360MPa级船板钢的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度船板钢大量应用于造船工业,对于360MPa级船板钢,国内多家钢厂已探索出较为成熟的生产工艺,如何进一步优化生产工艺和合金设计是这类钢目前比较突出的问题。
     本文通过测定360MPa级船板钢的再结晶曲线、CCT曲线,试轧了Nb微合金化360MPa级船板钢,并用价格相对低廉的V元素取代Nb元素,采用不同轧制工艺轧制了V微合金化360MPa级船板钢。通过拉伸试验、夏比冲击试验、显微硬度试验测定轧制钢的力学性能,采用光学显微镜、扫描电镜、透射电镜观察钢的组织,研究了不同微合金元素与轧制工艺对360MPa级船板钢组织、强度性能的影响。经过系统研究得出以下结果:
     (1)根据测定的再结晶曲线及CCT曲线结合钢厂其他级别船板钢的试制经验,优化出360MPa级Nb微合金化船板钢轧制方案:控制轧制时的开轧温度为880℃左右,终轧温度为850℃左右,未再结晶区总的压下率控制在70%,轧后控冷,开冷温度810℃,终冷温度740℃,冷速为5℃/s,控冷后钢板直接空冷至室温。
     (2)钢的组织受粗轧末阶段奥氏体晶粒形态影响明显,该过程中的奥氏体晶粒形态取决于微合金元素的特性及粗轧道次压下量。添加Nb微合金元素时,铁素体晶粒尺寸不均匀,带状组织严重;添加V微合金元素时,若粗轧阶段压下量过小,则铁素体晶粒较为粗大,带状组织严重,而采用大的压下量时,铁素体晶粒细小均匀。
     (3)Nb、V、Ti在微合金钢中有不同的析出温度,Ti元素在铸坯冷却过程中析出,其在微合金钢中的主要作用是抑制奥氏体化过程及粗轧再结晶后的晶粒长大;V元素在相变后冷却过程中于铁素体内均匀共格析出,V在微合金钢中主要起沉淀强化作用;Nb元素在粗轧末阶段及精轧阶段析出,析出的Nb(C,N)将对再结晶产生强烈的抑制作用。
     (4)强度计算结果显示,V微合金钢中,粗轧阶段增大压下量细化相变铁素体晶粒后,可以使钢的强度提高约60MPa,而添加的0.03~0.05%的V元素,能够使基体产生50~70MPa的沉淀强化增量,因此,生产V微合金化360MPa级船板钢,粗轧阶段应采用相对大的压下量,轧后空冷。
High-strength ship plate steels have been widely used in shipbuilding industry, The mature process of 360MPa grade ship plate steel has been well explored by severel domestic steel factories and the major problem with this steel is to optimize further the process and designation of alloys.
     The Nb-microalloyed 360MPa grade ship plate steel was rolled experimentally by measuring the recrystallization curve and the continuous cooling transformation curve. The V-microalloyed 360MPa grade ship plate steel was rolled with different rolling process by substituting Nb with cheaperⅤ. Mechanical properties of these steels were measured by using tensile test, Charpy V-notch impact test, microhardness test and the microstructures were observed by OEM, SEM and TEM. The microstructures and itensities were studied which were influnced by different microalloying elements and rolling process. Conclusions by means of systerm study are as follows:
     (1) The rolling process was optimized according to the recrystallization curve, continuous cooling tranformation curve measured and the experience of manufacturing other grade of steel:the starting temperature of finish rolling is about 880℃,the final temperature is about 850℃,the total reduction of non-recrystallization zone rolling is 70%, controlled cooling technology should be applied after rolling with a cooling velocity of 5℃/s and a final cooling temperature of 450℃.The plates can be cooled naturely after controlled cooling.
     (2) The ferrite structures are influenced evidently by the shape of austenite grain after rough rolling and the latter is depend on the characteristic of microalloy element and ruduction in pass.When the steels are microalloyed by Nb, the sizes of ferrite grains are not uniform. Microalloyed by V, if the pass ruduction of rough rolling is not large enough the ferrite grains are coarse and the banded structure is dramatic, then if the pass ruduction is large enough the ferrite grains are small and uniform.
