TiO_2纳米粒子和纳米管的生物学效应及其在PP复合材料中抗菌作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2的应用领域越来越广泛,该材料在其生产和使用过程中不可避免的会与生物系统和生态环境接触,由此将可能对人体及生物产生影响。本文系统研究并分析了TiO_2纳米粒子和纳米管的体内和体外生物毒性、对原核微生物的抗性和作用机理、以及纳米TiO_2光催化抗菌剂在抗菌复合材料中的抗菌性能及抗菌机理。主要研究工作包括下列内容:
     (1)采用水热法制备了TiO_2纳米粒子和TiO_2纳米管,通过透射电镜(TEM)、X射线衍射仪(XRD)、傅立叶红外光谱分析仪(FT-IR)和拉曼光谱仪(Raman)等方法对制得的粉体进行了微结构表征。结果表明,TiO_2纳米粒子的粒径为100nm,TiO_2纳米管的管径为10nm,管长200nm左右,XRD显示TiO_2纳米粒子为锐钛矿型结构,而TiO_2纳米管为锐钛矿和金红石的混合晶型,红外光谱结果表明纳米TiO_2表面无其它修饰基团。
     (2)用气管滴注法对小鼠分别进行了TiO_2纳米粒子和纳米管染毒,在不同的时间对小鼠肺泡灌洗液、血清酶学指标检测和肺组织切片病理观察,结果表明两种材料均对肺脏组织产生损伤,但是从肺泡结构的完整性以及组织变厚的程度看,在相同剂量下纳米粒子组比纳米管组的危害更严重,引起肺组织细胞膜的损伤和脂质过氧化程度升高,肺部毛细血管的屏障作用未受到大的影响;这种染毒方式对小鼠肝脏、心肌组织、肾脏都产生不同程度的损伤。
     (3)通过小鼠腹腔巨噬细胞分别与TiO_2纳米粒子和纳米管直接接触染毒,观察不同时间巨噬细胞的形态,检测细胞的存活率以及细胞上清液中MDA,LDH,GSH的含量以评价TiO_2纳米粒子和纳米管的体外细胞毒性。研究结果表明:TiO_2纳米粒子能被巨噬细胞吞噬,对巨噬细胞形态有明显的影响,在不同染毒时间内对巨噬细胞造成急性损伤作用程度不同,存在着浓度-效应关系;TiO_2纳米管不能被巨噬细胞吞噬,对巨噬细胞形态影响并不明显;TiO_2纳米粒子和TiO_2纳米管接触培养的细胞上清液中MDA,LDH,GSH的变化均随染毒时间和浓度而改变,可见TiO_2纳米粒子和TiO_2纳米管均导致了细胞氧化应激并因此产生毒性损伤。
     (4)考察TiO_2纳米粒子和纳米管在无光照条件下的抗菌性能,结果发现在相同剂量、相同的接触时间,对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)TiO_2纳米粒子比纳米管具有更好的抗菌性能。因此,采用溶胶凝胶法制备了平均粒径为30nm氮掺杂TiO_2纳米粒子。比较了未掺杂二氧化钛纳米粒子和氮掺杂二氧化钛纳米粒子在黑暗条件和可见光照射条件下分别对大肠杆菌和金黄色葡萄球菌的影响,结果发现:大肠杆菌和金黄色葡萄球菌分别与二氧化钛纳米粒子接触培养2小时后,其在黑暗条件下的存活率均高于其在光照条件下的存活率,但未掺杂二氧化钛纳米粒子的存活率下降值远小于氮掺杂二氧化钛纳米粒子的存活率下降值,说明可见光照射对氮掺杂纳米二氧化钛的杀菌率有明显增强作用。
     (5)将制得的氮掺杂的二氧化钛纳米粒子作为抗菌剂,加入PP复合材料中,采用熔融共混法制得TiO_2纳米粒子不同含量的PP复合材料,对所制备的不同含量TiO_2纳米粒子的PP复合材料的微观结构、力学性能以及抗菌性能进行测试。结果表明:当TiO_2含量为2wt.%时,纳米TiO_2/PP复合材料的综合力学性能最好;纳米TiO_2/PP复合材料的冲击断口形貌为脆性断口,纳米TiO_2添加到PP中可提高复合材料的力学性能;抗菌性能测试发现,与纯PP材料相比,纳米TiO_2/PP复合料在光照条件下的抗菌性能明显优于纯PP材料。
     本文的上述研究结果进一步揭示了纳米TiO_2材料的生物毒性、光催化杀菌性能及其机理,对于评价纳米材料的环境和健康风险,保证纳米技术产业的可持续的发展具有理论指导意义,为进一步研究具有广泛应用前景的聚合物基纳米抗菌复合材料的工作奠定了一定的理论基础,积累了一些实验经验。
TiO_2nanomaterials were applied widely in various fields nowadays. TiO_2nanomaterials wouldbring more and more healthy and ecological damages to the society owing to the extensive andinevitable contact with biological systems and environment. In this study, we systematicallyinvestigated the TiO_2nanoparticles and nanotubes in vivo and in vitro biological toxicity as well as onprokaryotic microbial resistance and their mechanisms, and a further research on the antibacterialproperties and antibacterial mechanism of TiO_2nanoparticles as photocatalytic antibacterial agents inPP composite materials was carried out.
