SDF-1/CXCR4通过PI3K/Akt途径诱导大鼠骨髓间充质干细胞向受损脊髓组织迁徙
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     SDF-1/CXCR4通过PI3K/Akt途径在BMSCs向损伤脊髓组织迁徙的诱导作用及影响因素。
     研究方法
     1.用Percoll密度离心法从大鼠骨髓内分离出间充质干细胞并进行传代,以免疫组化的方法(SABC法)进行鉴定。
     2.用Allen打击法建立大鼠急性脊髓损伤模型。
     3.用Real-time PCR检测BMSCs中编码CXCR4和P13K基因的存在。
     4.用Western Bolt检测BMSCs表面CXCR4和P13K的蛋白表达。
     5.用Transwell小室迁徙实验为主要的体外实验方法,研究SDF-1/CXCR4对BMSCs的体外迁徙诱导作用并精确测定SDF-1的最佳诱导浓度。实验分为:阴性对照组(上室加入BMSCs细胞悬液,下室加入不含SDF-1的血清培养基);实验组(上室加入BMSCs细胞悬液,下室加入含不同浓度SDF-1的血清培养基);CXCR4阻断组(上室加入CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液,下室加入不同浓度的SDF-1的血清培养基);试剂对照组(上室加入CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液,下室加入不含SDF-1的血清培养基)。用不同干预措施后急性脊髓损伤模型大鼠的脊髓功能恢复情况(后肢运动BBB评分)研究SDF-1/CXCR4对BMSCs向脊髓损伤组织迁徙的影响。实验分为:空白对照组(模型大鼠不给予任何处理);阴性对照组(模型大鼠尾静脉注射生理盐水);试剂对照组(模型大鼠尾静脉注射AMD3100); BMSCs移植组(模型大鼠尾静脉注射BMSCs细胞悬液)、CXCR4抑制组(模型大鼠尾静脉注射CXCR4抑制剂预处理过的BMSCs细胞悬液)。
     6.用Transwell小室迁徙实验为主要的体外实验方法,研究PI3K/Akt途径在SDF-1/CXCR4趋化BMSCs过程中的影响。实验分为:阴性对照组(上室加入BMSCs细胞悬液,下室加入不含SDF-1的血清培养基),试剂AMD3100对照组(上室加入CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液,下室加入不含SDF-1的血清培养基),CXCR4抑制组(上室加入CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液,下室加入含SDF-1的血清培养基),试剂LY294002对照组(上室加入PI3K抑制剂LY294002预处理过的BMSCs细胞悬液,下室加入不含SDF-1的血清培养基)),PI3K抑制组(上室加入PI3K抑制剂LY294002预处理过的BMSCs细胞悬液,下室加入含SDF-1的血清培养基),外源性处理组(上室加入CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液和外源性PI3K产物PIP3,下室加入含SDF-1的血清培养基)。用不同干预措施后急性脊髓损伤模型大鼠的脊髓功能恢复情况(后肢运动BBB评分)研究SDF-1/CXCR4对BMSCs向脊髓损伤组织迁徙的影响。实验分为:空白对照组(模型大鼠不给予任何处理);阴性对照组(模型大鼠尾静脉注射生理盐水);试剂AMD3100对照组(模型大鼠尾静脉注射AMD3100);试剂LY294002对照组(模型大鼠尾静脉注射LY294002);BMSCs移植组(模型大鼠尾静脉注射BMSCs细胞悬液);CXCR4抑制组(模型大鼠尾静脉注射CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液);PI3K抑制组(模型大鼠尾静脉注射PI3K抑制剂LY294002预处理过的BMSCs细胞悬液);外源性处理组(模型大鼠尾静脉注射CXCR4抑制剂AMD3100预处理过的BMSCs细胞悬液和外源性PI3K产物PIP3)。
     7.本研究中,均值以x±s表示。用方差分析(Analysis of variance, ANOV)分析多组间的差异,组间的两两比较用q检验进行分析。所有数据用统计分析软件包(Statistic Package for Social Science, SPSS)17.0处理,以P<0.05认为差异具有统计学意义。
     研究结果
     1. BMSCs的细胞形态及免疫组化鉴定:典型的BMSCs呈长梭形或多角形的成纤维细胞样,有长短、粗细不一的胞浆突起。细胞早期呈集落样生长,集落呈放射状或漩涡状,后期细胞逐渐密集,集落不可分辨。免疫组化显示CD34-、CD44+、CD54+、CD99+。
     2. Allen打击法建立大鼠急性损伤模型:用70g.cm的能量对大鼠T10-11水平脊髓进行垂直打击,打击瞬间可见大鼠四肢及躯体抽搐,尾部呈痉挛样摆动,表示打击成功。3-5min后可见受损伤脊髓呈暗红色,有出血、水肿表现。建模后饲养一周,后肢运动BBB评分从术前的18.73±0.85降至术后的3.04±0.65,差异具有统计学意义(P<0.05)。
     3. BMSCs中CXCR4和PI3K的基因存在和蛋白表达:BMSCs存在CXCR4基因和PI3K基因,Real-time PCR的扩增ACT值分别为16.47和13.43。CXCR4和PI3K在BMSCs中均有蛋白表达。
     4. SDF-1/CXCR4对BMSCs迁徙的诱导作用:在体外实验中,试剂对照组和阴性对照组迁徙到下室的细胞数没有明显差异(P>0.05),试剂AMD3100本身对BMSCs的迁徙没有影响。在此基础上,相比阴性对照组,下室中加入SDF-1无血清培养基的小室,迁徙到下室的细胞数都有增加(P<0.05),且随着下室中SDF-1浓度的增加而增加。SDF-1浓度为144.5±4.4ng/ml时达到最佳迁徙效果,继续增加SDF-1浓度,迁徙到下室的细胞数也不会随之增加。AMD3100阻断CXCR4后,SDF-1对BMSCs不再有诱导迁徙作用(P>0.05)。
     5. P13K/Akt途径对SDF.1/CXCR4诱导BMSCs迁徙的影响:在体外实验中,验证试剂AMD3100和LY294002对BMSCs的自然迁徙没有影响的基础上(P>0.05),CXCR4抑制组和PI3K抑制组迁徙到下室的细胞数均小于正常的SDF-1趋化组(P<0.05),而在CXCR4抑制组中外源性的加入PI3K产物PIP3,则又可以观察到SDF-1的趋化作用。在体内实验中,验证了试剂AMD3100、LY294002以及注射操作对实验结果没有影响(P>0.05),向模型大鼠尾静脉注射PI3K抑制剂LY294002预处理过的BMSCs悬液与注射CXCR4抑制剂AMD3100预处理过的BMSCs悬液,模型大鼠的脊髓功能恢复程度均相同,均介于移植BMSCs组和阴性对照组之间(P<0.05)。在CXCR4抑制组中外源性的加入PI3K产物PIP3,模型大鼠的脊髓功能恢复与不抑制CXCR4时的效果相同(P>0.05)。
     研究结论
     1. Percoll密度离心法可以从大鼠长骨骨髓中分离出纯度较高的BMSCs。
     2. Allen打击法能够建立符合要求的大鼠急性损伤模型。
     3. SDF-1/CXCR4可以诱导BMSCs向受损的脊髓组织迁徙。
     4.SDF-1浓度为144.5na/ml时SDF-1/CXCR4对BMSCs的迁徙诱导效果达到最佳。
     5. PI3K/Akt途径是SDF-1/CXCR4诱导BMSCs向受损脊髓组织迁徙的下游机制。
Objects
     To investigate the effect of SDF-1/CXCR4 induced migration of bone marrow mensenchymal stem cells (BMSCs) to injured spinal cord via PI3K/Akt pathway in rats.
