表现二维性,而在断裂分段区域各向异性程度和三维性较强;阻抗二维偏离度也得到类似的结论;通过对实测视电阻率和相位曲线类型和断面图特征进行研究分析,了解了主要构造的电性特点,为剖面的电性解释提供了基础。
     在研究两套仪器特点的基础上,对比两套仪器在同一测点所得实测视电阻率曲线,对数据进行衔接和调整,得到可信的宽频带大地电磁测深曲线;在反演模式的选择上,总结了前人的宝贵经验,介绍了反演方法的发展现状和一维反演的基本原理,简单介绍MTsoft2D V2.1软件的使用流程,最后选择BOSTICK2D反演方法和TE+TM联合的模式反演进行反演,得到了剖面宽频带的反演结果。
     最后,以龙门山地区研究历史为背景,介绍了研究区主要的地层分布、断裂构造等地质情况,详细说明了研究区的具体研究背景,并结合定性分析结果,分析了剖面电性结构,揭示了龙门山逆冲推覆构造的存在。
In this paper, combining a new type of ultra-long period magnetotelluric sounding instrument LEMT417 with multifunction instrument V8 to carry out the broad-band ultra-long period for magnetotelluric observation in outlying Longmen mountain fault zone, and use of advanced data processing and interpretation of electromagnetic technology to analyses outlying Longmen mountain fault profile, which has gained very credible outlying Longmen mountain deep fault electrical structure, and summed up the results of previous work. At the same time, the Longmen mountain fracture with a number of hot issues were discussed and researched according to the advantage of magnetotelluric sounding.
     The paper firstly introduces the work of the outlying Longmen mountain thrust belt profile. And the profile is from the south to the north that is from Tianquan, Ya’an to Guangyuan, which total length is 500km.Then reviewing the study history of Longmen mountain and the development course of magnetotelluric sounding, combining with ultra– long period instrument characteristics, lay outing the work point the location of along the fault zone, and the paper briefly introduces the process of ultra– long period data processing.
     Qualitative analysis and interpretation of profile information is one of the key points of this paper. The best direction of electrical axis are achieved by rotating tensor impedance, the best main axis direction is North West - South East in the northern section and the middle section ,but is deflected to North East - West in the southern section; using of Mohr circle analysis and polarization diagrams analysis for all 12 measuring points, to get the deviation angle and anisotropic two-dimensional angle, and the conclusion is that the overall performance of the profile is two-dimensional , and anisotropy and three-dimensional is very strong in sub-region of the fracture; similar conclusion is also reached in two-dimensional impedance deviation; The electrical characteristics of the main structure is understood provides the basis for interpretation by the analysis and the study of the measured apparent resistivity, the type of phase curves and characteristics of cross-section.
     Based on studying characteristics of two instruments, comparing the measured apparent resistivity curve of two instruments from the same measuring point, and carrying out convergence and adjustment of data, is to be credible broadband magnetotelluric sounding curve; to the choice of model in the inversion, summed up the valuable experience of those predecessors, the paper introduces the development of inversion and the basic principle of one-dimensional inversion, briefly presents MTsoft2D V2.1 software processes .At last inversion method OCCAM1D and TE + TM joint inversion model inversion were chose, which has gained the inversion results of wide-band profile.
     Finally, in the background of the history of Longmen Mountain, the paper introduces the distribution of major stratigraphic, geological faults, etc. in the study area, and combining the results of qualitative analysis, reveals the existence of the Longmen mountain thrust and analyses the structure of electrical section.
引文
[1] Lilly F.E.M. Magnetotelluric analysis using Mohr circles. Geophysice,1993,58(10),1498~1506
    [2] YANG Wencai·Theory and Methods of Geophysical Inversio[M]·Beijing: Geological PublishingHouse, 1997 (in Chinese)·[杨文采·地球物理反演的理论与方法[M]·北京:地质出版社,1997·]
    [3] YANG Wencai·Seismic velocity imaging of inhomogeneous layered medium [J]·Chinese Journal of Geophysics, 1990, 3(2): 265-282(in Chinese). [杨文采·非均匀层状介质中地震波速的成像[J]·地球物理学报, 1990, 33(2): 265-282]
    [4] Smith,J.T.and Booker,J.R.,1991,Rapid Inversion of Two-and Three-Dimensional magnetotelluric Data[J],JGR,96(B3):3902-3922.