     The research work mainly includes the following aspects:
     (1) TiO_2nanoparticles and TiO_2nanotube samples were prepared by hydrothermal reaction andcharacterized by means of transmission electron microscope (TEM), X ray diffraction (XRD), Fouriertransformed infrared spectrum (FT-IR) and Raman spectrum (Raman), respectively. The resultsshowed that the diameters of as-prepared nanoparticles and nanotubes were about50nm and10nmwith about200nm in length. The crystal form of TiO_2nanoparticles were homogeneous anatase andTiO_2nanotube was mixed crystal with anatase and rutile. And the other modification groups were notfound on the surface of nano TiO_2.
     (2) The biological toxicity of TiO_2nanoparticles and TiO_2nanotubes in vivo was studied. Micewere exposed to TiO_2nanomaterials through intratracheal instillation, and then at different time themurine bronchoalveolar lavage fluid and serum indexes in blood were detected and the pathologicalmorphology of lung tissue were observed. The results showed that lung tissue damages were led bytwo different shape TiO_2nanomaterials. From the alveolar structure integrity of lung as well as thedegree of the abnormal tissue thickening, the responds to the same dose nanoparticles group weremore serious than to the nanotube group. And the lung tissue cell membrane damage and lipidperoxidation increased, but the barrier effect of lung capillary wasn’t affected. There were differentdegrees damage to liver, kidney and myocardium.
     (3) The cytotoxicity on mouse peritoneal macrophages of TiO_2nanoparticles and nanotubes invitro was studied at different contacted time. The morphology of macrophages was observed, the cellsurvival and the activity of enzyme in cell supernatants were detected. The results showed that TiO_2nanoparticles could be engulfed by macrophage and have obvious effects on the morphology ofmacrophages. The degrees of acute and injury effects on macrophages were concentration dependentin different contamination time. The TiO_2nanotubes could not be engulfed by macrophage and the effects on macrophage morphology was not apparent. The enzyme activity in TiO_2nanoparticles andTiO_2nanotube contacted cultured cell supernatants changed with contamination time andnanomaterials concentration, which led to cellular oxidative stress to produce toxic injury, inducedfree radical and enhanced oxidative stress ability.
     (4) The antibacterial property of TiO_2nanoparticles and nanotubes was investigated in theabsence of light. It was found that TiO_2nanoparticles have higher antibacterial activity than nanotubeson Escherichia coli and Staphylococcus aureus at the same dose and contacted time, but theantibacterial ratio was low. In order to get more high antibacterial activity and respond to visible light,nitrogen doped TiO_2particles were prepared by the sol-gel method. The average diameter ofnanoparticle was about30nm. Comparing the antibacterial activity of undoped titanium dioxidenanoparticles with nitrogen doped titanium dioxide nanoparticles in the dark and visible lightirradiation conditions on Staphylococcus aureus and Escherichia coli, the survival rates of the bacteriacontacted with nanoparticles for2hours in the dark conditions were higher than that underillumination conditions, but the survival rate value drop rate for not doped titanium dioxidenanoparticles from the dark to illumination conditions was far less than that for nitrogen doped titaniananoparticles at the same contacted time. This illustrated that the visible light irradiation enhanced theantibacterial activity of nitrogen-doped nano titanium dioxide.
     (5) TiO_2/PP composite materials with different contents of nitrogen doped titanium dioxidenanoparticles were manufacted by melt blending method. The mechanical properties, antibacterialperformance and microstructure of TiO_2/PP composite materials were performaced.The resultsshowed that TiO_2nanoparticles aggregated into microparticles in TiO_2/PP composite materials. Themechanical properties and antibacterial performance of the composites were better as the TiO_2contentis2wt%.
     Through this research, the biological toxicity and photocatalytic bactericidal performance ofnano TiO_2were explained further, and the experimental and theoretical foundation were laid for a newenvironment purification composite materials research. And this research had very importantsignificance for evaluating nanomaterials potential environment risks and ensuring thenanotechnology industry sustainable development.
引文
[1]钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J].化工新型材料,2001,29(7):1-5.
    [2]赵宇亮,赵峰,叶昶.纳米尺度物质的生物环境效应与纳米安全性[J].中国基础科学,2005,7(2):19-23.
