光纤氧传感膜的研制及传感器在环境监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由三个部分组成:1.文献综述;2.方法原理;3.光纤氧传感器的研制及应用研究。
     在第一章中,在研读文献的基础上综述了溶解氧的定义和在生产生活中的重要意义;溶解氧测定的常规方法;光纤技术的起源、发展及其应用于化学传感器的优点;光纤化学传感器的原理特点;探索了不同时期应用于氧传感器的荧光指示剂的种类和性能;制备氧传感探头的几种方法原理和光纤氧传感器在医学、生物、海洋监测等领域中的应用现状。
     在第二章中,介绍了本论文所涉及的的荧光猝灭理论和溶胶-凝胶技术。荧光猝灭理论的基础是Stern-Volmer方程。采用溶胶-凝胶法制备氧传感膜的工艺过程包括溶胶-凝胶法的基本原理,基本工艺流程,溶胶-凝胶过程中前驱物、加水量、催化剂、pH值、控制干燥的化学添加剂和温度等参数对氧传感膜性能的影响。
     第三章光纤氧传感器的研制及应用研究分为实验部分和结果讨论两节。
     第一节实验部分介绍了实验使用的仪器和试剂,阐述了实验方法,包括系统组成与响应原理,传感膜的制备与安装,标准曲线的建立,测定方法及分析结果预报,人工海水配制等。
     第二节结果与讨论中,首先讨论了传感膜配方的优选,从硅醇盐前驱物、交联剂二甲基二甲氧基硅烷、醇类、控制干燥的化学添加剂和作为氧传感探针的钌化合物等物质的种类和用量方面进行对照性实验,确定最佳的传感膜配方;然后考察了温度对响应信号的影响;监测了响应膜的可逆性、稳定性及响应时间,结果表明氧传感膜对溶解氧的响应具有良好的
    
     摘 要
    可逆性,稳定性,较快的响应时间和较长的使用寿命;制作了响应曲线,
    计算了响应曲线的线性,在测定的浓度范围内,响应信号与浓度间存在良
    好的线性关系(d.9992,n=6),方法的日内和日间的相对标准偏差 RSD
    在 1.7%~5刀%之间,最低检出限为 0刀3 P g/iL;考察了标准海水中主要
    离子浓度放大1倍后的样品溶液、盐度在0~49范围内的人工海水,以及
    pH在 l~13范围内的缓冲溶液等干扰因素的对膜响应的影响,结果无显著
    性干扰;将本法与国标法相比较,验证了方法的可用性,最终用于在线监
    测海水中的溶解氧。
     本工作的主要贡献在于:通过优化传感膜配方确定了以溶胶-凝胶法
    制备氧传感膜的工艺流程,成功地将荧光指示剂钉化合物包埋在可透氧的
    硅薄膜中。提高了光纤氧传感器对溶解氧的识别能力,使该传感器的各项
    性能指标达到了预期目标。为了便于控制试验条件以进行样品测试的方法
    学研究,本文将光纤氧传感器耦合于流通池系统中。在现场测试中,光纤
    氧传感探头可直接进行溶解氧的原位监测。由于所使用的荧光分子探针的
    激发光谱在可见区范围,光源的体积得以减小,达到了实现整体仪器的微
    型化的目的。所制备的溶胶-凝胶氧传感膜与CCD小型光谱仪配套,研制
    成功的光纤氧传感器可应用于环境监测。
This dissertation consists of three parts: 1. Literature summary, 2. Methods and principles, 3. The manufacture and investigation of fiber-optical oxygen sensor.
    
    In the first part, the article summarized the definition and importance about dissolved oxygen (DO), the general methods of measuring DO. The origin, development and excellence of usage in chemical sensor with fiber-optical technology, the characteristic of fiber optical chemical sensor are introduced. Those deferent fluorescence indicators have been used in oxygen sensors during more than twenty years and their deferent capability as fluorescence indicators. There have several methods of making sensor membrane including sol-gel process. And usage of the fiber-optical oxygen sensors in iatrology, biology, ocean inspect etc.
    
