硬线钢钒氮微合金化及控轧控冷工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国线材市场对高性能线材产品的需求,使开发微合金化钢线材势在必行。本课题研究了钒氮微合金化对硬线钢组织和性能的影响。
     实验室条件下,对77B高碳硬线钢进行不同程度的V、N微合金化,使用Gleeble热模拟试验机以模拟高碳线材控轧控冷生产工艺,进行室温拉伸力学试验和金相组织观察,并利用Sisc-Ias金相图像分析仪分析金相组织中的索氏体的面积百分数,使用S-4300扫描电镜测量了珠光体的片层间距,用JEM-2000FX透射电镜观察了V(C,N)的析出形貌,最终探讨了钒氮微合金化硬线钢的强韧化机制,研究了钒氮微合金化对硬线钢组织和性能的影响。
     硬线钢钒氮微合金化后,采用合理的控轧控冷工艺,钢材的奥氏体晶粒细化,索氏体化率提高,珠光体片间距减小,试验材料的抗拉强度、硬度和韧性均得到了大幅度提高。例如:在相同工艺条件下,相比于普通硬线钢,含0.088%V,0.011%N钢的抗拉强度增长了60Mpa;断面收缩率增长了35%;
     热模拟试验结果表明,终轧温度为920℃,轧后冷却速度为15℃/S时,硬线钢的强度和韧性匹配最好
     研究认为钒氮微合金化硬线钢主要通过细晶强化和沉淀析出强化,从而提高钢材的强韧性。
The demand of high performance wire rods makes micro-alloying wire rods' exploitation necessary in our country. In this paper, influences of V-N micro-alloying on hard wire rods' structure properties were researched.
     High-carbon steel wire rods 77B with different V-N content were made in the laboratory. The process of producing high-carbon steel wire rods controlled rolling and cooling was simulated by the Gleeble thermal simulating machine. Tension experiment in room-temperature was done, and microstructure was observed. The area percent of sorbite of test sample was analyzed by the Sisc-Ias metallurgical photos analysis machine. The interlamellar spacing of pearlite was measured by the S-4300 scanning electron microscopy. The precipitation of nitride and carbide was observed by the JEM-2000FX transmission electron microscopy. At last, the strengthen-toughening mechanism if a V-N micro-alloy hard wire rod was discussed, and influences of V-N micro-alloying on microstructure and properties of hard wire rods was researched.
     When the different content vanadium and nitrogen added in, austenite grain of wire rods refines, sorbite ratio rises and interlamllar spacing of pearlite reduce. Therefore, tensile strength, hardness and toughness of test samples are increased a lot. Such as, under the same process conditions compared to normal hard wire rods, tensile strength rises 60Mpa for wire rods with 0.088%Vand 0.011%N, its reduction of area rises 35%.
     The result of the thermal simulating experiment shows that if the roll-finishing temperature is 920℃and the cooling velocity after rolling is 15℃/S, the hardness and toughness of the hard wire rods will match each other best.
     It is considered that the V-N micro-alloyed high carbon wire rods obtain the high strength and toughness mainly due to grain refining and precipitation strengthening.
引文
[1]戴宝昌,世界线材生产现状与发展,河南冶金,2005,13(2):3-6
    [2]王快社,刘军帅,梁彦安等,线棒材生产现状及发展趋势,甘肃冶金,2004,Vol.26(2):4-7
    [3]李智,王国栋,刘相华,低碳贝氏体型非调质钢的控轧控冷,东北大学博士学位论文[D],2000,13-14
    [4]宋维锡,金属学,北京:冶金工业出版社,1987
    [5]史生良,共析轨钢机械性能和显微组织的关系,铁道学报,1991(2):80-87
    [6]史生良,钢轨钢的组织和性能,重载线路淬火钢轨学术会议资料,1993
    [7]M.Korchynsky.Microalloyed high-carbon wire rod.Wire Journal,International,1988:25-32
    [8]雍歧龙等.钒在钢中的物理冶金学基础数据.钢铁研究学报,1998,10(5):63-66.