    [3]庞小峰,张怀武,邓波.纳米尺度物质的生物效应和安全性[J].物理,2006,35(4):286-293.
    [4]赵宇亮,柴之芳.纳米生物效应研究进展[J].学科发展,2005,20(3):194-199.
    [5] Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size,in vivo particle persistence and lunginjury[J].Nviron Health Perspect,1994,102(S5):173-179.
    [6] Bermudez E, Mangum JB, Wong BA, et al. Pulmonary Responses of Mice, Rats, and Hamsters to SubchronicInhalation of Ultrafine Titanium Dioxide Particles [J].Toxicol Sci,2004,77(2):347-357.
    [7]王翔,闫蕾,贾光.纳米材料潜在健康影响的研究进展[J].毒理学杂志,2005,19(3):15-17.
    [8] Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles[J].Toxicol Appl Pharmacol,2001,172(2):119-127.
    [9] Zhang QW,Kusaka Y.Comparative injurious and proinflammatory effects of three ultrafine metals in macrophagesfrom young and old rats[J]. Inhal Toxicol,2000,12(S3):267-273.
    [10]李光.部分纳米材料生物效应的初步研究[A].第243次香山科学会议:纳米尺度的生物效应(纳米安全性)论文集[C].北京,2004:38.
    [11] Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice7and90daysafter intratracheal instillation [J]. Toxicol Sci,2004,77(1):126-134.
    [12] Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbonnanotubesin rats [J]. Toxicol Sci,2004,77(1):117-125.
    [13] Lademann J, Weigmann HJ, Rickmeyer C, et al. Penetration of Titanium Dioxide Microparticles in a SunscreenFormulation into the Horny Layer and the Follicular Orifice [J]. Skin Pharmacol Appl Skin Physiol,1999,12(5):247-256.
    [14] Pflucker F, Wendel V, Hohenberg H, et al. The Human Stratum corneum Layer: An Effective Barrier againstDermal Uptake of Different Forms of Topically Applied Micronised Titanium Dioxide [J].Skin Pharmacol ApplSkin Physiol,2001,14(1):92-97.
    [15] Schulz J, Hohenberg H, Pflucker F, et al. Distribution of sunscreens on skin [J].Adv Drug Delivery Rev,2002,54(S1):157-163.
    [16] Rosemary Dunford, Angela Salinaro, Lezhen Cai, et al. Chemical oxidation and DNA damage catalysed byinorganic sunscreen ingredients [J].FEBS Lett,1997,418(1-2):87-90.
    [17] Anna A.Shvedova,Vincent Castranova,Elena R. Kisin,et al. Exposure to Carbon Nanotube Material: Assessmentof Nanotube Cytotoxicity using Human Keratinocyte Cells [J]. Journal of Toxicology and Environmental Health,Part A,2003,66(20):1909-1926.
    [18]赵春芳.纳米材料的环境风险[J].化学教学,2005(5):42-43.
    [19] Chen HH, Yu C, Ueng TH, et al.Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60in rats[J]. Toxicologic Pathology,1998,26(1):143-151.
    [20] Oberd rster E.. Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of JuvenileLarge mouth Bass [J]. Environ Health Perspect,2004,112(10):1058-1062.
    [21] Oberd rster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain [J]. InhalationToxicology,2004,16(6-7):437-445.
    [22] Robert F. Nanomaterials Show Signs of Toxicity [J]. Science,2003,300(11):243.
    [23] Brumfiel G. A little knowledge [J]. Nature,2003,424(17):246.
    [24] Kelly K L. Nanotechnology grows up [J]. Science,2004,304:1732-1734.
    [25] Robert F. Calls Rise for More Research on Toxicology of Nanomaterials [J]. Science,2005,310(9):1609.
    [26] Zhang Wei-xian. Environmental technologies at the nanoscale[J]. Environmental Science&Technologies,2003,37(5):103-108.
    [27] Alexis T. Bell. The Impact of Nanoscience on Heterogeneous Catalysis [J]. Science,2003,299(14):1688-1691.
    [28] André Nel, Air Pollution–Related Illness:Effects of Particles[J]. Science,2005,308(6):804-806.
    [29] Andre Nel, Tian Xia, Lutz Madler, Ning Li. Toxic Potential of Materials at the Nanolevel [J]. Science,2006,311(3):622-627.
    [30]汪冰,丰伟悦,赵宇亮等.纳米材料生物效应及其毒理学研究进展[J].中国科学,2005,35(1):1-10.
    [31] Zhen Chen, Huan Meng, Gengmei Xing, Chunying Chen, Yuliang Zhao, Guang Jia, Tiancheng Wang, Hui Yuan,Chang Ye, Feng Zhao, Zhifang Chai,Chuanfeng Zhu, Xiaohong Fang, Baocheng Ma, Lijun Wan. Acutetoxicological effects of copper nanoparticles in vivo [J]. Toxicology Letters,2006,163(2):109-120.