     Methods
     1. Isolated BMSCs from bone marrow of rat by density gradient centrifugation with percoll, and transfered these cells from generation to generation. Identified these cells with immunohistochemistry (Sreptavidin-biotin complex, SABC)
     2. Built model of rat with acute spinal cord injury by Allen's method.
     3. Detected gene of CXCR4 and PI3K in BMSCs with Real-time PCR.
     4. Detected expression of CXCR4 and PI3K in BMSCs with Western Bolt
     5. Took Transwell migration experiment as the method of studying migration of BMSCs induced by SDF-1/CXCR4 in vitro, and got the peak concentration of SDF-1. Groups were divided into negative control group (cell suspension of BMSCs in upper room, serum culture medium without SDF-1 in lower room), experimental group (cell suspension of BMSCs in upper room, serum culture medium with SDF-1 of different concentration in lower room), CXCR4 blocked group (cell suspension of BMSCs pre-treated with AMD3100 in upper room, serum culture medium with SDF-1 of different concentration in lower room), and reagent control group (cell suspension of BMSCs pre-treated with AMD3100 in upper room, serum culture medium without SDF-1 in lower room). Studied the migration of BMSCs to injured spinal cord in vivo by compared the recoveries of spinal cord function of model rats with different treatments. Groups were divided into blank control group (no treatment given), negative control group (injected normal saline through caudal vein), AMD3100 control group (injected AMD3100 through caudal vein), BMSCs transplanted group (injected BMSCs through caudal vein), and CXCR4 blocked group (injected BMSCs pre-treated with AMD3100 through caudal vein).
     6. Took Transwell migration experiment as the method of studying the effect of PI3K/Akt pathway in the migrating of BMSCs induced by SDF-1/CXCR4 in vitro. Groups were divided into negative control group (cell suspension of BMSCs in upper room, serum culture medium without SDF-1 in lower room), AMD3100 control group (cell suspension of BMSCs pre-treated with AMD3100 in upper room, serum culture medium without SDF-1 in lower room), LY294002 control gourp (cell suspension of BMSCs pre-treated with LY294002 in upper room, serum culture medium without SDF-1 in lower room), CXCR4 blocked group (cell suspension of BMSCs pre-treated with AMD3100 in upper room, serum culture medium with SDF-1 in lower room), PI3K blocked group (cell suspension of BMSCs pre-treated with LY294002 in upper room, serum culture medium with SDF-1 in lower room), and exogenous PIP3 added group (cell suspension of BMSCs pre-treated with AMD3100 and exogenous PIP3 in upper room, serum culture medium with SDF-1 in lower room). Studied the migration of BMSCs to injured spinal cord by compared the recoveries of spinal cord function of model rats with different treatments. Groups were divided into blank control group (no treatment given), negative control group (injected normal saline through caudal vein), AMD3100 control group (injected AMD3100 through caudal vein), LY294002 control group (injected LY294002 through caudal vein), BMSCs transplanted group (injected BMSCs through caudal vein), CXCR4 blocked group (injected BMSCs pre-treated with AMD3100 through caudal vein), PI3K blocked group (injected BMSCs pre-treated with LY294002 through caudal vein), and exogenous PIP3 added group (injected BMSCs pre-treated with AMD3100 and exogenous PIP3 through caudal vein).
