蜀南及邻区海相页岩气成藏主控因素及有利目标优选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以蜀南及邻区页岩气区为重点,通过对大量勘探井和实验数据分析,深入研究页岩气储层特征、超压成因、成藏主控因素、页岩含气性及资源丰度,预测页岩气成藏富集区,并优选出页岩气开发有利目标。
     首先,基于大量的页岩气钻井和实验测试数据,志留系龙马溪组富有机质页岩和寒武系筇竹寺组富有机质页岩分布稳定、连续厚度大、有机质含量高,且普遍处于成熟生烃阶段是近期页岩气勘探评价的主要目的层系。
     其次,根据研究区页岩气勘探评价井分析,认为页岩储层超压是复杂构造背景下页岩气藏得到有效保存的集中体现。通过建立数学模型,分析得出页岩成熟后烃类气体的生成和构造抬升是页岩气储层超压的主要成因机制。
     第三,通过剖析典型页岩气成藏特征及成藏过程,提出喜马拉雅期构造活动是影响我国页岩气富集成藏的关键地质事件。结合我国页岩气形成的地质特殊性,提出TOC、脆性矿物含量是控制页岩气纵向富集层段的主要因素。构造稳定性是页岩气富集分布的控制因素,埋深是页岩气技术经济可采的主要影响因素。
     第四,通过对大量页岩含气量实测数据分析,提出目前页岩含气量测试方法对损失气量和游离气量的计算存在较大偏差。通过建立含气量测试过程中损失气量计算新方法,矫正页岩储层原始地层压力,修正了页岩含气量计算偏差。根据修正后的含气量数值得出的页岩气资源丰度与动态法计算的页岩气单井可采储量结果一致,解决了原计算方法所得资源丰度与页岩气单井可采储量之间结果矛盾的问题。
     最后,根据研究区页岩气成藏富集主控因素,划分了3个页岩气富集区类型,17个富集区块,总资源量10.7×10~(12)m~3。采用BP神经网络方法优选出5个页岩气开发有利目标,资源量3.96×10~(12)m~3,在目前每生产1方页岩气财政补贴0.4元的条件下,可以实现页岩气的经济有效开发。
This study focused on shale gas province in Shunan and around. Through thedata analysis of exploration wells and shale samples, the gas shale features, the causesof overpressure, dominative factor for shale gas accumulation, gas content and resourceabundance were studied intensively. Shale gas accumulation zone were predicted andsome development targets were screened.
     Firstly, based on a large number of shale gas drilling and experimental data, it’sconcluded that the organic-rich shale of Longmaxi formation and Qiongzhusiformation spread stably, with big thickness, high organic content, and high maturity. Sothe shale is the main intervals of interest for shale gas.
     Secondly, according to the result of exploration wells for shale gas in the studyarea, it’s thought that the overpressure of shale reservoir shows the effectivepreservation of shale gas in the complex tectonic background. By establishingmathematical model, the simulation results show that the gas production in shale andtectonic uplift are the tow main reasons for shale gas reservoir overpressure.
     Thirdly, through analysis of typical shale gas accumulation charactorics and theprocess, Himalayan tectonic movement is thought to be the key geological events forshale gas accumulation in China. Combined with China's shale gas formationgeological characteristics, it’s proposed that the TOC, brittleness mineral content arethe main factors to control the vertical shale gas reservoirs. Tectonic stability is thecontrolling factor of shale gas distribution in the area. The buried depth is the maininfluencing factor of the economic recoverable shale gas resources.
     Fourthly, through the data analysis of massive shale gas content, it’s found that themethods for estimating the lost gas and the free gas are with a big deviation. Throughestablishment of new methods and correcting reservoir original pressure, the shale gascontent calculation deviation was fixed. Based on the fixed gas content, the shale gasresources abundance consists with the single-well recoverable reserves by dynamicmethod.
     Finally, according to the key factors of shale gas accumulation in the study area,17zones were classified with three kinds of shale gas accumulation zone, with totalamount of10.7x10~(12)m~3resources. By adopting the method of BP neural networkoptimization, five shale gas development favorable targets were screened, withresources3.96x10~(12)m~3. In the current0.4yuan/m3financial subsidies conditions,the shale gas can be developed economically.
引文
Ambrose, R. J., Hartman, R. C., Diza-Campos, M., et al. New pore-scale considerations forshale gas in place calculations [J]. SPE131772
    Baihly, J. D., Malpani, R., Edwards, C., et al. Unlocking the shale mystery: How lateralmesaurement and well placement impact completions and resultant production[J]. SPE138427
    Ballard, B. D. Quantitative mineralogy of reservoir rocks using Fourier transform infrared[J].SPE113023
    Bustin, R. M., Chalmers, G., Bustin, A. A. M.. Quantification of the gas-in-place and flwocharacteristics of tight gas-charged rocks and gas-shale potential in Britishl Columbia[J].Geoscience BC Report,2011.