    [32]王天成,张智勇,贾光,沈惠麒,赵宇亮.纳米氧化镁对小鼠血清生化指标的影响[J].中国工业医学杂志,2005,18(3):140-142.
    [33]王天成,贾光,沈惠麒,闫蕾,王翔,李振荣,李国权,赵宇亮.纳米铁材料对小鼠血清生化指标的影响[J].环境与职业医学,2004,21(6):434-436.
    [34] Eric Fabian, Robert Landsiedel, Lan Ma-Hock, Karin Wiench, Wendel Wohlleben and Ben van Ravenzwaay.Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats [J]. Archives ofToxicology,2008,82(3):151-157.
    [35] Arnaud Magrez,Sandor Kasas, Valérie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsicas, BeatSchwaller and László Forró. Cellular Toxicity of Carbon-Based Nanomaterials [J]. Nano Lett.,2006,6(6):1121-1125.
    [36] Hanna L. Karlsson, Johanna Gustafsson, Pontus Cronholm, Lennart M ller. Size-dependent toxicity of metal oxideparticles-A comparison between nano-and micrometer size [J]. Toxicology Letters,2009,188(2):112-118.
    [37] Wei Jiang, Hamid Mashayekhi, Baoshan Xing. Bacterial toxicity comparison between nano-and micro-scaledoxide particles [J]. Environmental Pollution,2009,157(5):1619-1625.
    [38]王小健,乔学亮,陈建国,王洪水,丁士垣.无机抗菌剂的研究现状及发展趋势[J].陶瓷学报,2003,24(4):239-244.
    [39]黄勋.无机抗菌复合材料的制备、抗菌活性及其抗菌机理研究[D].博士学位论文,湖南:中南大学,2007.
    [40]夏金兰,王春,刘新星.抗菌剂及其抗菌机理[J].中南大学学报(自然科学版),2004,35(1):31-38.
    [41]马万顺,崔燕,赵玉云等.纳米颗粒抗菌机理的研究进展[J].生物物理学报,2010,26(8):638-648.
    [42]崔学军,刘春海,杨瑞嵩,林修洲,龚敏.水性抗菌耐污氟碳涂料的研究[J],四川理工学院学报(自然科学版),2012,25(1):31-34.
    [43]李艳,邢明杰,张玉清,张元明.纳米银抗菌涤纶/粘胶基甲壳素混纺纱的纺制及性能测试[J].山东纺织科技,2009,(4):17-21.
    [44]李一凌.纳米抗菌材料应用研究进展[J].科技创新导报,2009,(3):1-1.
    [45]柳翔、蔡继业.纳米技术在抗菌材料方面的应用[J].生命科学仪器,2008,6(8):9-12.
    [46]程明明,柴立元,彭兵,王建强.抗菌陶瓷的研究现状及展望[J].材料导报,2005,19(9):47-49.
    [47]丁爱武,黄茂芳,高天明,曾宗强.聚合物抗菌纳米复合材料的研究进展[J].热带农业科学,2010,30(2):28-33.
    [48]童玉清,田明,徐瑞芬,胡伟康,于亮,张立群.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[J].复合材料学报,2003,20(5):88-95.
    [49]丁雪佳,王军,张鹏,徐日炜,余鼎声,张立群.新型纳米光触媒剂二氧化钛改性聚丙烯的研究[J].弹性体,2004,14(4):1-4.
    [50]王永忠,钟明强,杨晋涛,刘吉,王慧丽.纳米Ag+/TiO2/聚氯乙烯抗菌塑料制备及其性能[J].材料科学与工程学报,2009,27(6):862-864.
    [51] Fajia Liu, HuLiu, Xiaoyun Li, Huanyu Zhao, Danping Zhu, Yingying Zheng, Chaorong Li. Nano-TiO2@Ag/PVCfilm with enhanced antibacterial activities and photocatalytic properties [J]. Applied Surface Science,2012,258(10):4667-4671.
    [52] Xiaodong Zhang, Haijia Su, Yan Zhao, Tianwei Tan. Antimicrobial activities of hydrophilic polyurethane/titaniumdioxide complex film under visible light irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,199(2-3):123-129.
    [53]徐瑞芬,许秀艳,付国柱.纳米二氧化钛在抗菌塑料中的应用性能研究[J].塑料,2002,31(2:):26-29.
    [54]王淑花,魏丽乔,许并社.抗菌ABS纳米复合材料的研究及应用[J].工程塑料应用,2005,33(6):8-10.
    [55]应莹,顾抗菌尼龙6纤维的制备及其性能研究[J].合成纤维,2009,(2):27-29.