    [9]雍歧龙,马鸣图,吴宝榕.微合金钢-物理与力学冶金.北京:机械工业出版社,1989.
    [10]东涛,傅俊岩.试论我国微合金化钢的发展方向.微合金化技术,中信金属公司,2002,2(3):1-4.
    [11]T.Siwecki,B.Hutchinson and S.Zajac,Recrystallization Controlled Rolling of HSLA Steels,MICROALLOYING-95,Pittsburgh,PA,1995,Warrendale,PA,ISS-AIME,(1995),pp.197-211.
    [12]T.Siwecki and G.Engberg,Recrystallization Controlled Rolling of Steels,Thermo-Mechanical Processing in Theory,Modelling & Practice.Stockholm,1996,ASM Intern.(1997),pp.121-144.
    [13]杨才福,柳书平,张永权编译,R.兰纳伯格等著.钒在微合金钢中的作用.钢铁研究总院结构材料研究所出版,2000.
    [14]L.J.Cuddy,The Effect of Microalloy Concentration on the Recrystallization of Austenite during Hot Deformation,Proc.Conf.Thermomechanical Processing of Microalloyed Austenite,Pittsburgh PA,Aug.1981,TMS-AIME,Warrendale,PA,1981,pp.129-140.
    [15]T.Siwecki,B.Hutchinson,S.Zajac,Recrystallisation controlled rolling of HSLA steels.Contribution to the Int.Conf."MICROALLOYING '95",Iron and Steel Society Inc.,June 11-14,1995,Pittsburgh,USA,pp.197-212.
    [16]R.Lagneborg,W.Roberts,A.Sandberg and T.Siwecki,Influence of processing route and nitrogen content on microstructure development and precipitation hardening in V-microalloyed HSLA-steels,Proc.Conf.Thermomechanical Processing of Microalloyed Austenite,Pittsburgh,Aug.1981 Met.Soc.AIME,pp.163-194.
    [17]王祖滨.新世纪初期低合金高强度钢的发展.微合金化技术,中信金属公司,2002,2(3):5-9.
    [18]M.Hillert and J.Staffanson,The regular solution model for stoichiometric phases and ionic melts,Acta Chemica Sc.24,(1970)pp.3618-3626.
    [19]S.Zajac,Thermodynamic model for the precipitation of carbonitrides in microalloyed steels.Swedish Institute for Metals Research,Report IM-3566,(1998).
    [20]B.Sundman,B.Jansson and J.O.Andersson,Thermocalc databank system.CALPHAD,9(1985)pp.153-159.
    [21]R.R.Zupp and D.A.Stevennon,The influence of vanadium on the activity of carbon in the Fe-C-V system at 1000℃,correlation of the influence of substitutional solutes on the activity coefficient of carbon in iron-base system.Trans.AIME,236(1966)pp.1316-1323.
    [22]H.A.Wriedt and H.Hu,Chemical Metallurgy,A Tribute to C.Wagner.,Proc.Symp.Chicago,Feb.(1981)TSM-AIME,Warrendale,PA(1981)pp.171-194.
    [23]H.Ohtani and M.Hillert,A thermodynamic assessment of the Fe-N-V System.CALPHAD,15(1991),pp.25-39.
    [24]R.Lagneborg.The significance of precipitation reactions in microalloyed steels.HSLA Steels'2000 第四届国际低合金高强度会议论文集,METALLURGICAL INDUSTRY PRESS.
    [25]F.A.Khalid and D.V.Edmonds,Interphase Precipitation in Microalloyed Engineering Steels and Model Alloy,Mat.Sci.TeeM.9(1993)pp.384-396.
    [26]W.Roberts,Recent innovations in alloy design and processing of microalloyed steels.Contribution to the 1983 Int.Conf.on Technology and Applications of High Strength Low Alloy (HSLA)Steels,Philadelphia,PA,Oct.3-6,1983,pp.67-84.
    [27]S.Zajac,T.Siwecki,M.Korchynsky,Importance of nitrogen for precipitation phenomena in V-microalloyed steels,Int.Symp.on Low Carbon Steels for the 90's 1993 ASM/TSM Materials Week,Pittsburgh,USA,Oct.17-21,1993,pp.139-150.