     (3) The precipitation temperature of TiN, V(C,N), Nb(C,N) varis from each other, TiN precipitates at high temperature when the continuous casting is cooled, Its main function is to suppress the coarsening of grains during austenitizing and intervals of rolling passes. V(C,N) precipitates with a dispersive distribution in ferrite grain and keeps a coherency with the matrix. It's main function is to strengthen the ferrite. Nb(C,N) precipitates at the end of rough rolling and during finish rolling, it will suppress the recrystallisation effectively.
     (4) Strength calculation results show that, in V-microalloyed steel, the intensity can gain an increment of 60MPa with fine ferrite grains caused by large pass reduction of rough rolling.The added 0.03~0.05% V can bring a precipitation strengthening of 50-70MPa. Therefore, relative large pass reduction should be applied when the V-microalloyed ship plate steels is produced, the steel can be cooled naturely after rolling.
引文
[1]王祖斌,东涛.低合金高强度钢[M].北京:原子能出版社,1996:132-133.
    [2]王鸿斌.船体修造工艺[M].北京:人民交通出版社,2006:199.
    [3]中国船级社.材料与焊接规范2006[M].北京:人民交通出版社,2006:42-45.
    [4]GB 712-2000船体用结构钢[S].北京:中国标准出版社,2000.
    [5]东涛,付俊岩.中厚钢板的技术需求与对策[J].微合金化技术,2003,3(2):12-14.
    [6]张豪,雷运涛,魏金山.高强度船体结构钢的现状与发展[J].特种钢结构,2004,2(19):38-41.
    [7]桂赤斌.高强度钢船体焊接工程技术[M].湖北:湖北科学技术出版社,2006:29-30.
    [8]Andrzej K. Lis. Mechanical properties and microstructure of ULCB steels affected by thermomechanical rolling, quenching and tempering [J]. Journal of Materials Processing Technology,106(1-3):212-218.
    [9]霍向东.AH36高强度造船板轧制工艺的多道次热模拟研究[D].北京:北京科技大学,2000:26-40.
    [10]帅奇.浅谈我国船舶工业中厚板用钢的生产与营销实践[J].冶金信息导刊,2005,(05):5-8.
    [11]小指军夫.控制轧制控制冷却—改善材质的轧制[M].李伏桃,陈岿译.北京:冶金工业出版社,2002:2.
    [12]David Porte, Anssi Laukkane, Pekka Nevasmaa. Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatment [J]. International Journal of Pressure Vessels and Piping.2004,10(81): 867-877.
    [13]Xiao Huai Xue, Yi Yin Shan, Lei Zheng. Microstructural characteristic of low carbon microalloyed steels produced by thermomechanical controlled process [J]. Materials Science and Engineering A,2006, (25):285-287.
    [14]刘嘉禾,王祖滨.低合金高强度钢生产工艺技术的发展[J].钢铁,1996,31(10):76.
    [15]干勇,董翰.先进钢铁生产流程进展及先进钢铁材料生产制造技术[J].中国冶金,2004,14(S1):25-29.
    [16]Tanaka, T. Controlled rolling of steel plate and strip [J]. International Materials Reviews,1981,26(01):185-212.
    [17]孙建林,康永林,魏欣亚,等.800MPa级低合金中厚板的工艺及力学性能分析,新一代钢铁材料研讨会[C].北京中国金属学会,2001:345-348.
    [18]王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1988:67-72.
    [19]P. C. M. Rodrigues, E. V. Pereloma, D. B. Santos. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling [J]. Materials Science and Engineering A,2000,283(1-2):136-143.
    [20]Huoran Hou, Qi an Chen, Qingyou Liu, et al. Grain refinement of a Nb-Ti microalloyed steel through heavy deformation controlled cooling [J]. Journal of Materials Processing Technology,2003,137(1-3):173-176.
    [21]孙本荣,陈瑛.中厚板生产[M].北京:冶金工业出版社,1993:56-58.
    [22]刘细芬,蔡晓辉,王国栋,等.中厚板轧后控制冷却技术的发展概况[J].钢铁研究,2002,(01):54-57.
    [23]Koshiro Tsukada, Yoshitaka Yamazaki, Kazuaki Matsumoto, et al. Development of class 50Kg/mm2 steel for the Arctic offshore structure development of OLAC [J]. Pipe Technologyof Japan,1983, (99):34-35.
    [24]Yoshiyuki Watanbe, shin-ichi Shimomura. Integrated model for microstructure evolution and properties of plates manufactured in production Line [J]. ISIJ International,1992,32(3):405-413.