    [56] Hem Raj Pant, Dipendra Raj Pandeya, Ki Taek Nam, Woo-il Baek,Seong Tshool Hong, Hak Yong Kim.Photocatalytic and antibacterial properties of a TiO2/nylon-6electrospun nanocomposite mat containing silvernanoparticles[J].Journal of Hazardous Materials,2011,189(1-2):465-471.
    [57] Deng Hua, Zhang Ji-mei, Li Xiu-ming, Li He, Tang Wan-sheng. Manufacture and property of multi-functionalnano-titanium dioxide finishing agents for fabric [J]. Journal of Textile Research,2006,
    [58]王海云,李双燕,张幼珠.载银纳米二氧化钛对棉织物的抗菌性能研究[J].印染助剂,2009,26(10):23-26.
    [59]姚树山.纳米二氧化钛/芒麻纤维功能复合材料的制备及表征[D].硕士学位论文,陕西:陕西师范大学,2007.
    [60]丁爱武,黄茂芳,丁丽,高天明,曾宗强,杨增杰.纳米天然橡胶复合材料的抗菌性研究[J].热带作物学报,2010,31(2):309-313.
    [61]牛曦婷,徐瑞芬,徐焘.纳米抗菌防霉合成革涂饰剂的研制及应用[J].中国皮革,2008,39(23):40-42.
    [62]张秀丽,李辉,范浩军,陈意,石碧.纳米TiO2杂化明胶载银复合材料的抗紫外和抗菌性能[J].中国皮革,2009,38(19):27-31.
    [63]孙丰波,余雁,江泽慧,任海青,王戈,刘杏娥.竹材的纳米TiO2改性及抗菌防霉性能研究[J].光谱学与光谱分析,2010,30(4):1056-1060.
    [64]万正龙,蔡杰,刘森,熊汉国.纳米二氧化钛对竹粉/PVC抗菌性能的影响[J].现代塑料加工应用,2011,23(2):17-20.
    [65] Wang J, Zhou G,Chen C,Yu H,Wang T,Ma Y, et al. Acute toxicity and biodistribution of different sized titaniumdioxide particles in mice after oral administration [J]. Toxicol Lett,2007,168(2):176-185.
    [66] Bermudez E, Mangum J B, Asgharian B, et al. Long-term pulmonary responses of three laboratory rodent species tosubchronic inhalation of pigmentary titanium dioxide particles [J]. Toxicol. Sci.,2002,70:86-97.
    [67] Donaldson K. Nonneoplastic lung responses induced in animals by exposure to poorly soluble nonfibrous particles[J]. Inhal. Toxicol.2000,12:121-139.
    [67]王燕,康现江,穆淑梅.纳米二氧化钛的毒理学研究进展[J].中国药理学与毒理学杂志,2008,22(1):77-80.
    [69] Hext P M., Tomenson J A, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology [J]. Ann.Occup. Hyg.,2005,49:461-472.
    [70] O'Regan B., Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films [J].Nature,1991,353:737-740.
    [71] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [72] Matsubara H, Takada M, Koyama S, Hashimoto K, Fujishima A. Photoactive TiO2Containing Paper: Preparationand Its Photocatalytic Activity under Weak UV Light Illumination [J]. Chem. Lett.,1995,9:767-768.
    [73] Gelis C, Girard S, Mavon A, Delverdier M, Paillous N, Vicendo P. Assessment of the skin photoprotectivecapacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models[J]. Photodermatol. Photo.,2003,19:242-253.
    [74] Lomer M C, Thompson R P, Powell J J. Fine and ultrafine particles of the diet: influence on the mucosal immuneresponse and association with Crohn’s disease [J]. P. Nutr. Soc.2002,61:123-130.
    [75] Garabrant, D H, Fine L J, Oliver C, Bernstein L, Peters J M. Abnormalities of pulmonary function and pleuraldisease among titanium metal production workers [J]. Scand. J. Work Environ. Health,1987,13:47-51.
    [76]王煜倩,贾光,沈臻霖,张杰,唐仕川,张斌.纳米二氧化钛对肺部损伤研究进展[J].中国安全生产科学技术,2012,8(4):56-60.
    [77] Trochimowicz H J, Lee K P, Reinhardt, C F. Chronic inhalation exposure of rats to titanium dioxide dust[J]. J. Appl.Toxicol.,1988,8:383-385.
    [78] Hext P M. Current perspectives on particulate induced pulmonary tumours [J]. Hum. Rxp. Toxicol.,1994,13:700-715.
    [79] Heinrich U, Fuhst R., Rittinghausen S, Creutzenberg O, et al. Chronic inhalation exposure of Wistar rats and twodifferent strains of mice to diesel engine exhaust, carbon black, and titanium dioxide [J]. Inhal. Toxicol.,1995,7:533-556.