     7. Means were showed with x±s in this study. Analysis of variance (ANOV) was used to compare difference among more than two groups, q-test was used to compare difference between two groups. All data were treated with Statistic Package for Social Science (SPSS) 17.0. Results were accepted wiht P<0.05.
     Results
     1. Cytomorphology and results of immunohistochemistry of BMSCs:typical cytomorphology of BMSCs was similar with fibrocyte, long spindle or polygon with long or short cytoplasm protuberant. Cells gathered to colonies, which were radial or gyrate, in early growth period. Cell colonies became different to identify with the increase of cell number. CD34-、CD44+、CD54+、CD99+ were the results of immunohistochemistry.
     2. Rat model of acute spinal cord injury built by Allen's method:spinal cord of rat was hit with the energy of 70g-cm. When its spinal cord was hit, limbs and body of the rat shocked and its tail wiggled. Spinal cord changed to dark red with bleeding and edema 3 to 5 minutes later. One week later, the BBB scores of model rats declined from 18.73±0.85 pre-operation to 3.04±0.65 post-operation, the difference was significant (P<0.05).
     3. The existences and expressions of CXCR4 and PI3K genes in BMSCs:the existence of CXCR4 and PI3K genes were detected with real-time PCR, changes of cycle threshold (ΔCT) were 16.47 and 13.43. Expressions of CXCR4 and PI3K were detected with western blot.
     4. Migration of BMSCs to injured spinal cord induced by SDF-1/CXCR4:AMD3100 and was proved to have no influence to experiment (P>0.05). In vitro experiment, more cells migrated to lower room in experimental group compared with negative control group (P<0.05), and cell number increased with concentration of SDF-1. Best effect was observed when SDF-1 reached the concentration of 144.5±4.4ng/ml. SDF-1 didn't induce the migration of BMSCs when CXCR4 was blocked with AMD3100.
     5. Influence of PI3K/Akt pathway to the migration of BMSCs to injured spinal cord induced by SDF-1/CXCR4:AMD3100 and LY294002 were proved to have no influences to experiment (P>0.05). In vitro experiment, less cells migrated to lower room in CXCR4 blocked group and PI3K blocked group compared with SDF-1 control group (P<0.05). However, there was no difference between exogenous PIP3 added group and SDF-1 group (P>0.05). In vivo experiment, recoveries of spinal cord function model rats in CXCR4 blocked group and PI3K blocked group was similar with each other (P>0.05), both were between that in BMSCs transplanted group and negative group (P<0.05). Recoveries of spinal cord function model rats in exogenous PIP3 added group were the same as that in BMSCs transplanted group (P>0.05).
     Conclusion
     1. BMSCs of higher purity can be isolated from bone marrow of rat by density gradient centrifugation with percoll.
     2. Rat model of acute spinal cord injury can be build with Allen's method.
     3. SDF-1/CXCR4 can induce the migration of BMSCs to injured spinal cord.
     4. Best effect of migration can be obtained when the concentration of SDF-1 reach 144.5ng/ml.
     5. PI3K/Akt pathway is the downstream mechanism of migration of BMSCs to injured spinal cord induced by SDF-1/CXCR4.
引文
1. Aiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase [J]. J Biol Chem,2000,275(13):9645-52.
    2. Jiang J, Lv Z, Gu Y, et al. Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro [J]. Neurosci Res,2010,66(1):46-52.
    3. Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells [J]. J Cell Sci,2004,117 (Pt 19): 4411-22.
    4. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain [J]. Neurosurgery,2004, 55(5):1185-93.
    5. Chiba Y, Kuroda S, Maruich iK, et al. 「 Transplanted bone marrow stromal cells prom ote axonal regeneration and improve motor function in a rat spinal cord injury model [J]. r Neurosurgery,2009,64(5):991-9. 「
    6. Kamei N, Tanaka N, Oishi Y, et al. Bone marrow stromal cells promoting corticospi nal axon growth through the release of humora 1 factors in organotypic cocultures in neonatal rats [J]. J Neurosurg Spine,2007,6(5):412-9. r
    7. Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production [J]. J Neurosci Res,2002,5:687-91. 「
    8. Bleul CC, Fuhlbrigge RC, Casasnovas JM, et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) [J]. J Exp Med,1996, 184(3):1101-9.
    9. Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood [J]. J Exp Med,1997, 185(1):111-20.
    10. Ara T, Nakamura Y, Egawa T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1) [J]. Proc. Natl. Acad. Sci. U.S.A.,2003,100(9):5319-23.
    11. Zhuang Y, Chen X, Xu M, et al. Chemokine stromal cell-derived factor 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction [J]. Chin Med J (Engl),2009, 122(2):183-7.
