HRB400钢筋中钒的析出行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为充分发挥HRB400 20MnSiV钢筋中微量V的有益作用,本文主要采用应力松驰法研究该试验材料中钒碳氮化物在奥氏体中的析出行为,绘制了相应沉淀物百分数—温度—时间曲线(PTT曲线),使用透射电子显微镜(TEM)对应力松驰后的试样中的钒的析出进行了观察、分析,并采用本文提出的工艺参数,在水钢生产现场进行了轧制试验,观察结果表明,V的析出行为得到改善。
     实验结果表明,在同一压缩变形量时,钒的碳氮化物析出动力学曲线呈典型的“C”形曲线,即存在一个最快析出的温度和时间——孕育期。当压缩变形量ε=0.05(真应变e=-0.05)时,最快析出温度约为850℃,开始析出时间约为6s;当压缩变形量ε=0.20(e=-0.22),最快析出温度约为870℃,开始析出时间约0.7s;当压缩变形量ε=0.50(e=-0.69),最快析出温度约为870℃,开始析出时间约为1.2s。在同一温度时,压缩变形量的增大,将加快钒的碳氮化物析出。用透射电子显微镜则观察各变形量最快析出温度时的薄膜样品,发现钒的碳氮化物不仅在晶粒内部析出,而且更多的是在位错线附近析出。对所得实验结果通过热力学、动力学计算验证,两者基本吻合。
In order to make full use of vanadium’s effect (refine grain and precipitation), the performace of carbonitride precipitating in austenite of HRB400 reinforced steel bars microalloyed with vanadium was investigated by the stress relaxation on Gleeble ther- -mal simulator in this paper. At last the curves of precipitation-temperature-time (PTT) were plotted according to the curves of stress relaxation at different temperature but at the same deformation amount. The precipitates formed in the sample during stress relaxation at different temperatures were observed under transmission electron microscope(TEM) .
     The results of the experiments show that the precipitation start time is relative to temperature, deformation. At the same degree of deformation, the shape of precipitation-temperature -time (PTT) is typical of C curve, and there exist a fastst precipitation point. When compression deformationε=0.05(e=-0.05), the fastest precipitation point at 850℃and corresponding beginning time of precipitation is 6 second. When compression deformationε=0.20(e=-0.22), the fastest precipitation point at 870℃and corresponding beginning time of precipitation is 0.7 second. When compression deformationε=0.50(e=-0.05), the fastest precipitation point at 870℃and corresponding beginning time of precipitation is 1.2 second. The precipitation start time is accelerated by the increasing degree of deformation when the temperature is constant. The precipitates of foil samples experienced stress-relaxation were observed under TEM, we find that the precipitation is not only in the intragranular but also around the dislocation. At last the results were matched with the outcome caculated by thermaldynamic theory and principle of dynamics.
引文
[1] M.Cohen.1975. “Microalloying 75”-Proceedings of an International Symposium on High-Strength-Low-Alloy Steel [C].Washionton.Published
    [2] F.B.Pickering.1975. “Microalloying 75”-Proceedings of an Inter-national Symposium on High-Strength-Low-Alloy Steel [C].Washionton.Published
    [3] T.Gladman.et. 1975. “Microalloying 75”-Proceedings of an International Symposium on High-Strength-Low-Alloy Steel [C].Washionton.Published
    [4] V.J.Pogorzhelsky. 钢的微合金化及控制轧制[M].北京:冶金工业出版社 1984 年 12 月第 1版:P125~131
    [5] Xiao-Huai Xue, Yi-Yin Shan ,Lei Zheng, Song-Nian Lou. Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process.Material science and engineering A(2006) in press.
    [6] 崔风平,高玲等.?控轧控冷与钢的微合金化技术在济钢的应用.山东冶金[J].1998 ,10 月第20 卷第 5 期
    [7] 董成瑞, 任海鹏, 金同哲等编著.微合金非调质钢[M].冶金工业出版社. 2000: 1~5
    [8] D. C. Houghton .Equilibrium solubility and composition of mixed carbonitrides in microalloyed austenite .Received 3 September 1991; revised 22 December 1992.Available online 17 April 2003.
    [9] Hasan Karabulut, Süleyman Gündüz .Effect of vanadium content on dynamic strain ageing in microalloyed medium carbon steel.Materials and Design 25 (2004) 521–527
    [10] S.K. Mishra, S.Das, S.Ranganathan.Precipitation in high strength low alloy (HSLA) steel:a TEM study. Materials Science and Engineering A223(2002)285-292
    [11] 杨作宏,陈伯春.谈微合金元素 N b、V、T i 在钢中的作用.甘肃冶金[J].2000 12 月第4 :20-22
    [12] A.M.Sage. 微合金元素在热机械加工钢中的作用.国外钢铁钒钛.1989 第 3 期第 2 卷 :1~7.
    [13] 徐温崇.V,Ti,Nb 化合物微细质点的分析技术与国内外动态.冶金部北京钢铁研究总院十三室.
    [14] Duwez, P. and Odell, F., J. Electrochem. Soc., 1950, 97, 279.