    [80] Warheit D B, Brock W J, Lee K P, Webb T R, Reed K L. Comparative Pulmonary Toxicity Inhalation andInstillation Studies with Different TiO2Particle Formulations: Impact of Surface Treatments on Particle Toxicity[J].Toxicol. Sci.,2005,88:514-524.
    [81] Warheit D B, Webb T R, Sayes C M, Colvin V L, Reed K L. Pulmonary instillation studies with nanoscale TiO2rods and dots in rats: toxicity is not dependent upon particle size and surface area [J]. Toxicol. Sci.,2006,91:227-236.
    [82] Afaq F, Abidi P, Matin R, et al. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolarmacrophages exposed to ultrafine titanium dioxide[J]. Appl Toxicol,1998,18:307-312.
    [83] Renwick L C, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles[J].Toxicol Appl Pharmacol,2001,172:119-127.
    [84] Zhang Q, Kusaka Y, Sato K, et al. Differences in the extent of inflam-mation caused by intraracheal exsposure to3ultrafine metals: Role of free radical [J]. Toxicol Environ Health A,1998,53(6):423-438.
    [85] Nurkiewicz T R, Porter D W, Barger M, Millecchia L, Rao K M, Marvar P J, et al. Systemic microvasculardysfunction and inflammation after pulmonary particulate matter exposure [J]. Enviro Health Perspect,2006,114(3):412-419.
    [86] Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Coglano V. WHO International Agency for Research oncancer monograph working group. Carcinogenicity of carbon black, titanium dioxide, and talc [J]. Lancet oncol,2006,7(4):295-296.
    [87] Sakai H. Intracellular Ca2+concentration change of T24cell under irradiation in the presence of TiO2ultrafineparticles [J]. Biochim Biophys Acta,1994,1201(2):259-265.
    [88] Wamer W G, et al. Oxidative Damage to Nucleic Acids Photosensitized by Titanium Dioxide [J]. Free Radic BiolMed,1997,23(6):851-858.
    [89] Xiong X L, Wu M L, Li S P. The influence of cell cycle of human hepatoma cell by nanometer titanium dioxide [J].Cancer Res Prev Treat,2003,30(4):300-.
    [90] Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss D G, et al. Evidence that ultrafine titanium dioxideinduces micronuclead dapotosis is in Syrian hamster embryo fibroblasts [J]. Enviro Health Perspect,2002,110(8):797-800.
    [90] Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60)nanoparticles [J]. Environ Toxicol Chem,2006,25(4):1132-1137.
    [92] Wang H, Zhao W K, Fang Y L, Wang R B, Li L. A study of killing cancer cells by photocatalysis of TiO2[J]. ChinJ Catalys,1999,20(3):373-374.
    [93] Gurr J R, Wang A S, Chen C H, Jan K Y. Ultrafine titanium dioxide particles in the absence of photoactivation caninduce oxidative damage to human bronchia lepithelial cells [J]. Toxicology,2005,213(1-2):66-73.
    [94] Caery J H, Lawernee J, OTsine H M. Photodechloriation of PCB’s in the Presence of titanium dioxide in aqueoussuspensions [J]. Bull Enviorn Contam Toxicol,1976,16:697-701.
    [95]崔玉民,王洪涛.二氧化钛光催化技术在污水处理领域中应用[J].水处理技术,2009,35(4):9-13.
    [96]李俊妮.纳米TiO2光催化在废水处理中的应用[J].化工中间体,2012,(2):48-53.
    [97]张飞白,肖羽堂.二氧化钛光催化降解微囊藻毒素的研究进展[J].中国给水排水,2009,25(4):19-23.
    [98] Goswmai D.Y. A review of engineering developments of aqueous Phase solar Photocataltic detoxification anddisinfection processes [J]. Journal of solar Energy Engineering,1997,119(3):101-107.
    [99]刘长青,张峰等. TiO2光催化氧化技术在环境治理中的应用[J].污染防治技术,2003,16(4):111-114.
    [100]高镰.纳米氧化钛光催化材料及应用[M].2002,北京:化学工业出版社。
    [101]李剑飞,刘黎萍,孙立军.纳米二氧化钛对汽车尾气中碳氢化合物HC分解效果研究[J].公路工程,2010,(2):151-155.
    [102]孙立军,徐海铭,李剑飞,刘黎.纳米二氧化钛处治汽车尾气效果与应用方法的研究[J].公路交通科技,2011,28(4):153-158.
    [103]张青红.二氧化钛基纳米材料及其在清洁能源技术中的研究进展[J].无机材料学报,2012,27(1):1-10.
    [104] Kanno S, et al. Decomposition of CFCl3over TiO2-Based catalysts [J]. Bull. Chem. Soc. Jpn.,1996,69(2):129-135.