    12. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF-1 deficient mice [J]. Proc. Natl. Acad. Sci. U.S.A.,1998,95 (16):9448-53.
    13. Campbell JJ, Hedrick J, Zlotnik A, et al. Chemokines and the arrest of lymphocytes rolling under flow condition [J]. Science,1998,279(5349):381-3.
    14. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 [J]. Science,1999,283(5403):845-8.
    15.朱洁,周竹娟,龚自力,等。基质细胞衍生因子1及其受体CXCR4对人骨髓间充质干细胞向脑缺血损伤区迁移的影响[J]。中国组织工程研究与临床康复,13(19):3719-24。
    16. Chavakis E, Carmona G, Urbich C, et al. Phosphatidylinositol-3-Kinase-γ「 Is Integral to Homing Functions of Progenitor Cells [J]. Circ Res,2008,102(8):942-9.
    1. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues [J]. Transplantation,1968,6(2):230-47.
    2. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase [J]. JBiol Chem,2000,275(13):9645-52.
    3. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal stem cells differentiate into neurons [J]. JNeurosic Res,2000,61(4):364-70.
    4. Friedenstein A, Kuralesova AI.Osteogenic precursor cells of bone marrow in radiation chimeras [J]. Transplantation,1971,12(2):99-108.
    5. Krampera M, Franchini M, Pizzolo G, et al. Mesenchymal stem cells:from biology to clinical use [J]. Blood Transfus,2007,5(3):120-9.
    6. Ratajczak MZ, Kuczynski WI, Sokol DL, et al. Expression and physiologic significance of Kit ligand and stem cell tyrosine kinase-1 receptor ligand in normal human CD34+, c-Kit+ marrow cells [J]. Blood,1995,86(6):2161-7.
    7. Huang Y, Jia X, Bai K, et al. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells [J]. Arch Med Res,2010,41(7):497-505.
    8. Furness SG, McNagny K. Beyond mere markers:functions for CD34 family of sialomucins in hematopoiesis [J]. Immunol Res,2006,34(1):13-32.
    9. Abeysinghe HR, Cao Q, Xu J, et al. THY1 expression is associated with tumor suppression of human ovarian cancer [J]. Cancer Genet Cytogenet,2003,143(2): 125-32.
    10. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis [J]. FASEB J, 2006,20(8):1045-54.
    11. Wetzel A, Chavakis T, Preissner KT, et al. Human Thy-1 (CD90) on activated endothelial cells is a counterreceptor for the leukocyte integrin Mac-1 (CDllb/CD18) [J]. Immunol,2004,172(6):3850-9.
    1. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues [J]. Transplantation,1968,6(2):230-47.
    2. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal stem cells differentiate into neurons [J]. JNeurosic Res,2000,61(4):364-70.
    3. Aiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase [J]. JBiol Chem,2000,275(13):9645-52.
    4. Hermann A, Gastl R, Liebau S, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells [J]. J Cell Sci,2004,117 (Pt 19): 4411-22.
    5. De La Luz Sierra M, Yang F, Narazaki M, et al. Differential processing of stromal-derived factor-1α and stromal-derived factor-1β explain functional diversity [J]. Blood,2004,103(7):2452-9.
    6. Dunussi-Joannopoulos K, Zuberek K, Runyon K, et al. Efficacious immunomodulatory activity of the chemokine stromal cell-derived-factor-1(SDF-1):local secretion of SDF-1 at the tumor site serves as T-cell chemoattractant and mediates T-cell-dependent antitumor responses [J]. Blood,2002,100(5):1551-8.
    7. Ara T, Nakamura Y, Egawa T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1) [J]. Proc. Natl. Acad. Sci. U.S.A.,2003,100(9):5319-23.
    8. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF-1-deficient mice [J]. Proc. Natl. Acad. Sci. U.S.A.,1998,95(16):9448-53.
    9. Zhang G, Nakamura Y, Wang X, et al. Controlled release of stromal cell-derived-factor-la in situ increases c-kit+cell homing to the infarcted heart [J]. Tissue Eng,2007,13(8):2063-71.
    10. Campbell JJ, Hedrick J, Zlotnik A, et al. Chemokines and the arrest of lymphocytes rolling under flow conditions [J]. Science,1998,279(5349):381-3.
    11. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry [J]. Nature,1996,382(6594):829-33.
    12. Cronshaw DQ Nie Y, Waite J, et al. An essential role of the cytoplasmic tail of CXCR4 in g-protein signaling and organogenesis [J]. PLoS One,2010,19;5(11):e15397.
    13.朱洁,周竹娟,龚自力,等。基质细胞衍生因子1及其受体CXCR4对人骨髓间充质干细胞向脑缺血损伤区迁移的影响[J]。中国组织工程研究与临床康复,13(19):3719-24。
    14. Yagi H, Soto-Gutierrez A, Parekkadan B, et al. Mesenchymal stem cells:Mechanisms of immunomodulation and homing [J]. Cell Transplant,2010,19(6):667-9.
    15. Takabatake Y, Sugiyama T, Kohara H, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature [J]. J Am Soc Nephrol,2009,20(8): 1714-23.
