锰、铬及钒氮合金化在低碳耐候钢中的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐候钢是一种成本低廉、综合性能良好的低合金结构用钢,不仅具有良好的耐大气腐蚀性能,还具有优良的力学、焊接等综合性能。目前,耐候钢向降低碳含量方向发展,并利用微合金化和组织强化等措施提高强度,既保证了焊接性,同时又获得高强度和高韧性。
     在此研究背景下,本论文在保证耐候性和焊接性前提下,采取降低碳含量以提高耐候钢韧性,采取增加锰、铬含量以及钒氮微合金化措施以提高耐候钢强度。分别研究了上述成分设计在非控轧控冷条件下对耐候钢强度和韧性的影响。结合相应研究手段,本文系统分析和探讨了各合金元素对耐候钢组织、力学性能以及耐腐蚀性能的影响规律和作用机理。研究成果可为设计和开发新一代耐候钢提供理论依据。
     力学实验表明,两组高氮—钒合金化耐候钢(锰质量分数分别为0.50%和1.31%)取得了良好的强韧化效果,屈服强度分别达到了555MPa和610MPa,并且具有较高的加工硬化性能,抗拉强度达650MPa和705MPa;塑性和韧性均满足相同强度级别耐候钢的使用要求。
     热力学分析证明,本实验高氮—钒成分设计(0.0320%N-0.096V和0.0358%N-0.083V)明显提高了钒的高温析出能力,钒开始析出温度达1130℃以上,85℃钒析出率达90%以上;而如果采取常规氮质量分数(0.0050%)设计,则析出温度降至1000℃以下,850℃钒的析出率低于20%。动力学分析表明,850℃终轧温度下VN完全析出时间<110s;透射电镜分析表明VN颗粒尺寸分布在20nm~300nm,达到了VN析出强化临界颗粒尺寸7.89nm;高温析出的VN颗粒起到了很好的细晶强化和沉淀强化作用,两项加和对屈服强度贡献率达70%以上。
     极化曲线测试和腐蚀减重实验发现,钒氮合金化能够降低耐候钢的腐蚀速率;电化学阻抗谱(EIS)测试和锈层分析实验表明:钒氮合金化耐候钢具有良好的抑制点蚀能力,腐蚀反应在钢基体表面更加均匀进行,而且锈层具有较高的电荷传导电阻,绝缘性能增强;钒氮合金化改变了铬的富集方式,铬富集区域由内锈层扩展至外锈层,这与其它实验耐候钢有所不同;钒氮合金化耐候钢锈层中α-FeOOH含量较高,α-FeOOH与γ-FeOOH比值较大,表明钒氮合金化有利于生成热力学稳定的锈层。
     锰质量分数增至0.93%,对耐候钢强化效果较弱,屈服强度和抗拉强度分别为345MPa和485MPa,而锰质量分数由0.50%增至1.36%,屈服强度由390MPa增至435MPa,并且获得了高加工硬化性能,抗拉强度达到600MPa,塑性和韧性亦处于较高水平,强韧化效果较好。动态热模拟实验发现锰质量分数增至1.36%,Ar3温度可降低60℃~80℃,具有较好的细化铁素体晶粒作用,并且耐候钢的淬透性明显增强,在本实验最大冷速15℃·s-1下,贝氏体体积分数接近100%。极化曲线测试和腐蚀减重实验表明,增加锰含量耐候钢腐蚀速率有小幅增加;EIS测试和锈层截面形貌显示,增加耐候钢锰质量分数,点蚀特征增强,经热力学分析认为这与锰元素具有较高的腐蚀倾向性有关;EIS测试发现增加锰含量对锈层绝缘性能没有明显影响,电子探针结果表明锰均匀分布于内外锈层中,没有发生富集现象,锈层物相分析表明锈层中α-FeOOH略有增加,而α-FeOOH与γ-FeOOH比值降低,说明锰对稳定锈层的生成没有明显影响。
     热模拟实验发现,耐候钢中铬质量分数由0.62%增至1.50%,Ar3温度没有明显变化,淬透性有所提升,15℃·s-1冷速下,贝氏体所占体积分数由12.8%增至23%。力学实验表明,增加铬含量对耐候钢强化作用较弱,屈服强度仅为350MPa,虽然加工硬化性能略有增强,但并未获得高抗拉强度,为460MPa;然而却获得了高塑性和高韧性;极化曲线测试与腐蚀减重实验发现,铬质量分数由0.62%增至1.50%,耐候钢腐蚀速率降低。EIS测试显示,其腐蚀反应初期具有较强的点蚀反应特征,然而点蚀反应被迅速抑制,而且阻抗模图表明有绝缘性能较好的锈层生成;电子探针分析发现,增加耐候钢铬质量分数对锈层结构没有明显影响,而锈层物相分析则表明,α-FeOOH含量显著增加,α-FeOOH与γ-FeOOH比值明显升高,说明增加铬含量加速了锈层获得稳定结构的进程。
Weathering steel is one type of low alloy structural steel with good comprehensive performance and lower cost, which not only has good atmospheric corrosion resistance, but also has a well mechanical property and weldability. Untill now, in order to obtain the higher combination of strength-toughness and weldability, development of weathering steel is facing to decrease carbon content and increase strength by the method of microalloying or microstructure strengthening.