    [15] Goldschmidt, H. J., Interstitial Alloys, Chapters 4, 5 and10, Plenum Press, New York, 1967.
    [16] A.J.Craven K. He, L. A. J. Garvie. and T. N. Baker R..Complex heterogeneous precipitation in Titanium-Niobium microalloyed Al-killed HSLA steels- II .Non-Titaniumbased particles . Acta mater. 48 (2000) 3869–3878
    [17] Houghton, D. C., Weatherly, G. C. and Embury, J. D., inThermomechanical Processing of Microalloyed Austenite,eds A. J. DeArdo, G. A. Ratz and P. J. Wray. Metallurgical Society of AIME, Warrendale, PA, 1982, p. 267.
    [18] He, K. and Baker, T. N., Mater. Sci. Engng, 1993, A169, 53.
    [19] Priestner, R. and Ibraheem, A. K., Proc. Conf. 35th MWSF, ISS-AIME, 1994, 31, 469.
    [20] Kneissi, A. C., Garcia, C. I. and DeArdo, A. J., in HSLASteels: Processing, Properties
    [21] 张红梅, 刘相华等. Nb 微合金钢析出行为的热力学计算.钢铁研究[J]. 2000 年 7 月第 4期:36~39
    [22] R.C.Sharma, V.K.Lakshmanan, J.S.Kirkaldy, Metallurgical Transac- tions, 15A, 545(1984)
    [23] S.Okaguchi, T.Hashinmoto, ISIJ Int., 32, 283(1992)
    [24] K.Inoue, N.Ishikawa, H.Ohtani, K.Ishida, ISIJ Int., 41 175(2001)
    [25] Lubuska A.Z. Wieczorek- Lubuska E.E 低碳钢复合微合金弥散强化的研究. 国外钢铁钒钛.1989 第 3 期第 2 卷: 78~82
    [26] 张根元,杨顺贞,蒋克. 析出强化对屈服强度增量和低合金钢成分设计的影响.河海大学生常州分校学报[J].2000 年 6 月第 14 卷第 2 期.:16~20
    [27] 许云波, 于永梅, 吴迪.铌微合金钢析出行为的热力学计算.材料研究学报[J].2006 年 2 月第 20 卷第 1 期
    [28] 肖纪美.合金相与相变[M].北京:冶金工业出版社.2004 年 3 月:284~312
    [29] 徐洲, 赵连城主编.金属固态相变原理[M] 北京:科学出版社,2004 年 3 月第一版 :1~28
    [30] Philippe Maugis, Mohamed Goune. Kinetics of vanadium carbonitride precipitation in steel: A Computer model. Acta Materialia 53 (2005) 3359–3367
    [31] 杨才福,张永权..钒氮微合金化技术在 HSLA 钢中的应用.钢铁[J]. 2002 年 11 月第 37 卷第 11 期:42~47
    [32] 龚维幂,杨才福,张永权,王青峰.钢铁研究学报[J].2004 年 12 月第 16 卷第 6 期:41~46
    [33] 许云波,刘相华,王国栋.奥氏体控轧控冷条件下相变后 α 晶粒尺寸的预测[J ] .东北大学学报(自然科学版) . 2002,23 (2) :144 - 147.
    [34] 许云波,于永海, 刘相华,王国栋.含 Nb钢?应变诱导析出过程的动力学模拟.东北大学学报(自然科学版) .东 2 0 0 5 年 4 月 26 卷第 4 期.
    [35] 董洪波,程龙. 控轧控冷工艺条件下 Nb-V 钢碳氮化物的析出行为.宽厚板[J] .第 7 卷第 5 期
    [36] 秦斌.[硕士论文]重庆:重庆大学,2003:86~87
    [37] 廖洪军.[硕士论文]重庆:重庆大学,2006
    [38] 章瑞鹏 , 蒙华伟.透射电镜萃取复型样品制备关键技术及应用.宁夏电力[J] .2006(2):55~57
    [39] 陈俊华.Ti-V-Nb 微合金钢第二相粒子研究.现代制造技术与装备[J].2006(3):12~14
    [40] 孙高祚,陈俊华等.焊接热循环对 X-60 管线钢中第二相粒子的影响.热加工工艺.2005( 6):51~52
    [41] 娄艳芝,柏明卓,倪晓青,柳得橹.CSP工艺生产微钛钢中的碳氮化物析出相.电子显微学报[J].2005,24(4)289-289
    [42] 苑少强,邢宝泉,吴晓红,杨善武,贺信莱.含 Nb 微合金钢应变诱导析出的研究现状.材料导报[J]. 2005 年 5 月第 19 卷第 5 期:46~49
    [43] 王学敏. [博士论文]北京:北京科技大学,2000
    [44] Uranga P, Fernandez A I, Lopez B, etal .Mater Sci Eng, 2003, A345:319
    [45] Andrade H L, Akben M G, Jonas J J. Metall Trans A, 1983, 14A(10):1967
    [46] Hong S G, Kang K B, Park C G.Scr Mater, 2002, 46:63
    [47] Silverira J M, Barbosa R. Scripta Metall Mater, 1993, 29(7):881
    [48] Banolome R, Jorge D, Astiazaran J L, et al.Mater Sci Eng. 2003, A344:340
    [49] M.DJAHAZI, X.L. HE, J.J. JONAS, and W.P. SUN Nb(C, N) Precipitation and Austenite Recrystallization in Boron-Containing High-Strength Low-Alloy Steels Metal Trans. 1992 V23:2111-2120
    [50] A.J.Craven K. He, L. A. J. Garvie. and T. N. Baker R. Complex heterogeneous precipitation in Titanium-Niobium microalloyed Al-killed HSLA steels-—I.(Ti,Nb)(C,N) paticles. Acta mater. 48 (2000) 3857–3868
    [51] 李箭,徐温崇,孙福玉. 控制轧制中微合金碳氮化物的析出行为钢铁.1991 年 1 月第 26卷第 1 期:47-51
    [52] C.M.sellars.Recrystallization of metals during hot deformation.Philosophical Transactions of the Royal Society of London. Series A, Mathematical and PhysicalSciences, Vol. 288, No. 1350, Creep of Engineering Materials and of the Earth. (Feb. 14, 1978), pp. 147-158.