    [25]廖建国.日本厚钢板控制冷却技术的发展[J].中国钢铁业,2006,(02):20-23.
    [26]山本定宏,藤林晃夫,宇田川辰郎,等.NKK公司开发成功建筑用TMCP型高韧性超厚H型钢HIBUIL-H[J].鞍钢技术,2000,(01):37-38.
    [27]孙卫华,孙浩,孙玮.我国中厚板生产现状与发展[J].宽厚板,2000,6(06):1-4.
    [28]王国栋,刘相华,王君.我国中厚板生产设备、工艺技术的发展[J].中国冶 金,2004,(9):1-8.
    [29]Kyung Jong Lee. Recrystallization and precipitation interaction in Nb-containing steels [J]. Scripta Materialia,1999,5(40):837-843.
    [30]东涛,傅俊岩.微铌处理钢的物理冶金[J].微合金化技术,2002,2(03):48-53.
    [31]R·兰纳伯格.钒在微合金钢中的作用[M].杨才福译.北京:钢铁研究总院结构材料研究所.2000:82-83.
    [32]李新生,王能为.钢的微合金化强化机理浅析[J].冶金丛刊,2007,12(6):41-44.
    [33]S.G.Hong, H.J.Jun, K.B.Kang, et al. Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating [J]. Scripta Materialia,2003,48(8): 1201-1206.
    [34]E.V.Pereloma, B.R.Crawford, P.D.Hodgson. Strain-induced precipitation behaviour in hot rolled strip steel [J]. Materials Science and Engineering A,2001, 299(1/2):27-37.
    [35]A.J.Craven, K.He, L.A.J.Garvie. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels Non-titanium based particles [J]. Acta Materialia,2000,48(15):3869-3878.
    [36]S.F.MEDINA Determination of precipitation-time-temperature(PTT) diagrams for Nb, Ti or V micro-alloyed steels [J], Journal of Materials Science,1997,32: 1487-1492.
    [37]Antonio Augusto GORNI, Celso Gomes CAVALCANTI.7th International Conference on Steel Rolling 1998 [C]. Chiba:The Iron and Steel Institute of Japan, 1998:629-633.
    [38]Ohjoon KWON A Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel [J]. ISIJ International,1992,32(3): 350-358.
    [39]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989:437.
    [40]R.A.Grange. Effect of microstructural banding in steel [J]. Metallurgical and Materials Transactions B,1971(2):417-426.
    [41]A. SAKIR BOR, Effect of Pearlite Banding on Mechanical Properties of Hot-rolled Steel Plates [J]. ISIJ International,1991(31):1445-1446.
    [42]刘云旭.低碳合金钢中带状组织的成因、危害和消除[J].金属热处理,2000,12:1-3.
    [43]常可,王俊文,张金增,等.热处理工艺对20g钢板带状组织及冲击性能的影响[M].山西冶金,1997,02:39-40.
    [44]刘国勋,关卓明.低碳锰钢中周期性带状组织[J].北京科技大学学报,1993,15(01):67-72.
    [45]雍岐龙,田建国,杨文勇,等.钛在钢中的物理冶金学基础数据[J].云南工业大学学报,1999,15(02):7-10.
    [46]章守华,吴承建.钢铁材料学[M].北京:冶金工业出版社,1992:32.
    [47]J.G.SPEER, J.R.MICHAEL, S.S.HANSEN. Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels [J]. METALLURGICAL TRANSACTIONS A,1987,18A:211-222.
    [48]B.LOBERG, A.NORDGREN, J.STRID, et al. The Role of Alloy Composition on the Stability of Nitrides in Ti-Microalloyed Steels during Weld Thermal Cycles [J]. METALLURGICAL TRANSACTIONS A,1984,15A:33-41.
    [49]Hiroshi TAMEHIRO, Masahiko MURATA, Ryuichi HABU, et al. Optimum Microalloyed of Niobium and Boron in HSLA Steel for Thermomechanical Processing [J]. Transactions ISIJ,1987,27:120-129.
    [50]HEILONG ZOU, J.S. KIRKALDY. Carbonitride Precipitate Growth in Titanium/Niobium Microalloyed Steels [J]. METALLURGICAL TRANSACTIONS A,1991,22A:1511-1524.
    [51]方芳,雍岐龙,杨才福,等.V(C,N)在V-N微合金钢铁素体中的析出动力学[J].金属学报.2009,45(5):625-629.