     According to present research, in this paper, on the basis of insuring atmospheric resistance and weldability, carbon content of weathering steel was decreased to increase toughness, at the same time, increasing Mn and Cr content, V-N microalloying were adopted to increase strength of weathering steel respectively. On the condition without TMCP, influence of above design viewpoints on strength and toughness of weathering steel were studied as well as influence and mechanisms of alloy elements on mechanical properties and corrsosion resistance of weathering steel were analyzed and discussed respectively. Those results could be provided to design and develop a new generation of weathering steel.
     Mechanical tests showed that, yield strength of two kinds of weathering steels with V-N alloying treatment and bearing 0.50%Mn and 1.31%Mn respectively achieved 555MPa and 610MPa, in addition, tensile strength reached 650MPa and 705MPa due to a relative high strain-hardening properties. Further, both plasticity and toughness satisfied the requirement of the high strength weathering steel.
     Thermodynamics analysis proved that, V-N alloying increased the precipitation performance of Vanadium at high temperature remarkably. For the weathering steels with 0.0320%N-0.096V and 0.0358%N-0.083V, initial precipitation temperature of Vanadium increased to more than 1130℃and precipitation rate of Vanadium exceeded 90% at 850℃. However, for a normal weathering steel bearing 0.0050%N, initial precipitation temperature of Vanadium was lower than 1000℃and precipitation rate of Vanadium was lower than 20% respectively at 850℃. Kinetics analysis showed that, total precipitation time of VN was lower than 110s at 850℃. TEM analysis showed, for the V-N alloying weathering steels, the grain size of VN particles was in the range of 20nm-300nm, which exceeded the critical precipitation size of 7.89nm. Precipitation strengthening and refining strengthening contributed to more than 70% of yield strength owing toVN particles precipitating at high temperature.
     Polarization curve test and corrosion mass lost experiment showed, the corrosion rate of weathering steel was decreased because of V-N alloying. EIS test and rust layer analysis results showed, corrosion reaction occurred on the surface of matrix more symmetrically because of pitting being suppressed by V-N alloying, furthermore, the rust layer had a relative high charge conducting resistance, which characterized that the insulating property of rust layer increased. Cr enrichment characteristic was changed by V-N alloying and Cr enrichment zone expanded from inner rust layer to outer rust layer, which was different from other experimental weathering steels. V-N alloying could accelerate to form thermodynamic stable rsut layer because of the relative highα-FeOOH content and ratio ofα-FeOOH andγ-FeOOH.
     When Mn mass fraction increased to 0.93%, the strengthening effect was much weak, which yield strength and tensile strength was 345MP and 485MPa respectively, however, when Mn mass fraction increased to 1.36%, the yield strength increased from 390MPa to 435MPa and tensile strength increased from 470MPa to 600MPa due to the relative high strain-hardening property, as well as comparatively high plasticity and ductility were acquired, which showed that the strengthening-toughening effect was stronger. Thermal simulation results showed that, increasing Mn mass fraction to 1.36%, Ar3 temperature decreased 60℃~80℃, accordingly, ferrite grain size was refined remarkably and the hardenability enhanced. At the highest cooling rate of 15℃·s-1 in this study, the volume fraction of bainite almostly increased to 100%. Polarization curve test and corrosion mass lost experiment showed, the corrosion rate had a slight increase with Mn content increasing. EIS test and the morphology of rust layer cross section showed, pitting characteristic increased with Mn content increasing, because Mn element has a strong corrosion tendence proved by thermodynamics analysis. EIS test showed, Mn content increase had little influence on insulating property of rust layer. EPMA results showed, there was no enrichment of Mn element in the rust layer, and Mn just distributed in inner and outer rust layer homogeneously. Phase analysis of rust layer showed, increasing Mn content, theα-FeOOH content in rust layer increased somewhat but ratio of α-FeOOH andγ-FeOOH decreased, which characterized that Mn had little effect on the formation of thermodynamic stable rsut layer.