    16. Charwat S, Gyongyosi M, Lang I, et al. Role of adult bone marrow stem cells in the repair of ischemic myocardium:current state of the art[J]. Exp Hematol,2008,36(6): 672-80.
    17. Cronshaw DG, Nie Y, Waite J, Zou YR. An essential role of the cytoplasmic tail of CXCR4 in G-protein signaling and organogenesis[J]. PLoS One,2010,5(11):e15397.
    18. Zheng H, Fu G, Dai T, et al. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway [J]. J. Cardiovasc. Pharmacol,2007,50 (3):274-80.
    19. Kucia M, Jankowski K, Reca R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion[J]. J Mol Histol,2004,35(3):233-45.
    20.曹阳,吕刚,于洋,等。SDF-1/CXCR4促进骨髓基质细胞迁徙的作用[J]。辽宁医学院学报,2009,30(6):484-487。
    21. Mirisola V, Zuccarino A, Bachmeier BE, et al. CXCL12/SDF1 expression by breast cancers is an independent prognostic marker of disease-free and overall survival [J]. Eur. J. Cancer,2009,45 (14):2579-87.
    22. Rubie C, Frick VO, Ghadjar P, et al. CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells[J]. J Transl Med,2011,9:22.
    23. Unzek S, Zhang M, Mal N, et al. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo [J]. Cell Transplant,2007,16(9):879-86
    24. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived-factor-1 in vitro but does not decrease apoptosis under serum deprivation [J]. Cardiovasc Revasc Med,2006, 7(1):19-24.
    25. Kollet O, Petit I, Kahn J, et al. Human CD34(+)CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation [J]. Blood,2002,100(8):2778-86.
    1. Bleul CC, Fuhlbrigge RC, Casasnovas JM, et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) [J].J Exp Med,184(3):1101-9.
    2. Wendt MK, Cooper AN, Dwinell MB. Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells [J]. Oncogene,2008,27(10): 1461-71.
    3. Unzek S, Zhang M, Mal N, et al. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo [J]. Cell Transplant,2007,16(9):879-86
    4. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice [J]. Exp Hematol,2006,34(8):967-75.
    5.曹阳,吕刚,于洋,等。SDF-1/CXCR4促进骨髓基质细胞迁徙的作用[J]。辽宁医学院学报,2009,30(6):484-7。
    6. Chavakis E, Carmona G, Urbich C, et al. Phosphatidylinositol-3-Kinase-γ 「 Is Integral to Homing Functions of Progenitor Cells [J]. Circ Res,2008,102(8):942-9.
    7. Servant G, Weiner O D, Herzmark P et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis[J]. Science,2000,287(5455):1037-40.
    8.李一帆,陈东,张大威,等。急性大鼠脊髓损伤Allen's法模型的改良及电生理评价[J]。中国实验诊断学,2010,14(8):1169-72。
    9. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats [J]. JNeurotrauma,1995,12(1):1-21.
    10. Vanhaesebroeck B, Leevers S J, Ahmadi K et al. Synthesis and function of 3-phosphorylated inositol lipids [J]. Annu Rev Biochem,2001,70(1):535-602.
    11. Jimenez C, Jones DR, Rodriguez-Viciana P, et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3 kinase [J]. EMBO,1998,17:743-53.
    12. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation in the brain [J]. Neurosurgery,2004,55(5): 1185-93.
    13. Chiba Y, Kuroda S, Maruich iK, et al. 「 Transplanted bone marrow stromal cells prom ote axonal regeneration and improve motor function in a rat spinal cord injury model [J]. 「 Neurosurgery,2009,5:991-9. 「
    14. Kamei N, Tanaka N, Oishi Y, et al. Bone marrow stromal cells promoting corticospi nal axon growth through the release of humora 1 factors in organotypic cocultures in neonatal rats [J]. J Neurosurg Spine,2007,5:412-19. r
    15. Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production [J]. J Neurosci Res,2002,5:687-91. 「
    1. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury [J]. Spine.2001,15; 26(24 Suppl):S2-12.
    2. Tator CH:Epidemiology and general characteristics of the spinal cord injury patient, in Benzel EC, Tator CH (eds):Contemporary Management of Spinal Cord Injury. Neurosurgical Topics [J]. Park Ridge, Ⅲ:American Association of Neurological Surgeons,1995, pp 913.
    3. Rahimi-Movaghar V. Efficacy of surgical decompression in the setting of complete thoracic spinal cord injury [J]. J Spinal Cord Med.2005; 28(5):415-20.
    4. Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due to mechanical trauma [J]. J Neurotrauma.2007,24(3):492-507.
    5. Baptiste DC, Fehlings MG:Pharmacological approaches to repair the injured spinal cord [J]. J Neurotrauma.2006,23:318-34.
    6. Bunge RP, Puckett WR, Becerra JL. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination [J]. Adv Neurol,1993 59: 75-89.
    7. McDonald JW, Belegu V. Demyelination and remyelination after spinal cord injury [J]. J Neurotrauma,2006,23:345-59.
    8. Nashmi R, Fehlings MG. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord [J]. Neuroscience,2001,104:235-51.
    9. Radojicic M, Reier PJ, Steward O. Septations in chronic spinal cord injury cavities contain axons [J]. Exp Neurol,2005,196:339-41.