    [5] Dwight E.Eggers. An eigenstate formulation of the magnetotelluric impedance tensor[J]. GEOPHYSICS, 1984,47(8): 1204-1214
    [6] Simon Spitz. The magnetotelluric impedance tensor properties with respect to rotations[J]. GEOPHYSICS, 50(10): 1610-1617
    [7] W. Soyer and M.J.Unsworth. Deep clcetrical structure of the Canadian Cordillera: A long period MT survey across the entire orogen. Geophysical Reseatch Abstracts,2005,(7),09810
    [8] K.Bahr, M.Bantin. Electrical anisotropy from electromagnetic array data: implications for the conduction mechanism and for distortion at long periods. Physics of the Earth and Planetary Interiors,2000(119):237~257
    [9] D.Galanopoulos, V. Sakksa. Geoelectric investigation of the Hellenic subduction zone using long period magnetotelluric data. Tectonophysics,2005 (409):73~84
    [10] Steven Golden, Martin Beblo. In search for an Iceland plume: long period magnetotellurics
    [11] M.S.Bologna, A.L.Padilha and I.Vitorello. Long period magnetotelluric survey in central Brazil: implications for upper mantle heterogeneity beneath the SW border of the Sao Francisco craton. INPE,C.P.515,12202-970
    [12] Michael Hauserer, Andreas Junge. Long Period Telluric-Magnetotelluric Measurements in the North East of the Rwenzori Mountains, Uganda.
    [13] Nagy Z., Advances in the combined interpretation of seismics with magnettotellurics [J]. Geophysical Prospecting, 996(44): 1041-1083.
    [14] Zhdanov M S, Trayning P. 1997, Migration versus inversion in electromagnetic imaging technique, J Geomag. Geoelectr., 49: 1415-1437.
    [15] Wenbo Wei, Martyn Unsworth, Alan Jones, etal., 2001, Detection of Widespread Fluids in the Tibetan Crust by magnetotelluric Studies [J]. Science, 292(5517):716~718.
    [16]徐朝繁,潘纪顺,王夫运等.龙门山其邻近地区深部地球物理探测[J].大地测量与地球动力学.2008.28(6):31—36
    [17]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都科技大学出版社.
    [18]赵国泽,陈小斌,汤吉.中国地球电磁法新进展和发展趋势[J].地球物理学进展,2007.22(4):1171-1180。
    [19]赵国泽,汤吉,等.用大地电磁网在长春等地探测上地幔电导率结构[J].地震地质,2001, 23(2):143~153.
    [20]杨季楷.龙门山地区地质发展史[J].四川地质学报,1991.6: 181-187
    [21]宋鸿彪.龙门山造山带地质和地球物理资料的综合解释[J].成都理工学院学报,1994,21(2):79-88.
    [22]魏文博,金胜等.藏北高原地壳上地幔导电性结构[J].地球物理学报. 2006,49(4):1215-1225
    [23]朱晓颖.大地电磁法应用和进展.中国地球物理2006.
    [24]朱介寿.汶川8.0级地震分析解说. 2008
    [25]王绪本,余年,朱迎堂,徐权辉,黄文彬,高树全.龙门山逆冲构造带大地电磁测深初步成果[J].成都理工大学学报, 2008,(04)
    [26]邓广君.龙门山前缘带构造样式与构造演化研究.[D].2005
    [27]余年.龙门山构造带中段地壳电性结构研究.[D].2008
    [28]晋光文.孙洁.江钊.大地电磁阻抗张量不变量其Mohr圆分析[J].地震地质.1995.17(4):439~445