    [52]S. ZAJAC, T. SIWECK1, W.B. HUTCHINSON et,a. Strengthening Mechanisms in Vanadium Microalloyed Steels Intended for Long Products [J]. ISIJ International, 1998(38):1130-1139.
    [53]田村今男.高强度低合金钢的控制轧制与控制冷却[M].王国栋,刘振宇,熊尚武,译.北京:冶金工业出版社,1992:184.
    [54]彭晟,朱松鹤,张恒华,等.高强度船板钢奥氏体晶粒长大的规律[J].钢铁,2009,44(02):72-74.
    [55]E.J.PALMIERE, C.I.GARCIA, A.J.DeARDO. Compositional and Microstructural Changes Which Attend Reheating and Grain Coarsening in Steels Containing Niobium [J]. METALLURGICAL AND MATERUALS TRANSACTION A,1994,25A:277-286.
    [56]H.L.ANDRADE, M.G.AKBEN, J.J.JONAS. Effect of Molybdenum, Niobium,and Vanadium on Static Recovery and Recrystallization and on Solute Strengthening in Microalloyed Steels [J]. Metallurgical Transactions A,1983, 14A:1968-1977.
    [57]薛润东,赵志毅,王明侠,等.均热时间对含Ti、Nb微合金元素高强钢固溶规律的影响[J].北京科技大学学报,2007(29):907-910.
    [58]张鹏程,武会宾,唐荻,等.Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为[J].金属学报,2007(43):753-758.
    [59]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:128.
    [60]C.Garcia-Mateo,B.Lopez,J.M.Rodriguez-Ibabe. Influence of Vanadium On Static Recrystallization In Warm Worked Microalloyed Steels[J]. Scripta Materialia,1999, 42(2):137-143.
    [61]A.J.DeArdo Metallurgical basis for thermomechanical processing of microalloyed steels [J]. Ironmaking and Steelmaking,2001,28(2):138-144.
    [62]B.DTTA, E.J.PALMIERE, C.M.AELLARS. Modelling The Kinetics Of Strain Induced Precipitation In Nb Microaoloyed Steels [J]. Acta Materialia,2001,49(5): 785-794.
    [63]S.F.Medina, A.Quispe. Static Recrystallization-Precipition Interaction in Microalloyed Steels [J]. Materials Science Forum,2003,426-432:1139-1144.
    [64]R.I.L.Guthrie, J.J.Jonas. Steel Processing Technology [J]. McGill Metals Processing Center,1990:107-125.
    [65]M.I.Vega, S.F.Medina, A.Quispe, et al. Recrystallisation driving forces against pinning forces in hot rolling of Ti-microalloyed steels [J]. Materials Science and Engineering A,2006:253-261.
    [66]C.Garcia-Mateo, B.Lopez, J.M.Rodriguez-Ibabe. Static recrystallization kinetics in warm worked vanadium microalloyed steels [J]. Materials Science and Engineering A,2001,303(1-2):216-225.
    [67]S.F.MEDINA, J.E.MANCILLA. Static Recrystallization Modelling of Hot Deformed Steels Containing Several Alloying Elements [J]. ISIJ International,1996, 36(8):1070-1076.
    [68]杨才福,张永权,柳书平.钒、氮微合金化钢筋的强化机制[J].钢铁,2001,36(5):55-57.
    [69]龚维幂,杨才福,张永权,等.低碳钒氮微合金钢中V(C,N)在奥氏体中的析出动力学[J].钢铁研究学报,2004,16(6):41-46.
    [70]Ohjoon KWON A Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel [J]. ISIJ International,1992,32(3): 350-358.
    [71]William Roberts, Alf Sandberg, Tadeusz Siwecki, et al. Prediction of Microstructure Development During Recrystallization Hot Rolling of Ti-V Steels [J]. Proceedings of the Technology and Applications of HSLA Steels Philadelphia,1983: 35-52.
    [72]F.B.PICKERING. PHYSICAL METALLURGY AND DESIGN OF STEELS [M]. LONDON:APPLIED SCIENCE PUBLISHERS LTD,1978:50-63.
    [73]石德珂.位错与材料强度[M].西安交通大学出版社,1988:92.
    [74]徐曼,孙新军,刘清友,等.高V钢中V(C,N)沉淀强化作用的研究[J].钢铁钒钛,2005,26(03):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700