    Cheng, Y. M.. Pressure transient characteristics of hydraulically fractured horizontal shale gaswells[J]. SPE149311
    Carlson, E. S.. Characterization of Devonian shale gas reservoirs using coordinated single wellanalytical models[J]. SPE29199
    Cipolla, C. L., Lolon, E. P., Erdle, J. C., et al. Reservoir modeling in shale-gas reservoirs[J].SPE125530
    Craig, J., Grigo, D., Rebora, A., et al. From neoproterozoic to early cenozoic: exploring thepotential of older and deeper hydrocarbon plays across north Africa and the MiddleEast[J]. Petroleum Geology Conference Series,2010,7(1):673-705.
    Curtis, J. B.. Fractured shale-gas system[J]. AAPG Bulletin,2002,86(11):1921-1938.
    Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., et al. Structual characterization of gas shaleson the micro-and nano-scales[J]. SPE137693
    Economides, M. J., Wang, X.. Differences and similarities in the stimulation and production ofshale gas reservoirs and other tight formations[J]. SPE137718
    Fazelipour, W.. Innovative reservoir modeling and simulation of unconventional shale gasreservoirs powered by microseismic Data[J]. SPE141877
    Freeman, C. M., Moridis, G., Ilk, D., et al. A numerical study of performance for tight gas andshale gas reservoir systems [J]. SPE124961
    Freeman, C. M.. Study of Flow Regimes in Multi-Fractured Horizontal Wells in Tight Gas andShale Gas Reservoir Systems[D]. Texas A&M University,2010.
    Gale, J. F. W., Reed, R. M., Holder, J.. Natural fractures in the Barnett Shale and theirimportant for hydraulic fracture treatment[J]. AAPG Bulletin,2007,91(4):603-622.
    Development of Laboratory And Petrophysical Techniques for Evaluating Shale Reservoirs.Gas Research Institute,1993.
    Gatens, J. M.. A Method for Analyzing Production Data to Estimate Reservoir Properties andStimulation Effectiveness[D]. Texas A&M University,1987.
    Gaudlip, A. W., Paugh, L. O.. Marcellus Shale water management challenges inPennsylvania[J]. SPE119898
    Gaurav, A., Dao, E. K., Mohanty, K. K.. Ultra-lightweight proppants for shale gas fracturing[J].SPE138319
    Grieser, B., Halliburton, J. B.. Identification of production potential in unconventionalreservoirs[J]. SPE106623
    Hasan, A. H. A.. A Triple-Porosity Model for Fractured Horizontal Wells[D]. Texas A&MUniversity,2010.
    Hao, F., Cheng, L. S., Hassan, O., et al. The threshold pressure gradient in ultra lowpermeability reservoirs[J].Petroleum Science and Technology,2008,26(9):1024-1035.
    Jarvie, D. M., Hill, R. J., Pollastro, R. M.. Assessment of the gas potential and yields fromshales: The Barnett Shale model[C] Unconventional Energy Resources in the SouthernMid-continent, Conference. Oklahoma: Oklahoma Geological Survey Circular,2005.
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al. Unconventional shale gas systems: theMississippian Barnett Shale of north central Texas as one model for thermogenic shalegas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
    Javadpour, F., Fisher, D., Unsworth, M.. Nanoscale gas flow in shale gas sediments[J], Journalof Canadian Petroleum Technology2007,46(10):55-61.
    King, G. E.. Thirty years of gas shale fracturing: what have we learned?[J]. SPE133456
    King, G. R.. Material balance techniques forcoal seam and Devonian shale gas reservoirs[J].SPE20730
    Li, X. J., Zou, C. N., Qiu, Z. J.. Upper Ordovician-Lower Silurian shale gas reservoirs insouthern Sichuan basin, China[C]. AAPG Annual Convention and Exhibition, Houston,Texas, USA,2011.
    Mayerhofer, M. J., Lolon, E. P., Warpinski, N. R., et al. What is stimulated reservoir volume[J].SPE119890
    Mayerhofer, M. J., Lolon, E. P., Youngblood, J. E., et al. Integration of microseismic fracturemapping results with numerical fracture network production modeling in the BarnettShale[J]. SPE102103
    Montgomery, S. L., Jarvie, D. M., Bower, K. A., et al. Mississippian Barnett shale, Fort Worthbasin, north-central Texas: gas-shale play with multi-trillion cubie foot pontential[J].AAPG Bulletin,2005,89(2):155-175.
    Nelson, P. H.. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin,2009,93(3):329-340.
    Paktinat, J., Johnson, N., Williams, C., et al. Case study: optimizing hydraulic fracturingperformance in northeastern United States fractured shale formations[J]. SPE104306
    Rickman, R., Mullen, M., Petre, E., et al. A practical use of shale petrophysics for stimulationdesign optization: all shale plays are not clones of the Barnett Shale[J]. SPE115258
    Rubin, B.. Accurate simulation of non-Darcy flow in stimulated fractured shale reservoirs[J].SPE132093
    Schepers, K. C., Nuttal, B., Oudinot, A. Y., et al. Reservoir modeling and simulation of theDevonian gas shale of eastern Kentucky for enhanced gas recovery and CO2storage[J].SPE126620
    Schettler, P. D., Parmely, C. R., Juniata, C., et al. Gas storage and transport in Devonianshales[J]. SPE17070
    Sethian, J. A.. A fast marching level set method for monotonically advancing fronts[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(4):1591–1595.