    The second part is about methods and principles of this experiment. The Stern-Volmer equation described the oxygen quenching progress. Sol-gel processes include basic theory, primary steps, and the influence of some parameters to the sol-gel membrane performance such as precursor, water, catalyzer, pH value, drying control chemical additives and temperature.
    
    The third part of this paper includes: 1. Experimental. 2. Results and discussion.
    
    The experimental introduces the instruments and reagents be used. The basic principle of the experiment including system composing, responding theory, making and installing of sensor membrane, establishing standard
    
    3
    
    
    
    curve, measuring, predicting results and confecting manual seawater etc.
    
    Optimizing the component of sd-gel membrane by chancing species and quantity of those parameters had mentioned content. The optode shows a satisfactory linear response for the dissolved oxygen in water (r = 0.9992, n =
    
    6) The relative standard deviations were 1.7% 5.0 %, the detection limit was 0.03 11 g/mL (SfN=3). The exposure time and recovery time of the optode membrane are 30s and 90s respectively. The reversibility of the fluorescence signal was evaluated by alternate measurements in oxygen saturated water and nitrogen-purged water. The relative standard deviation (n6) is found to be
    
    0.6%. The fluorescence intensity of the membrane in contact with flowing water was recorded over a period of 96h. From fluorescence intensity values taken every 4h (n=24) a RSD of 6% was obtained. After 3 month, the fluorescence signal of the membrane had decreased by 16%. The decrease may be due to washing out of fluoroprobe, but this was not an obstacle to its further use; the quantitative information (Fo I F) did not change significantly, where F0 and F are the fluorescence intensities in the absence and in the presence of oxygen, respectively. The sensor has good reproducibility and long-term stability. The interference was investigated and the selectivity of method in seawater was affirmed by a conventional method.
引文
1. McEvoy A. K.,C. M. McDonagh. Analyst.,1996, 121(6): 785~788
    2. 阮复昌,李向明.华南理工大学学报(自科版),1994,22(3):32~36
    3. Peterson J. I.,Raphael V.F. Anal. Chem.,1984, 56(1): 62~67
    4. Atkinson J.,A Cranny. Sensors and Actu B-Chem.,1998, 47(1-3): 171~180
    5. Towe B.C, S. Flechsig. Biosensors & Bioelectronics.,1996, 11(8): 799~803
    6. 金中华,陈飞.中国环境监测.,1992,8(5):47~48
    7. Sanchezpedreno C, J A Ortuno. Anal. Chim. Acta.,1996, 333(1-2): 107~113
    8. Glasspool W, J Atkinson. Sensors and Actuators B-Chemical.,1998, 48(1-3): 308~317
    9. Technical Supervision Bureau of China(国家技术监督局).The State Criterion of China(中华人民共和国国家标准)GB12763.4-91[M],1991:1~13
    10.简新立.环境科学与技术.,1992,(4):27~29
    11. Wittkampf M, G C Chemnitius. Sensors and Actuators B-Chemical.,1997, 43(1-3):40~44
    12. Tomowski D.J.,E.J.Bekos.Anal. Chem.,1995,67(9):1546~1552
    13.李洪兴.海洋科学.,1992,(1):69~70
    14.郑瑞芝,张钒,王键.,海洋通报.,1996,15(3):69~73
    15.郜洪文.石油化工.,1994,23(8):540~543
    