     Thermal simulation results showed that, when Cr mass fraction increased from 0.62% to 1.50%, Ar3 temperature had little change but the hardenability enhanced somewhat. At the cooling rate of 15℃·s-1, the volume fraction of bainite increased to 23%. Mechanical tests showed, Cr mass fraction had a slight influence on strengthening, though strain-hardening property increased somewhat, so its yield strength and tensile strength only was 350MPa and 460MPa respectively, however, its plasticity and ductility was high. Polarization curve test and corrosion mass lost experiment showed, the corrosion rate decreased with increasing Cr mass fraction from 0.62% to 1.50%. EIS test showed, pitting was stronger at the initial stage of corrosion reaction but it was suppressed immediately, yet, the Bode plots figure showed, the rust layer with better insulating property formed. EPMA results showed, increasing Cr content had little effect on the structure of rust layer but phase analysis of rust layer revealed that,α-FeOOH content and the ratio ofα-FeOOH andγ-FeOOH increased remarkably, which characterized that the formation progress of thermodynamic stable rsut layer was accelerated.
引文
1.侯文泰,梁彩凤.经济耐候钢[J].钢铁研究学报,1994,6(2):40-46.
    2.钟国腾.耐大气腐蚀钢及其应用[J].铁道建筑,1982,10:1-5.
    3.杨松柏.我国耐候钢的发展前景[J].铁道建筑,1989,6:19-21.
    4.王栋材,郭亮.耐候钢的现状与开发[J].包钢科技,1993,3:59-78.
    5.郝新峰.钢的大气腐蚀防护的研究进展[J].上海钢研,2001,2:34-39.
    6.王传雅,戚正风.耐候钢的化学成分和性能[J].特殊钢,1997,18(1):13-19.
    7.陆匠心,李爱柏,李自刚,等.宝钢耐候钢产品开发的现状及展望[J].中国冶金,2004,12:23-28.
    8.郝森,王东明.高强度高耐候钢性能控制措施初探[J].鞍钢技术,2003,6:15-19.
    9.徐世帅,谷春阳,郭晓波,等.高耐候集装箱用钢连铸连轧工艺实践[J].鞍钢技术,2006,30(2):18-22.
    10.王栋材,郭亮.耐候钢的现状与开发[J].包钢科技,1993,3:59-78.
    11.陈吉清,陈邦文,胡敏,等.武钢铁路车辆用耐候钢的开发[J].钢铁研究,2003,27(5):49-51.
    12.攀钢研制新一代高强耐候钢[J].特殊钢技术,2003,8(36):53.
    13. Townsend H E. Potential-pH diagrams at elevated temperature for the system Fe-H2O[J]. Corrosion Science,1970,10(5):343-358.
    14. Kucera Knotkova D, Gullman J, Holler P. Corrosion of structural metals in atmospheres with different corrosivity at 8 years exposure in Sweden and Czechoslovakia[A]. Proceedings 10th International Congress on Metal Corrosion[C]. Oxford and IDH, Madras, India,1987:167.
    15. Shastry Friel J J, Townsend H E. Sixteen-year corrosion performance of weathering steels in marine, rural and industrial environments[A]. Degradation of metals in the atmosphere[C]. ASTM STP965, West Conshohocken, PA, ASTM.1988:5.
    16.叶堤,赵大为,李娟,等.大气污染对碳钢的腐蚀影响研究[J].重庆建筑大学学报,2005,27(1):80-83.
    17.梁彩凤,侯文泰.环境因素对钢的大气腐蚀的影响[J].中国腐蚀与防护学报,1998,18(1):1-6.
    18.梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究[J].中国腐蚀与防护学报,2005,25(1):1-6.
    19.戴明安,刘珍芳.碳钢大气腐蚀与环境因素的关联度分析[J].腐蚀与防护,2000,21(4):147-149.