    10. Ditunno JF, Little JW, Tessler A. Spinal shock revisited:a four-phase model [J]. Spinal Cord,200442:383-95.
    11. Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury [J]. JNeurosurg,1997,86:483-92.
    12. Inamasu J, Nskamura Y, Ichikizaki K. Induced hypothermia in experimental traumatic spinal cord injury:an update [J]. JNeuroeci,2003,209(1):55.
    13. Mary AB, Hu YM, Naohirc I, et al. Expression and functional analysis of Apaf-1 isoforms [J]. J Bio Chemistry,2000,275(12):8461.
    14. Davis AR, Lotocki G, Marcillo AE, et al. FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury [J]. J Neurotrauma,2007,24(5):823-34.
    15. Emery E, Aldana P, Bunge MB, et al. Apoptosises after traumatic human spinal cord injury [J]. J Neurosurg; 1998,89(6):911-20.
    16. Jiang S, Bendjelloul F, Ballerini P, et al. Guanosine reduces apoptosis and inflammation associated with restoration of function in rats with acute spinal cord injury [J]. Purinergic Signal,2007,3(4):411-21.
    17.刘雷,裴福兴,唐康来,等。牵张性脊髓损伤后神经细胞中Caspase-3表达及其作用的实验研究[J]。中国脊柱脊髓杂志,2005,15(5):296-9。
    18. Dohmen C, Kumura E, Rosner G, et al. Ext racellular correlates of glutamate toxicity in short term cerebral ischemia and reperfusion:a direct in vivo comparison between white and gray matter [J]. Brain Res,2005,1037(122):43-51.
    19.叶晓健,李家顺,王家林,等。兴奋性氨基酸在脊髓继发性损伤中作用机制的研究[J]。第二军医大学学报,1995,16(6):520-23。
    20.吴宏,贾连顺。一氧化氮与急性脊髓损伤后脊髓水肿的关系[J]。福建医科大学学报,2001,35(2):151。
    21. Zhang J, Snyder SH. Nitric oxide in thenervous system [J]. Ann Res Pharm acol Tox-icol,1995,25:213.
    22.鲁凯伍,侯铁胜,傅强,等。大鼠脊髓急性损伤后内皮素-1含量的变化[J]。第二军医大学学报,2001,22(10):932。
    23.蔡卫华,叶晓健,崔志明,等。内皮素和细胞内Ca2+含量在继发性脊髓损伤中作用机制的研究[J]。中国康复医学杂志,2004,19(10):751-5。
    24.李明,杨晔,刘植珊,等。强啡肽A在脊髓继发性损伤中阿片样及非阿片样受体机制的实验研究[J]。中华骨科杂志,1996;2(16),109-13。
    25.李明,陈语,侯铁胜,等。强啡肽致脊髓损伤中非阿片样受体机制的研究[J]。第二军医大学学报,2001,22(10):923。
    26.张秋林,李明,赵杰,等。强啡肽A致截瘫大鼠脊髓组织细胞外腺苷浓度的变化[J]。第二军医大学学报,2001,22(10):926。
    27. Young W. Role of calcium in central nervous system injuries [J]. Neurotrauma,1992, 9:9
    28.傅勤,杜世新,傅永慧,等。神经生长因子和超氧化物歧化酶对急性脊髓损伤早期作用的实验研究[J]。中国医科大学学报,2001;30(3):192。
    29. Gonzalez R, Hickey MJ, Espinosa JM. Therapeutic neut raliza2tion of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice [J]. Regen Med,2007,2(5):771-831.
    30. Da H, Tachbana S, Ktahara T, et al. Association of head trauma with cervical spine injury, spinal cord injury, or both [J]. J Trauma,1999,46(3):450-2.
    31. Lambiris E, Zouboulis P, Tyllianakis M, et al. Anterior surgery for unstable lower cervical spine injuries [J]. Clin Orthop,2003, (411):61-69.
    32. Brodke DS, Anderson PA, Newell DW, et al. Comparison of anterior and posterior approaches in cervical spinal cord injuries [J]. Spinal Disord Tech,2003,16:229-35.
    33. Carlson GD, Gorden CD, Oliff HS, et al. Sustained spinal cord compression:part Ⅰ: time-dependent effect on long-term pathophysiology [J]. J Bone Joint Surg Am,2003, 85-A(1):86-94.
    34. Yoshida H, Okada Y, Maruiwa H, et al. Synaptic blockade plays a major role in the neural disturbance of experimental spinal cord compression [J]. J Neurotrauma,2003, 20:1365-76.
    35. Rahimi-Movaghar V, Yazdi A, Karimi M, et al. The effect of early time-dependent spinal cord decompression in traumatic paraplegia in rats [J]. Int J Neurosci,2008,118: 1359-73.
    36. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach [J]. Spinal Cord,2004,42:503-12.
    37. Papadopoulos SM, Selden NR, Quint DJ, et al. Immediate spinal cord decompression for cervical spinal cord injury:Feasibilty and outcome [J]. J Trauma,2002,52:323-32.
    38. Rabinowitz RS, Eck JC, Harper CM Jr, et al. Urgent surgical decompression compared to methylprednisolone for the treatment of acute spinal cord injury:a randomized prospective study in beagle dogs [J]. Spine,2008,33(21):2260-8.