    Sethian, J. A.. Level Set Methods and Fast Marching Methods: Evolving Interface incomputational Geometry, Fluid Mechanics, Computer Vision and Material Science[M].Cambridge University Press,1998.
    Shaw, J. S., Gatens III, J. M., Lancaste, D. E., et al. Reservoir and stimulation analysis of aDevonian shale gas field[J]. SPE15938
    Singh, P.. Lithofacies and sequence stratigraphic framework of the Barnett Shale, NortheastTexas[D]. The University of Oklahoma,2008.
    Sondergeld, C. H., Rai, C. S.. A new exploration tool: quantitative core characterization[J].Pere and Applied Geophysics,1993,141(2):249-268.
    Song, B., Economides, M. J., Ehlig-Economides, C.. Design of multiple transverse fracturehorizontal wells in shale gas reservoirs[J]. SPE140555
    Wang, F. P., Reed, R. M., John, A., et al. Pore networks and fluid flow in gas shales[J].SPE124253
    Yin, J. C., Xie, J., Akhil, D. G., et al. Improved characterization and performance assessmentof shale gas wells by integrating stimulated reservoir volume and production data[J]. SPE148969
    Yin, J. C., Xie, J., Datta-Gupta, A., et al. Improved characterization and performanceassessment of shale gas wells by integrating stimulated reservoir volume and productiondata[J]. SPE148969
    陈尚斌,朱炎铭,王红岩,等.中国页岩气研究现状与发展趋势[J].石油学报,2010,31(4):689-694.
    陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32.
    程克明,王世谦,董大忠,等.上扬子区下寒武统筇竹寺组页岩气成藏条件[J].天然气工业,2009,29(5):40-45.
    董大忠,程克明,王玉满,等.中国上扬子区古生界页岩气形成条件及特征[J].石油与天然气地质,2010,31(3):288-308.
    段永刚,李建秋.页岩气无限导流压裂井压力动态分析[J].天然气工业,2010,30(10):26-29.
    段永刚,魏明强,李建秋.页岩气藏渗流机理及压裂井产能评价[J].重庆大学学报,2011,34(4):62-65.
    付永强,马发明,曾立新,等.页岩气藏储层压裂实验评价关键技术[J].天然气工业,2011,31(4):51-54.
    高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011,31(4):55-58.
    蒋恕.页岩气开发地质理论创新与钻完井技术进步[J].石油钻探技术,2011,39(3):17-23.
    蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术.2011,39(3):36-40.
    蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.
    李建秋,曹建红,段永刚,等.页岩气井渗流机理及产能递减分析[J].天然气勘探与开发.2011,34(2):34-37.
    刘立峰,张士诚.通过改变近井地应力场实现页岩储层缝网压裂[J].石油钻采工艺,2011,33(4):71-74.
    刘树根,曾祥亮,黄文明,等.四川盆地页岩气藏和连续型-非连续型气藏基本特征[J].成都理工大学学报(自然科学版),2009,36(6):578-592.
    刘玉章.中国页岩气勘探开发技术研究进展[C].非常规天然气技术论坛,四川成都,2011.
    聂海宽,张金川.页岩气储层类型和特征研究_以四川盆地及其周缘下古生界为例[J].石油实验地质,2011,33(6):219-225.
    宁宁,王红岩,雍洪,等.中国非常规天然气资源基础与开发技术[J].天然气工业,2009,9(12):111-113.
    孙海成,汤达祯,蒋廷学,等.页岩气储层压裂改造技术[J].油气地质与采收率,2011,18(4):90-97.
    王红岩,李景明,赵群,等.中国新能源资源基础及发展前景展望[J].石油学报,2009,30(3):469-473.
    王世谦,陈更生,董大忠,等.四川盆地下古生界页岩气藏形成条件与勘探前景[J].天然气工业,2009,29(5):51-58.
    吴奇,胥云,刘玉章,等.美国页岩气体积改造技术现状及对我国的启示[J].石油钻采工艺,2011,33(2):1-7.
    熊伟,郭为,刘洪林,等.页岩的储层特征以及等温吸附特征[J].天然气工业,2012,32(1):113-116.
    薛承瑾.页岩气压裂技术现状及发展建议[J].石油钻探技术,2011,39(3):24-29.
    闫存章,黄玉珍,葛春梅.页岩气是潜力巨大的非常规天然气资源[J].天然气工业,2009,29(5):1-6.
    曾祥亮,刘树根,黄文明,等.四川盆地志留系龙马溪组页岩与美国Fort Worth盆地石炭系Barnett组页岩地质特征对比[J].地质通报,2011,30(2~3):372-384.
    张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.
    张士诚,牟松茹,崔勇,等.页岩气压裂数值模型分析[J].天然气工业,2011,31(2):81-87.
    张雪芬,陆现彩,张林晔,等.页岩气的赋存形式研究及其石油地质意义[J].地球科学进展,2010,25(6):597-600.
    赵群,王红岩,刘人和,等.世界页岩气发展现状及我国勘探现状[J].天然气技术,2008,2(3):11-14.
    邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700