    [53] Liu W J, Jonas J J.Metall Trans A, 1988, 19A(6):1403
    [54] Djahazi M. [D].Montreal, Canada:McGill University, 1989
    [55] 杨善武,贺信莱,陈梦谪等.铌硼微合金钢高温应变诱导析出行为.材料科学与工程[J]. 1994,12(2):49
    [56] Dang Z J, Zhang Y, Ke J.J University of Science and Technology Bejing , 1988 5(3):115
    [57] Djahazi M.Mater Sci Techn, 1992, 8:628
    [58] Djahazi M.Metal Tran A, 1992, 23A:2111
    [59] 王昭东,曲锦波,刘相华等.松弛法研究微合金钢碳氮化物的应变诱导析出行为.金属学报[J],2000,36(6):618
    [60] 苑少强,杨善武,聂文金等.Fe_Ni_Nb_Ti_C 合金变形后等温驰豫过程中位错与析出的相互作用.金属学报[J],2004,40(8):887
    [61] 王耀华. [硕士学位论文]武汉:武汉科技大学,2004
    [62] 谭静,刘静,袁泽喜.V,Nb, Ti 碳氮化物在铁素体中的析出与组织演变.武汉科技大学学报(自然科学版)[J] .2006 年 2 月第 29 卷第 1 期
    [63] 潘清林 金属材料科学与工程实验教程[M].长沙:中南大学出版社,2006.9
    [64] 黄杰,徐洲.V_Ti 微合金钢的轧后冷却相变及第二相析出行为.上海金属[J].2005,27(1)14-17
    [65] 雍岐龙,马鸣图,吴宝榕. 微合金钢——物理和力学冶金[M] 北京:机械工业出版社
    [66] 张世中.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社.1993,10:1~15
    [67] 罗伯特 M 凯德著.张以增译.固体的变形与断裂[M].北京:机械工业出版社 1988.:1~150
    [68] 束德林.金属力学性能.北京:机械工业出版社,1999.10:1~23
    [69] 李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M].冶金工业出版社,1990
    [70] 曲锦波,王昭东, 刘相华等.热轧 Nb-Ti-V 钢应变诱导析出动力学的计算模型.材料科学与工艺.1999 年 3 月第 7 卷第 1 期
    [71] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社:2006.7.第一版.
    [72] 蒋克,张根元.钒、钛元素对 FeC 等温转变动力学和形成组织的影响.金属热处理[J].2000 年第 4 期 P21-24
    [73] Honeycombe R W K.Metall.Trans.[J], 1976, 7A:915
    [74] 田村今男著,王国栋等翻译.高强度低合金钢的控制轧制与控制冷却[M].冶金工业出版社,1992
    [75] J. Kliber, I. Schindler Recrystallization/precipitation behavior in microalloyed steels .Journal of Materials Processing Technology 60 (1996) 597-602
    [76] W.J. Liu and J.J. Jonas, Metal Trans., Vol 20A (1989)689.
    [77] L.N. Pussegoda et al., Mater. Sci. and TechnoL, Vol 8(1992) 63.
    [78] I. Schindleretal., Hutnick~listy41 (1986) 843.
    [79] Hillert M, Staffansson L I. The Regular Solution Model for Stoichometric Phases and Iron Metls. Acta Chem. Scand. 1970, 24(10):3618~3626
    [80] 徐祖耀.金属材料热力学[M].北京:科学出版社,1981
    [81] 雍岐龙,吴宝榕,孙珍宝,王桂金.二元微合金碳氮化物的化学组成及固溶度的理论计算.钢铁研究学报 1989 年 11 月第 1 卷第 4 期
    [82] D.A.波特,K.E.伊斯特林.李长海,余永宁译.金属和合金中的相[M].北京:冶金工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700