    39.郑联合,尚保生,王育才,等。急性脊髓损伤手术时机的探讨[J]。骨与关节损伤杂志,2003,18(5):347-8。
    40. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation in the brain [J]. Neurosurgery,2004, 55(5):1185-93.
    41. Chiba Y, Kuroda S, Maruich iK, et al. 「 Transplanted bone marrow stromal cells prom ote axonal regeneration and improve motor function in a rat spinal cord injury model [J]. r Neurosurgery,2009,5:991-9. 「
    42. Kamei N, Tanaka N, Oishi Y, et al. Bone marrow stromal cells promoting corticospi nal axon growth through the release of humora 1 factors in organotypic cocultures in neonatal rats [J]. J Neurosurg Spine,2007,5:412-9. 「
    43. Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell culture conditioned by traumatic brain tissue extracts:growth factor production [J]. J Neurosci Res,2002,5:687-91. 「
    44.丁英,曾园山。神经干细胞的特性及在修复脊髓损伤中的应用前景[J]。解剖学进展,2001,23(4):337—339。
    45. Shenaq DS, Rastegar F, Petkovic D, et al. Mesenchymal Progenitor Cells and Their Orthopedic Applications:Forging a Path towards Clinical Trials [J]. Stem Cells Int, 2010,2010:519028.
    46. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase [J]. JBiol Chem,2000,275(13):9645-52.
    47. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal stem cells differentiate into neurons [J]. JNeurosic Res,2000,61(4):364-70.
    48. Nandoe Rewafie RD, Hurtado A, Levi AD, et al. Bone narrow stromal cells for repair of the spinal cord:towards clinical application [J]. Cell Transplant,2006,15(7):563-7.
    49. Kao CH, Chen SH, Chio CC, et al. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors [J]. Shock,2008,29(1):49-55.
    50. Golden KL, Pemme DD, Blits B, et al. Transduced Schwann cells promote axon growth and myelination after spinal cord injury [J]. Exp Neurol,2007,207(2):203-17.
    51. Alexndros AL, Isabelle F, Monique DD, et al. Schwann cells genetically engineered to express pSA show enhanced migratory potential without impairment of their myelinating ability in vitro [J]. Glia,2006,53:868-78.
    52.刘祥胜,刘开俊,郑国寿。嗅鞘细胞移植与脊髓再生修复[J]。中华创伤杂志,2004,20(11):699-701。
    53. Franssen EH, de Bree FM, Verhaagen J. Olfactory ensheathing glia:Their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord [J]. Brain Res Rev.2007,56(1): 236-58.
    54. Dombrowski MA, Sasaki M, Lankford KL, et al. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells [J]. Brain Res,2006,13:1125(1).
    55. Young W. Methylprednisolone and spinal cord injury [J]. J Neurosurg,2002,96(1 Suppl):141-2.
    56. Carolei A, Fieschi C, Bruno R, et al. Monosialoganglioside GM1 in cerebral ischemia [J]. Cerebrovasc Brain Metab Rev.1991,3(2):134-57.
    57.张香菊,王强,谭聪,等。高压氧对脊髓损伤的治疗作用[J]。中国临床康复。2003,7(32):4410。
    58. Kahraman Serda, Duz Bulent, Kayali Hakan, et al. Effects of Methylprednisohme and Hyperbaric Oxygen on Oxidative Status after Experimental Spinal Cord Injury:A Comparative Study in Rats [J]. Neurochemical Research,2007,32(9):1547-51.
    1. Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due to mechanical trauma [J]. J Neurotrauma.2007,24(3):492-507.
    2. Baptiste DC, Fehlings MG Pharmacological approaches to repair the injured spinal cord [J]. J Neurotrauma.2006,23:318-34.
    3. Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours, or tirilazad mesylate for 48 hours in the treatment of the acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study [J]. JAMA,1997, 277(20):1597-604.
    4. Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study [J]. N Engl J Med 1990, 322:1405-11.
    5. Weissman IL. Translating stem and progenitor cell biology to the clinic:barriers and opportunities [J]. Science,2000,287(5457):1442-6.
    6. Mahmood A, Lu D, Li Y, et al. Intracranial bone marrow transplantation after traumatic brain injury improves functional outcome in adult rats [J]. J Neuorsurg,2001,4: 589-95.「
    7. Chiba Y, Kuroda S, Maruich iK, et al. 「 Transplanted bone marrow stromal cells prom ote axonal regeneration and improve motor function in a rat spinal cord injury model [J]. r Neurosurgery,2009,5:991-9. r
    8. Kamei N, Tanaka N, Oishi Y, et al. Bone marrow stromal cells promoting corticospi nal axon growth through the release of humora 1 factors in organotypic cocultures in neonatal rats [J]. J Neurosurg Spine,2007,5:412-9. r
    9. Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production [J]. J Neurosci Res,2002,5:687-91.
    10.丁英,曾园山。神经干细胞的特性及在修复脊髓损伤中的应用前景[J]。解剖学进展,2001,23(4):337—339。
    11. Ostenfeld T, Caldwell MA, Prowse KR, et al. Human neural precursor cells express low level of telomerase in vitro and show diminishing cell proliferation with extensive axonal growth following transplantation [J]. Exp Neurol,2000,164(1):215-26.