    [29]王立凤.晋光文.孙洁.白登海.地球电磁响应函数的旋转不变量特征[J].物探化探计算技术.2000.22(4):306~321
    [30]晋光文.孔祥儒.大地电磁阻抗张量的畸变与分解[M].北京:地震出版社,2006
    [31]刘国栋.陈乐寿.大地电磁测深研究[M].北京:地震出版社,1984
    [32]李卫东.大地电磁反演方法评析其在地热勘查中的应用研究.[D].2006
    [33]石应骏.刘国栋等.大地电磁测深法教程[M].北京.地震出版社,1985
    [34]陈乐寿.刘任.王天生.大地电磁测深资料处理与解释[M].北京.石油工业出版社,1989
    [35]四川省地质矿产局,四川省区域地质志,地质出版社,1991
    [36]周军,王绪本. Mohr圆分析其应用[C].第8届中国国际地球电磁学讨论会[C],2007
    [37]肖鹏飞,白登海等.藏东、川西北长周期大地电磁测深[C],第8届中国国际地球电磁学讨论会,2007
    [38]徐旭辉.川西龙门山前缘地质地球物理解释[J],石油实验地质,1993,15(1):60~72
    [39]杨生,杨彦峰.大地电磁测深法曲线类型的聚类分析[J],物探化探计算技术,2002,24(3):231~233
    [40]王大为,张罗磊.大地电磁测深相位数据的研究和应用[J],上海地质,2006, 97(1):58~61
    [41]黄哲.大地电磁测深远参考处理原理效果分析[J],地震地质,2001, 23(2): 212~216
    [42]牛青坡.大地电磁测深中减少地质噪声的方法[J], Geoexplotation, 1988,25: 145~161
    [43]张全胜,王家映.大地电磁测深资料的去噪方法[J],石油地球物理勘探,2004,33:17~23
    [44]朱仁学,周云轩等.大地电磁测深资料解释的新方法[J],长春科技大学学报,2000,30 (3):271~274
    [45]胡祖志,胡祥云等.大地电磁二维反演方法对比研究[J],煤田地质与勘探, 2005,33(1):64~68
    [46]赵理芳,吴健生.大地电磁法数据的采集质量分析[J],矿产与地质,2004, 108(18):393~396
    [47]谭捍东,齐伟威,郎静.大地电磁法中的RHOPLUS理论其应用研究[J],物探与化探, 2004,28(6):532~535
    [48]王书明,王家映.大地电磁信号统计特征分析[J],地震学报,2004,26(6):669~674
    [49]徐丽娟,姚雪丹.大地电磁信号整理分析[J],地球物理学进展,2004, 19(2):431~436
    [50]罗鉴文,顾锦才.大地电磁在北天山冲断带阿什里地区的地质勘探成果[J],工程地球物理学报,2006, 3(4):245~250
    [51]杨长福,徐世浙.国外大地电磁研究现状[J],物探与化探,2005, 29(3):243~246
    [52]魏文博,金胜等.华北地区大地电磁测深岩石圈厚度讨论[J],中国地质,2006, 33(4):762~772
    [53]杨克明,朱彤,何鲤.龙门山逆冲推覆带构造特征勘探潜力分析[J],2003, 25(6):685~693
    [54]马晓冰,孔祥儒,刘宏兵,闫永利.青藏高原东部大地电磁测深探测结果[J],中国科学(增刊),2001, 31:72~76
    [55]孙洁,晋光文,白登海,王立凤.青藏高原东缘地壳、上地幔电性结构探测其构造意义[J],中国科学(增刊),2003, 33:173~179
    [56]赵国泽,汤吉,刘铁胜等.山西阳高~河北容城剖面大地电磁资料的初步解释—阻抗张量分解技术其应用[J],1996, 18(1):66~74
    [57]刘树根,罗志立,曹树恒.四川龙门山冲断带(中北段)岩石圈的层圈性和多级滑脱推覆[J],四川地质学报, 1990, 10(3):145~150
    [58]边兆祥,朱夔玉等.四川龙门山印支期构造发展特征[J],四川地质学报, 1980, 1:1~10
    [59]王运生,王绪本等.松潘-邵阳大地电磁剖面深、浅部典型构造的解释[J],南水北调与水利科技,2007, 5(2):70~72
    [60]魏文博.我国大地电磁测深新进展瞻望[J],地球物理学进展,2002,17(2):245~254
    [61]周虬.一种简易的一维大地电磁测深反演方法—博斯蒂克反演其应用[J],石油地球物理勘探,1985, 20(1):80~88
    [62]阮爱国,李清河等.永登地震剪切波分裂电性各向异性的变化特征[J],中国地震,2000, 16(4): 316~326
    [63]杨生,鲍光淑,张全胜.远参考大地电磁测深法应用研究[J],物探与化探,2002,26(1):27~31
    [64]刘天佑,朱铉.综合地球物理数据处理新方法在西部油气勘探中的应用[J],勘探地球物理进展,2006,29(2):104~108
    [65]于鹏,吴健生,王家林,张新兵.利用长周期MT数据研究沪浙地区深部断裂结构[J],同济大学学报,2008,36(4):549~554
    [66]于鹏,吴健生等.上海奉城—浙江湖州长周期MT剖面揭示的深部电性结构[J],地球物理学报,2008,51(2):503~510
    [67]罗志立,刘树根,赵锡奎,宋鸿彪,试论C-型俯冲带对中国中西部造山带形成的作用.龙门山造山带的崛起和四川盆地的形成与演化,成都科技大学出版社, 288:302
    [68]王家映,1995,大地电磁拟地震解释法,北京:石油工业出版社
    [69]魏文博,金胜,叶高峰,王林飞,谭捍东,邓明,方慧,大陆岩石圈导电性的研究方法,地学前缘,2003,10(1).