    20.王振尧,于国才,韩薇.我国自然环境大气腐蚀性调查[J].腐蚀与防护,2003,24(8):323-326.
    21.刘丽宏,齐慧滨,卢燕平,等.耐候钢的腐蚀及表面稳定化处理技术[J].腐蚀与防护,2002,23(12):515-518.
    22.刘国超,董俊华,韩恩厚,等.耐候钢锈层研究进展[J].腐蚀科学与防护技术,2006,18(4):268-272.
    23. Yamashita M, Miyuki H, Matsuda Y, et al.The long term Growth of the protective rust layer formed on weathering steel By atmospheric corrosion during a quarter of a century[J].Corrosion Science, 1994,36:283-299.
    24. Yamashita M, Uchida H. Recent research and development in solving atmospheric corrosion problems of steel Industries in Japan[J]. Hyperfine Interactions,2002,139 (1-4):153-166.
    25. Townsend H E. Structure of rust on weathering steel in rural and industrial environments[J]. Corrosion,1994,50:546-561.
    27.张全成,吴建生,陈家光,等.暴露一年的耐大气腐蚀用钢表面锈层分析[J].中国腐蚀与防护学报,2001,21(5):297-300.
    28.张全成,王建军,吴建生,等.锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响[J].金属学报,2001,37(2):193-196.
    29. Tomita Y. Newly developed high performance structural steels for long span bridge construction[J]. Corrosion Engineering,1998,47:797-805.
    30. Okada H, Hosoi Y, Yukawa K, et al. Structure of the rust formed on low alloy steels in atmospheric corrosion[J]. Journal of Iron and Steel Institute of Japan,1969,55:355-363.
    31.Misawa T, Asami K, Hashimoto K. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corrosion Science,1974,14(4):279-289.
    32. Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature[J]. Corrosion Science,1974,14(2): 131-149.
    33. Keiser J T, Brown C W, Heidersbach R H. Characterization of the passive film formed on weathering steels[J]. Corrosion Science,1983,23(3):251-259.
    34. Usami A, Kihira H, Kusunoki T.3%-Ni Weathering steel plate for uncoated bridges at high airborne salt environment, Nippon Steel Technical Report[J],2003,1:21-23.
    35. Katayama H,Yamamoto M, Kodama T. Degradation behavior of protective rust layer in chloride solution[J]. Corrosion Engineering,2000,49(1):41-44.
    36. Nasu S, Kamimura T, Tazaki T, et al. Mossbauer spectroscopic study of iron oxyhydroxides and rust formed on the steel surfaces[J]. Hyperfine Interactions,2002,5:495-498.
    37. Siddique M, Anwar-ul-Islam N, Butt M, et al. Mossbauer study of corrosion of mild steel induced by acid rain[J]. Journal of Radioanalytical and Nuclear Chemistry,1999,241(1):239-240.
    38. Asami K., Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corrosion Science,2003,45(11): 2671-2688.
    39. Melchers R E. Effect on marine immersion corrosion of carbon content of low alloy steels[J]. Corrosion Science,2003,45(3):2609-2625.
    40. Misawa T, Kyuno T, Suetaka W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steel[J]. Corrosion Science,1971,11(1):35-48.
    41.Guedes I C, Aoki I V, Carmezim M J, et al. The influence of copper and chromium on the semiconducting behaviour of passive films formed on weathering steels[J]. Thin Solid Films,2006, 4:1-6.
    42. Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J]. Corrosion Science,2005,47(10):2492-2498.
    43. Kamimura T. Stratmann M. The influence of chromium on the atmospheric corrosion of steel[J]. Corrosion Science,2001,43(3):429-447.
    44. Nishikata A, Suzuki F, Tsuru T. Corrosion monitoring of nickel-containing steels in marine atmospheric environment[J]. Corrosion Science,2003,47(10):2678-2588.
    45. Choi Y S, Shim J J, Kim J G. Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J]. Journal of Alloys and Compounds,2005,391(1-2):162-169.
    46. Nishimura T, Katayama H, Noda K. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corrosion Science,2000,42(9):1611-1621.
    47. Kimura M, Kihira H, Ohta N. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance[J]. Corrosion Science,2005,47(10):2499-2509.
    48. Chen X H, Dong J H, Han E H, et al. Effect of Ni on the ion-selectivity of rust layer on low alloy steel[J]. Materials Letters,2007,61(1):4050-4053.