    
    16.王宅中,马俊等.分析化学.,1992,20(11):1355~1358
    17.向蓝翔,张仲生.传感器技术.,1997,16(6):46~47
    18.藤怀德,龚德俊,李维森等.海洋科学.,1995,(5):57~59
    19.王玉江,董峰,吕翔宇等.分析化学.,1997,25(1):10~14
    20.曹扬庆.电子技术应用.,1993,(7):14~17
    21.徐永平.海洋科学.,1992,(2):33~36
    22.钱俊峰.分析仪器.,1991,(1):36~39
    23.于家贵,冯光易,陈芙蓉.海洋技术.,1990,9(4):6~11
    24. MacCraith B. D.,C. M. McDonagh. Analyst.,1993, 118(4): 385~388
    25. Watkins A. N.,B. R. Wenner. Applied Spectroscopy.,1998, 52(5): 750~754
    26.范世福.化学传感器.,1997,17(4):248~251.
    27. Peterson J. I.,S. R. Goldstein. Anal.Chem.,1980, 52(6): 864~869
    28. Hauser P. C.,Susie S. S. Tan. Analyst.,1993, 118(8): 991~995
    29.范世福,陈莉,肖松山等.光学仪器.,1999,21(1):37~44
    30. Thompson M.Freeman, W.R Seltz. Anal. Chem.,1981, 53(1): 98~102
    31. Marc J.P. Leiner. Anal. Chim. Acta.,1991, 255(1): 209~222
    32. Wolfbeis O.S.,Helmut Offenbacher. Mikrochimica. Acta.,1984Ⅰ, 153~158
    33. Philip Y. F. Li, Ramaier N. Analyst.,1989, 114(6): 663~666
    34. Plillip Y.F. Li, Ramaier Narayanaswamy. Analyst.,1989, 114(8): 1191~1195
    35. Xiang-Ming Li, Kwok-Yin Wong. Anal. Chem. Acta.,1992, 262(1): 27~32
    
    
    36. Weekey Wai-San Lee, Kwok-Yin Wong. Anal. Chem., 1993, 65(3) : 255-258
    37. Sang-Kyuang Lee, Ichiro Okura-Analytica. Chimica. Acta,, 1997, 342(2/3) : 181-188
    38. Sang-Kyuang Lee, Ichiro Okura. Analyst., 1997, 122(1) : 81-84
    39. Paul Hartmann. Anal. Chem., 1996,68(5) : 2615-2620
    40. Demas J. N., B. A. DeGraff. Anal. Chem., 1991, 63(16/17) : 829A-837A
    41. Carraway E. R., J.N.Demas. Anal. Chem., 1991, 63(4) : 337-342
    42. Wenying Xu, Kristi A. Kneas. Anal. Chem., 1996, 68(15) : 2605-2609
    43. LouAnn Sacksteder, J. N. Demas. Anal. Chem., 1993, 65(23) : 3480-3483
    44. Paul Hartmann, Marc. J. P. Leiner. Anal. Chem., 1995,67(1) : 88-93
    45. Chun-Man C, Mee-Yee C, Minquan Z. Analyst, 1999, 124: 691.
    46. 吕太平,Stefan Rasongi.化学传感器,1997,(17) 4:279-281
    47. Kerry P M, Xueping L. Anal.Chim.Acta., 1998, 361(1-2) : 73-78
    48. Ignacy G, Gryczynski Z. Analyst, 1999, 124: 1041-1045
    49. 李新霞,陈坚.分析科学学报,1999,15(5) :425-429
    50. Watkins A. N., B. R. Wenner. Applied Spectroscopy., 1998, 52(5) : 750-754
    51. McDonagh C., B. D. MacCraith. Anal. Chem., 1998, 70(1) : 45-50
    52. Murtagh M T, H C Kwon. Journal of Materials Research., 1998, 13(1) : 3326-3331
    53. Wolthuis R A. IEEE Transactions on Biomidical Engineering, 1992, 39(2) : 185-192
    54. Yadong Z, Angela R, Charies S. Anal.Chem., 1999, 71: 3887-3895
    
    
    55. James N D, DeGraff B A. Analytical Chemistry News&Features, 1999, 10: 793A~799A
    56. Wang W. Sea Technology, 1999, 40:69~78
    57.何锐,刘光葵等.传感器技术,1999,18(3):1~4
    58.Li Wei,Chen Xi,Zhuang Zhi-Xia,et al.北京大学学报(自然科学版),2001,37(2):226~230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700