    [70]赵国泽、汤吉、詹艳等。青藏高原东北缘地壳电性结构和地块变形关系的研究,中国科学D辑,地球科学,2004,34(10):908-918.
    [71]马晓冰,孔祥儒,刘宏兵,闫永利。青藏高原东北部地区地壳电性结构特征地球物理学报2005,48(3):689-697.
    [72]魏文博。我国大地电磁测深新进展瞻望地球物理学进展2002,17(2):245-254.
    [73]马晓冰,孔祥儒,于晟。青藏高原西部大地电磁测深探测结果,科学通报,1997,42(11).
    [74]于鹏,王家林,吴健生,2003,大地电磁场成像方法综述与新进展.地球物理学进展,18(1):53-58.
    [75]刘树根,赵锡奎,罗志立,徐国盛,王国芝,C.J.L.Wilson,Dennis Arne。龙门山造山带一川西前陆盆地系统构造事件研究,成都理工学院学报, 2001.28(3),
    [76]蔡学林,魏显贵,刘援朝,曹家敏。论楔入造山作用—以龙门山造山带为例,四川地质学报,1996,2(16),.
    [77]王二七,孟庆任,陈智樑,陈良忠派蕉狭汛≈谧笮呋硕捌浯蟮毓乖?成因,地学前缘(中国地质大学,北京), 2001, 8(2),.
    [78]孙洁,晋光文,白登海,王立凤。青藏高原东缘地壳上地幔电性结构探测其构造意义,中国科学(D辑),2003,33(增刊).
    [79]王绪本,贾进斗,松潘-利川-邵阳地质地球物理大剖面综合研究报告,2000.
    [80]许志琴,杨经绥,姜枚,李海兵。大陆俯冲作用青藏高原周缘造山带的崛起,地学前缘, 1999, 6(3),.
    [81]詹艳,赵国泽,王继军,汤吉等。青藏高原东北缘海原弧形构造区地壳电性结构探测研究,地震学报,2005,27(4):431-440.
    [82]赵友年,赖祥符,俞如龙。龙门山推覆构造之初步研究,四川地质学报,1985,00.
    [83]宋文海。论龙门山北段推覆构造其油气前景,天然气工业,1989,9(3):2-9.
    [84]罗志立,龙学明,龙门山造山带的崛起和川西陆前盆地的沉降.龙门山造山带的崛起和四川盆地的形成与演化,成都科技大学出版社,204:210.
    [85]汤军,西松潘—甘孜弧前盆地的形成演化,沉积与特提斯地质,2002,22(3):53-59.
    [86]杨逢清,鸿福,恒书,旭龙.甘孜地块与秦岭褶皱带、扬子地台的关系其发展史,地质学报,1994,3.
    [87]李立,国元.西裂谷带龙门山断裂带地壳上地幔的大地电磁测深研究,物探与化探,1987,3.
    [88]张洪荣.川西北龙门山—邛崃山地壳—上地幔的结构构造特征,四川地质学报,1990,2.
    [89]林茂炳,初论陆内造山带的造山模式──以四川龙门山为例,四川地质学报,1996,3.
    [90]孙肇才,中国油气盆地基本地质特征,海洋地质与第四纪地质,1991,11(3):1-20.
    [91]周建文等.龙门山北段推覆构造带变形特征研究.天然气工业,2005;25 (增刊A) :66~71
    [92]周文清,陈智梁等.青藏高原东缘鲜水河断裂与龙门山断裂交会区现今的构造活动[J],地质通报,2005,24(12):1169~1172
    [93]赵国泽,汤吉等.青藏高原东北缘地壳电性结构和地块变形关系的研究[J],中国科学D辑地球科学,2004,34(10):908~918
    [94]胡祖志,胡祥云,大地电磁二维反演方法对比研究.煤田地质与勘探[J],2005,33(1):64~68
    [95]王绪本,李永年,高永才.大地电磁测深二维地形影响其校正方法研究[J].物探化探计算技术,1999,24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700