    49.刘丽宏,齐慧滨,卢燕平,等.耐大气腐蚀钢的研究概况[J].腐蚀科学与防护技术,2003,15(2):86-89.
    50. Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments[J], Corrosion Science,1999,41(3):1687-1702.
    51.张起生,苏春霞,王勇,等.Si对碳钢耐大气腐蚀性能影响的电化学研究[J].装备环境工程,2007,4(4):23-26.
    52. Jeong W T, Hwang Y H, Yoo J Y, et al.Combined Effect of Ca and Si on the Sea side Corrosion Property of Weathering Steel. the 2nd Korea-China Joint Symposiumon Advanced SteelTechnology, Pohang, Korea, KyooYong Kimand Weimin Mao,2001,141.
    53.尚同泉.关于贯彻耐候钢焊接标准的几个问题[J].铁道标准化,1994,5:13-15.
    54. Nadkarni M, Cormick M, Boyd J D. Austenite transformation kinetics in microalloyed spring steels processing[A]. Proceedings of International Conference on Processing, Microstructure and Properties of Microalloyed and other Modern High Strength Low Alloyed Steels[C]. A. J. De Ardo, ed., Iron and Steel Society, Warrendale, PA,1991:235-245.
    55. Roberts W. Recent innovations in alloy design and processing of microalloyed steels[A]. International Conference on Technology and Applications of HSLA Steels. Philadelphia, Pennsylvania, American Society for Metals, Metas Park, Ohio 44073,3-6 October 1983:33-65.
    56. Kop T A, Sietsma J. Dilatometric analysis of phase transformations in hypoeutectoid steels[J]. Journal of MaterialsScience,2001,36(2):519-526.
    57.齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:30-40.
    58. Khlestov M, Konopleva E V, McQueen H J. Effect of hot deformation on austenite transformation in low carbon Mo-Mn steel[J]. Material Science and Technology,1998,14(8):783-792.
    59. Cheng Y. Continuos-cooling-transformation diagrams of a Nb-treated SAE1141 steel. Proceedings of International Conference on Processing, Microstructure and Properties of Microalloyed and other Modern High Strength Low Alloyed Steels[C]. A. J. DeArdo, ed., Iron and Steel Society, Warrendale, PA,1991:223-234.
    60. Baragar D L. The high temperature and high strain-rate behavior of a plain carbon and an HSLA steel[J]. Journal of Mechanical Working Technology,1987(14):295-307.
    61. Wang S H, Zhang Y. Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels. Journal of Materials Science,2001,36(8):1931-1938.
    62.林慧国,傅代值.钢的奥氏体转变曲线—原理、测试与应用[M].北京:机械工业出版社,1988.
    63.张春玲,廖波,赵田臣,等.09CuPCrNi耐候钢CCT曲线的测定及组织研究[J].物理测试,2002,2:1-3.
    64.张春玲,蔡大勇,廖波,等.09CuPCrNiMoNb耐候钢连续冷却转变及热轧双相化的研究[J].材料热处理学报,2004,25(4):37-40.
    65.马艳丽,康永林,王建泽.高强耐候钢相变组织变化规律研究[J].机械工程材料,2006,30(1):12-15.
    66.陈庆军,康永林,谷海容,等.变形及冷却工艺对高强耐候钢组织与性能的影响[J].金属热处理,2005,30(1):57-61.
    67.赵田臣,樊云昌,丁占来.双相化对09CuPCrNi耐候钢力学性能的影响[J].机械工程材料,2001,25(3):20-23.
    68.赵田臣,樊云昌.耐候钢热处理双相化组织与性能[J].金属热处理,2001,26(2):15-19.
    69.毛新平,霍向东,康永林,等.TSCR流程生产钛微合金化高强耐候钢中的析出物[J].北京科技大学学报,2006,28(11):1023-1028.
    70.许家彦,刘清友.Cu-P-Cr-Ni-Nb系超细组织高强度耐大气腐蚀钢带开发[J].钢铁,2005,40(3):66-69.
    71.陈庆军康永林谷海容,等.Nb、Ti对高强度耐候钢组织和性能的影响[J].特殊钢,2005,26(1):30-33.
    72.陈庆军,康永林,苏世怀,等.微合金高强度耐候钢的实验研究[J].钢铁,2005,40(7):60-63.