    [28]R.M.Smith and D.P.Dunne,Structural Aspects of Alloy Carbonitride Precipitation in Microalloyed Steels,Materials Forum 11(1988)pp.166-181.
    [29]W.Roberts,A.Sandberg,The composition of V(C,N)as precipitated in HSLA steels microalloyed with vanadium,Swedish Institute for Metals Research,Internal Report IM-1489Oct.1980.
    [30]M.J.Schmutz,Research Report to Vanitec from Massachusetts Institute of Technology, 1981.
    [31]中乌碳氮强化钢国际研讨会技术资料,2002,钢铁研究总院.
    [32]杨才福,张永权.氮在非调质钢中的作用.钒氮微合金化钢的开发与应用.钢铁研究总院出版,2002.
    [33]李箭 形变奥氏体中铁素体相变及微合金钢强韧性研究,博士学位论文,冶金部钢铁研究总院,1989.
    [34]M.Korchynsky.A New role for Microalloyed Steels:Adding Economic Value.International Symposium 2001 on Vanadium Application Technology,BeiJing,China.
    [35]"Microalloying 75." Proceedings of an International Confernce,Washington 1975;ed.M.Korchynsky,union Corbide Corporation,New York(1976).
    [36]"HSLA" Steel-Technology and Application," ASM conference organized by M.Korchynsky,Philadelphia 1983,ASM,Metals Park,Ohio(1984)
    [37]D.Q.Bai,S.Yue,T.M.Maccagno and J.J.Jonas,Effect of Deformation and Cooling Rate on the Microstructure of Low-Carbon Nb-B Steels,ISIJ Int.,1998,38(4):371-379
    [38]D.Q.Bai,S.Yue,T.M.Maccagno and J.J.Jonas,Transformation during the Isothermal Deformation of Low-Carbon Nb-B Steels,Metall.Trans.A,1998,29A:1383
    [39]D.Q.Bai,S.Yue,T.M.Maccagno and J.J.Jonas,Continuous Cooling Transformation Tempreture Determined by Compression Tests in Low Carbon Bainite Grades,Metall.Trans.A,1998,29A:989
    [40]Bardget W.E.,Reeve.L.,JISI,1949,163:227
    [41]冯贺滨。影响高碳钢高速线材力学性能诸多因素的综合研究及生产工艺优化[博士学位论文].北京科技大学,1999,9
    [42]倪庆春。高碳钢线材组织性能与工艺参数的研究[硕士学位论文].北京科技大学,1995,2
    [43]VANDER VOORT G F,ROOSZ A.Measurement of the Interlam ellar Spacing of Pearlite.Metallography,1984,17(1):1-17.
    [44]刘天模,周守则,左汝林,等。钒对PD3钢珠光体组织形态的影响,钢铁,2003,38(4):56-59
    [45]龚维幂,钒氮微合金钢中 V(C,N)在奥氏体区的析出及其对晶粒细化的影响,硕士学位论文,安徽工业大学,2004.
    [46]Gladman T.On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals.Proc.Roy.Soc.,1966,A294:298-309
    [47]R.Lagneborg,T.Siwecki,S.Zajac etc.The Role of Vanadium in Microalloyed Steels[J].Scandinavian Journal of Metallurgy,1999,28(5),186-201
    [48]F.A Khalid,D.V.Edmonds.Interphase Precipitation in Microalloyed Engineering Stetels and ModelAlloy.Mat.Sci.Techn.,1993,384-396.
    [49]R.G.Baker,J.Nutting.The Tempering of a Cr-Mo-V-W and Mo-V Steel,Precipitation Processes in Steels,ISI Report No 64,London 1969:1-22
    [50]雍岐龙.钢铁材料中的第二相.[M].北京:冶金工业出版社,2006:25
    [51]F.B Pickering:"Physical Metallurgy and the Design of Steel";Applied Science Publishers,London(1978)
    [52]Structure-Property Relationships in high-Strength Microalloyed Steels,T.Gladman et al.,ref.1,pp.32-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700