    12. Glvin KA, Jones DG Adult human neural stem cells for cell-transplantation therapies in the central nervous system [J]. Med Aust,2002,177(6):316-318.
    13. Shibayama M, Hattori S, Himes BT, et al. Neurotrophin-3 prevents death of axotomized Clarke's nucleus neurons in adult rat [J]. J Comp Neurol,1998,390(1): 102-11.
    14. Sun C, Zhang H, Li J, et al. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke [J]. J Transl Med,2010,8:77.
    15. Carpenter MK, Winkler C, Fricker R, et al. Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice [J]. Exp Neurol,1997,148:187-204.
    16. Shenaq DS, Rastegar F, Petkovic D, et al. Mesenchymal Progenitor Cells and Their Orthopedic Applications:Forging a Path towards Clinical Trials [J]. Stem Cells Int, 2010,2010:519028.
    17. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogenactivated protein kinase [J]. J Biol Chem,2000,275(13):9645-52.
    18. Jiang J, Lv Z, Gu Y, et al. Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro [J]. Neurosci Res,2010,66(1):46-52.
    19. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue [J]. Spine,2004,29(18):1971-9.
    20. Yano S, Kuroda S, Lee JB, et al. In vivo fluorescence racking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord [J]. J Neurotrauma, 2005,22(8):907-18.
    21. Ohta M, Suzuki Y, Noda T, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation [J]. Exp Neurol,2004,187(2):266-78.
    22.吴金生,董爱萍,王晓萃,等。骨髓间充质干细胞移植修复大鼠半横断脊髓损伤[J]。中国实验动物学报,2010,18(1):56-59。
    23. Nandoe Tewarie RS, Hurtado A, et al. Stem cell-based therapies for spinal cord injury [J]. J Spinal Cord Med,2009,32(2):105-14.
    24. Dasari VR, Spomar DG, Cady C, et al. Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats [J]. Neurochem Res,2007,32(12):2080-93.
    25. Shi E, Kazui T, Jiang X, et al. Therapeutic benefit of intrathecal injection of marrow stromal cells on ischemia-injured spinal cord [J]. Ann Thorac Surg,2007,83(4):1484.
    26. Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axon growth at sites of spinal cord injury [J]. Exp Neurol,2005,191(2): 344-60.
    27. Lang KJ, Rathjen J, Vassilieva S, et al. Differentiation of embryonic stem cells to neural fate:a route to rebuilding the nervous system? [J]. J Neurosci Res,2004, 76(2):184-192.
    28. Martin GR.Teratocarcinomas and mammalian embryogenesis [J]. Science,1980,209: 768-76.
    29. Jang YK, Park JJ, Lee M C, et al. Retinoic acid-mediated induction of neuron and glial cell from human umbilical cord-derived hematopoietic stem cell [J]. J Neurosci Res. 2004,75 (4):573-84.
    30. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants [J]. Science,1999,285(5428):754-6.
    31. Nakamura M, Okano H, Toyama Y, et al. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after acute spinal cord injury in the neonatal rat [J]. J Neurosci Res,2005,15; 81(4):457-68.
    32. Annas GJ, Caplan A, Elias S. Stem cell politics, ethics and medical progress [J]. Nat Med,1999,5(12):1339-41.
    33. Martin GR, Evans MJ. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro [J]. Proc Natl Acad Sci USA,1975,72(4): 1441-5.
    34. Hou L, Cao H, Wang D, et al. Induction of umbilical cord blood mesenchymal stem cell into neuron-like cell in vitro [J]. Int JHematol,2003,78(3):256-61.
    35. Dasari VR, Veeravalli KK, Tsung AJ, et al. Neuronal apoptosis is inhibited by cord blood stem cells after spinal cord injury [J]. JNeurotrauma,2009,26(11):2057-69.
    36. Wendt MK, Cooper AN, Dwinell MB. Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells [J]. Oncogene,2008,27(10): 1461-71.
    37. Unzek S, Zhang M, Mal N, et al. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo [J]. Cell Transplant,2007,16(9):879-86
    38. Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow [J]. Blood,2004,104(9):2643-5.
    39.曹阳,吕刚,于洋,等。SDF-1/CXCR4促进骨髓基质细胞迁徙的作用[J]。辽宁医学院学报,2009,30(6):484-7。
    40. Mirisola V, Zuccarino A, Bachmeier BE, et al. CXCL12/SDF1 expression by breast cancers is an independent prognostic marker of disease-free and overall survival [J]. Eur. J. Cancer,2009,45 (14):2579-87.
    41.李进领,杨晓华,李明,等。骨髓基质干细胞不同移植方式治疗脊髓损伤的实验研究[J]。昆明医学院学报,2006,12(6):30-3。
    42. Rowland JW, Hawryluk GW, Kwon B, et al.Current status of acute spinal cord injury pathophysiology and emerging therapies:promise on the horizon [J]. Neurosurg Focus, 2008,25(5):E2.
    43.叶晓健,李家顺,王家林,等。兴奋性氨基酸在脊髓继发性损伤中作用机制的研究[J]。第二军医大学学报,1995;16(6):520-3。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700