    73. Kimura T, Ohmori A, Kawabata F, et al. Ferrite grain refinement through intragranular ferrite transformationon VN precipitates in TMCP of HSLA steel[A]. International Conference on Thermomechanical Processing of Steel and Other Materials[C]. Wollongong, Australia:1997: 645-651.
    74.耿文范.非调质钢的发展现状[J].钢铁研究学报,1995,7(1):75-77.
    75. Zajac S, Siwecki T, Hutchinson B, SvenssonL E, et al. Recrystallization controlled rolling and accelerated cooling as the optimum processing route for high strength and toughness in V-Ti-N steels[J]. Metallurgical Transactions,1991,22A:2681-2694.
    76.柳书平,杨才福,张永权.氮对钒钢性能及析出相的影响[J].金属热处理,2001,26(10):7-9.
    77.龚维幂,杨才福,张永权,等.低碳钒氮微合金钢中V(CN)在奥氏体中的析出动力学[J].钢铁研究学报,2004,16(6):41-46.
    78.龚维幂,杨才福,张永权.钒氮钢中铁素体等温形核规律的实验研究[J].钢铁,2005,40(10):63-67.
    79.龚维幂,杨才福,张永权.钒氮钢中的晶粒细化研究[J].钢铁研究学报,2006,18(10):49-53.
    80.季怀忠,杨才福,张永权.氮在非调质钢中的作用[J].钢铁,2000,35(7):66-71.
    81.小指军夫.控制轧制—控制冷却.北京:冶金工业出版社,2002:35-44.
    82.林良贵.NH35q耐大气腐蚀钢冷裂敏感性实验研究[J].焊接技术,1996,1:2-3.
    83.康沫狂,杨思品,管敦惠.钢中贝氏体[M].上海:上海科学技术出版社,1990:6-8.
    84.董成瑞,任海鹏,金同哲.微合金非调质钢[M].北京:冶金工业出版社,2000:40.
    85.刘利香,郭琼,王怀宇.V对C-Mn钢条状铁素体组织的改善[J].宽厚板,2003,9(3):44-47.
    86.王庆山.黑色金属强度—硬度换算经验公式[J].理化检验—物理分册,1995,3(2):39-41.
    87.翁宇庆.超细晶钢理论及技术进展[J].钢铁,2005,40(3):1-8.
    88.翁宇庆.超细晶钢—钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003,10-12.
    89.许云波,于永梅,刘相华,等.热变形过程中γ-α相变开始温度的预测[J].东北大学学报(自然科学版),2005,26(1):263-266.
    90.李龙,丁桦,杜林秀,等.TMCP对低碳锰钢组织和力学性能的影响[J].钢铁,2006,41(11):53-57.
    91.张开华,雍岐龙.钒对高氮钢形变诱导相变的影响[J].钢铁钒钛,2006,27(4):43-47.
    92.戚正风.金属材料热处理原理[M].北京:机械工业出版社,1986:81-88.
    93.雍岐龙,刘正东,孙新军,等.钒微合金钢中碳氮化钒固溶量及化学组成的计算与分析[J].钢铁钒钛,2005,26(2):20-24.
    94. Hudd R C, Jones A, Kale M N. A Method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride[J]. ISIJ International,1971,209:121-125.
    95. Narita K. Physical chemistry of the groups a(Ti,Zr), a(V,Nb,Ta) and the rare earth elements in Steel[J]. Transactions ISIJ,1975,15:145-152.
    96.杨才福张永权.钒氮微合金化技术在HSLA钢中的应用[J].钢铁,2002,37(11):42-47.
    97.雍岐龙,阎生贡,裴和中,等.钒在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10(5):63-66.
    98.雍岐龙,陈明昕,裴和中,等.微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算[J].钢铁研究学报,2006,18(3):30-34.
    99.张良哲,赵宪明,吴迪,等.微合金钢等温沉淀析出动力学模型[J].钢铁研究学报,2006,18(4):41-44.
    100.林大为,韩安昌,邱昱斌.微合金低碳铁素体—珠光体钢力学性能的预报[J].上海金属,2005,27(2):52-55.
    101.曲锦波,王昭东,刘相华,等.HSLA钢组织一性能对应关系的预测模型[J].上海金属,1998,20(4):26-29.
    102.惠卫军,董瀚,翁宇庆,等.回火温度对Cr-Mo-V系高强度钢力学性能的影响[J].金属学报,2002,38(10):1009-1014.