    [105] Roland Weber, Takeshi Sakurai, Hanspaul Hagenmaier. Low temperature decomposition of PCDD/PCDF,chlorobenzenes and PAHs by TiO2-based V2O5-WO3catalysts [J]. Applied Catalysis B: Environmental,1999,20(4):249-256.
    [106] Chia Cheng Yang, Shu Hao Chang, Bao Zhen Hong, Kai Hsien Chi, Moo Been Chang. InnovativePCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins overV2O5–WO3/TiO2-based catalysts [J]. Chemosphere,2008,73(6):890-895.
    [107] Xiaobo Chen,Lei Liu,Peter Y. Yu and Samuel S. Mao. Increasing Solar Absorption for Photocatalysis with BlackHydrogenated Titanium Dioxide Nanocrystals [J]. Science,2011,331:746-750.
    [108] Halmann M. Photoelectrochemicalreduction of aqueous carbon dioxide on p-type gallium-phosphide in liquidjunction solar-cells [J]. Nature,1978,275:115-116.
    [109] Tan S S, Zou L, Hu E. Photosynthesis of hydrogen and methane as key components for clean energy system [J].Sci. Technol. Adv. Mater.,2007,8(1/2):89-92.
    [110] Gr tzel M. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [111] Willima A J,Pin C M. Mineralization of bacterial cell mass on photocatalytic surface in air [J]. EnvironmentalScinece and Tehcnology,1998,32(5):2650-2653.
    [112]马春,马铁成,周靖.陶瓷釉面砖上制备TiO2杀菌薄膜[J].大连轻工业学院学报,1999,18(3):202-208.
    [113]徐瑞芬,许秀艳,付国柱.纳米二氧化铁在抗菌塑料中的应用性能研究[J].塑料,2002,31(10):26-29.
    [114]张爱平,孙彦平,梁镇海等. TiO2薄膜表面分形结构对光催化氧化杀伤胃癌细胞的影响[J].稀有金属材料与工程2005,34(2):279-282.
    [115]熊先立,吴美玲,李世普.纳米二氧化钛对人肝癌Bel27402细胞周期的影响[J].肿瘤防治研究2003,30(4):300.
    [116]熊予莹,费贤翔,熊建文等.可见光响应掺氮TiO2的制备及对白血病HL60细胞体外杀伤效应的研究[J].稀有金属材料与工程,2006,35(11):1735-1739.
    [117] Tadashi Matsunaga, Ryozo Tomoda, Toshiaki Nakajima, Hitoshi Wake. Photochemical sterilization of microbialcells by semiconductor powders [J]. FEMS Microbiology Letters,1985,29(1-2):211-214.
    [118] Li Q., Mahendra S., Lyon D. Y., Brunet L., Liga M. V., Li D., Alvarez P. J.. Antimicrobial nanomaterials for waterdisinfection and microbial control: Potential applications and implications [J]. Water Research,2008,42(18):4591-4602.
    [119] Foster H A, Ditta I B, Varghese S et al. Photocatalytic disinfection using titanium dioxide: spectrum andmechanism of antimicrobial activity [J]. Appl Microbiol Biotechnol,2011,90(6):1847-1868.
    [121] Maneerat C.,Hayata Y.. Antifungal activity of TiO2photocatalysis against Penicillium expansum invitro andinfruit tests [J]. International Joumal of Food Microbiology,2006,107(2):99-103.
    [122] Jochen Kurz, Florian Eberle, Tobias Graumann, Mariel-Esther Kaschel, Aline S hr, Frank Neumann, Alexander H.Dalpke, Lothar Erdinger. Inactivation of LPS and RNase A on photocatalytically active surfaces [J]. Chemosphere,2011,84(9):1188-1193.
    [123] Seery, M.K., George, R., Floris, P., Pillai, S.C.. Silver doped titanium dioxide nanomaterials for enhanced visiblelight photocatalysis [J]. J. Photochem. Photobiol. A. Chem.2007,189(2-3):258-263.
    [124] Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P., Chadwick, A.V.. Titania and silver-titaniacomposite films on glass-potent antimicrobial coatings [J]. J. Mat. Chem.2007,17(1):95-104.
    [125] Ye S. H.,Fan M. L.,Song X. L.,Luo S. C.. Enhanced photocatalytic disinfection of P. expansum in cold storageusing a TiO2/ACF film [J]. Intemational Joumal of Food Microbiology,2010,136(1):332-339.
    [126] Dunnill C.W.H. Aiken Z. A., Pratten J., Wilson M., Morgan D. J.,Parkin I. P.. Enhanced photocatalytic activityunder visible light in N-doped TiO2thin films produced by APCVD preparations using t-butylamine as a nitrogensource and their potential for antibacterial films [J]. Journal of Photochemistry and Photobiology A: Chemistry,2009,207(2-3):244-253.
    [127]王世平.锐钛矿型二氧化钛纳米颗粒的制备及其粒径控制[J].机械工程材料,2007,31(5):59-61.
    [128]胡曰博,张新娜,彭芬兰,等.直接沉淀法制备纳米TiO2粉体的研究[J].2006,9(5):69-73.
    [129] Wang Hui, Liu Pingan, Cheng Xiao Su, et al. Effect of surfactants on synthesis of TiO2Nano-particles byhomogeneous precipitation method [J]. Powder Technology,2008,3(3):1-9.
    [130]李宗任,陈小泉,刘焕彬,吴绘敏,刘红峰.用硫酸氧钛制备纳米二氧化钛的研究进展[J].涂料工业,2009,39(2):64-67.
    [131] S Sivakumar, P Krishna Pillai, P Mukundan, K.G.K Warrier. Sol-gel synthesis of nanosized anatase from titanylsulfate [J]. Materials Letters,2002,57(2):330-335.
    [132] Lei GE,Ming Xia XU. Fabrication and characterization of TiO2photocatalytic thin film prepared fromperoxotitanic acid sol [J]. Journal of Sol-Gel Science and Technology,2007,43(1):1-7.
    [133]贺进明,彭旭红,吕辉鸿,赵继华,沈伟国.微乳液法低温制备纳米金红石型二氧化钛的研究[J].无机化学学报,2008,(2):191-194.
    [134]吴凤芹,聂天琛,姚超等.乙二醇溶剂热法制备纳米TiO2[J].化工新型材料,2008,36(11):39-41.
    [135] Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [136] Melendres C. A., Narayanasamy A., Maroni V A., et al. Study of nanophase TiO2grain boundaries by Ramanspectroscopy [J]. Journal of Material Research,1989,(4):1246-1250.
    [137] Lei Miaoa, Sakae Tanemuraa, Shoichi Tohb, et al. Fabrication, characterization and Raman study of anatase-TiO2nanorods by a heating sol-gel template process [J]. Journal of Crystal Growth2004,264:246-252.
    [138] Lee K P, Trochimowicz H J, Reinhardt C F. Pulmonary response of rats exposed to titanium dioxide (TiO2) byinhalation for two years [J]. Toxicol. Appl. Pharmacol.,1985,79:179-192.
    [139] Heinrich U, Fuhst R., Rittinghausen S, Creutzenberg O, et al. Chronic inhalation exposure of Wistar rats and twodifferent strains of mice to diesel engine exhaust, carbon black, and titanium dioxide [J]. Inhal. Toxicol.,1995,7:533-556.
    [140] Oberd rster G, Ferin J, Gelein R, et al. Role of the alveolar macrophage in lung injury: studies with ultrafineparticles [J]. Environ Health Perspect,1992,97:193-199.
    [141] Warheit D B, Brock W J, Lee K P, Webb T R, Reed K L. Comparative Pulmonary Toxicity Inhalation andInstillation Studies with Different TiO2Particle Formulations: Impact of Surface Treatments on Particle Toxicity [J].Toxicol. Sci.,2005,88:514-524.
    [142] Warheit D B, Webb T R, Sayes C M, Colvin V L, Reed K L. Pulmonary instillation studies with nanoscale TiO2rods and dots in rats: toxicity is not dependent upon particle size and surface area [J]. Toxicol. Sci.,2006,91:227-236.
    [143] Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocyticmechanisms in lungs and in cultured cells[J]. Environ Health Perspect,2005,113(11):1555-1560.
    [144] Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellularreactive oxygen species in dependence on contaminants[J]. Toxicol Lett,2007,168(1):58-74.
    [145] Olmedo, Daniel G et al. Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages: anexperimental study in rats [J]. J Biomed Mater Res A,2005,73(2):142-149.
    [146] Papageorgiou I, Brown C, Schins R, et al. The effect of nano-and micron-sized particles of cobalt-chromium alloyon human fibroblasts in vitro [J].Biomaterials,2007,28(19):2946-2958.
    [147] Luca T., Tatiana A., Elisabetta V., et al. Modified TiO2particles differentially affect human skin fibroblastsexposed to UVA light [J]. Free Radical Biology&Medicine,2010,49(3):408-415.
    [148] Long T C, Saleh N, Tilton R D, et al.Titanium Dioxide (P25) Produces Reactive Oxygen Species in ImmortalizedBrain Microglia (BV2): Implications for Nanoparticle Neurotoxicity [J]. Environ.Sci.Technol,2006,40(14):4346-4352.
    [149] Tian F R, Cuidx, Schw A., et a.l. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts[J].Toxicology in Vitro,2006,20(7):1202-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700