    103.马鸣图.双相钢—物理和力学冶金[M].北京:冶金工业出版社,1988:133-138.
    104.宋玉泉,海锦涛,管志平.拉伸变形应变硬化指数的力学解析[J].中国科学(E辑),2001,31(2):103-108.
    105.宋玉泉,管志平,马品奎,等.拉伸变形应变硬化指数的理论和实验规范[J].金属学报,2006,42(7):673-680.
    106.卡恩R W.物理金属学[M].北京:科学出版社,1986:961-973.
    107.荣伟,马茂元,樊景舜.伸张区宽度和韧窝直径与常规力学性能之间的关系[J].理化检验一物理分册,1994,30(6):22-24.
    108.曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:184-189.
    109.曹楚南.腐蚀电化学[M].北京:化学工业出版社,2004:105-107.
    110.曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:95-98.
    111. Cook D C, Oh S J, Balasubramanian R, Yamashita M. The role of goethite in the formation of the protective corrosion layer on steels[J]. Hyperfine Interactions,1999,122:59-70.
    112. Cook D C. Application of Mossbauer spectroscopy to the study of Corrosion[J]. Hyperfine Interactions,153:61-82,2004.
    113. Kamimura T, Hara S, Miyuki H, Yamashita M, Uchida H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corrosion Science,2006,48(9): 2799-2812.
    114. Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels[J]. Corrosion Science,2002,44(10):2393-2407.
    115. Sagara M, Katada Y, Kodama T. Localized corrosion behavior of high nitrogen-bearing austenitic stainless steels in seawater environment[J]. ISIJ International,2003,43(5):714-719.
    116. Simmons J W. Overview:high-nitrogen alloying of stainless. Materials Science and Engineering, 1996, A207:159-169.
    117.刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993:12-15.
    118. Ha H Y, Kwon H S. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels[J], Electrochimica Acta,2007,52:2175-218.
    119. Yashiro H, Hirayasu D, Kumagai N. Effect of nitrogen alloying on the pitting of type 310 stainless steel [J]. ISIJ International,2002,42(12):1477-1482.
    120. Olsson C. The influence of nitrogen and molybdenum on passive films formed on the austeno-ferritic stainless steel 2205 studied by AES and XPS. Corrosion Science,1995,37(3): 467-479.
    121.杨松柏.耐候钢周期浸润腐蚀实验方法的研究[J].铁道技术监督,1996,2:7-13.
    122.韩薇,汪俊,王振尧,等.低合金钢耐大气腐蚀规律研究[J].腐蚀科学与防护技术,2003,15(6):315-319.
    123.陈俊明,俞方华.穆斯堡尔效应在锈层分析研究中的应用[J].化学通报,1982,12:19-24.
    124.马如璋,吴继勋,杨德钧,等.低合金钢海水腐蚀产物内锈层的颗粒度的研究[J].北京科技大学学报,1982,4:70-77.
    125.马如璋,吴继勋,计桂泉,等.用穆斯堡尔谱学等方法研究低合金钢在海水中的锈层[J].北京科技大学学报,1981,1:85-94.
    126.都有为,张毓昌,焦洪震,等.δ-FeOOH的结构与相变过程的研究[J].物理学报,1979,28(6):773-782.
    127.李言涛,李延旭,侯保荣,等.低合金钢在海洋各腐蚀区带的锈层研究[J].海洋与湖沼,1998,29(6):651-655.
    128.侯保荣,李言涛,李久青.钢铁在海水、海泥中锈层的穆斯堡尔谱的研究Ⅱ.A3钢与16Mn钢在海水、海泥中锈层的穆斯堡尔谱[J].海洋科学集刊,1998,40:119-123.
    129.杨晓梅.钢大气腐蚀锈层的激光Raman光谱研究[J].光散射学报,2007,19(2):134-137.
    130.杨晓梅.钢大气腐蚀锈层的红外、Raman光谱研究[J].光谱学与光谱分析,2006,26(12):2247-2250.
    131. Evans U R, Taylor C A J. Mechanism of atmospheric rusting[J]. Corrosion Science,1972,12(3): 227-246.
    132.张全成.大气腐蚀过程中耐候钢表面保护性锈层的表征及其改性研究[D].上海交通大学,2002.
    133.吴卫芳,计桂泉,马如璋,等.低合金钢在人造海水中腐蚀过程的穆斯堡尔谱学研究[J].1991,14(10):577-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700