TATB基PBX的量子化学和耗散粒子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3,5-三氨基2,4,6-三硝基苯(1,3,5-triamino-2,4,6-trinitrobenzene, TATB)是著名的高能钝感炸药,以其为基的高聚物粘结炸药(Polymer-Bonded Explosive, PBX)应用十分广泛。但在以TATB为基的PBX中TATB与高聚物粘结剂间的粘结性不好,容易产生界面“脱粘”,较大程度地影响了它的综合性能,限制了它的应用范围。偶联技术是改变界面“脱粘”现象的一个有效的方法,但是目前,人们对偶联剂的偶联机理认识还不足,实验上选取偶联剂的方式还处在以实验探索为主的状态,亟待理论指导。基于此,本论文首先运用量子化学计算中的密度泛函理论方法在微观尺度上研究了目前被公认的TATB基PBX的较理想的偶联剂——γ-氨丙基三乙氧基硅烷(y-Aminopropyltriethoxysilane, KH550)的水解产物与TATB基PBX中各组分分子间的相互作用,并根据混合体系的几何构型、自然键轨道分析及分子间相互作用能等,预测了KH500的水解产物在TATB基PBX中可能存在的偶联机理。为了证实这种预测和更清楚直观的观察到KH550的水解产物在TATB基PBX中的作用行为,本论文采用了一种目前广泛使用的介观模拟技术——耗散粒子动力学方法在介观尺度上研究了在添加偶联剂和未添加时TATB基PBX的介观结构形貌、粒子数密度分布及一些宏观性质等,结果不仅形象展现了TATB与氟聚物粘结剂间的粘结机制,而且还为偶联剂在TATB基PBX中的作用行为给出了直观形象的描述。另外,氟聚物粘结剂对TATB的包覆性和粘结性还与在TATB基PBX造型粉的制备过程中氟聚物粘结剂在不同溶剂、不同浓度下分子链的伸展状况密切相关,故本文采用耗散粒子动力学方法研究了表征氟聚物粘结剂在不同溶剂、不同浓度下分子链伸展状况的两个重要参数——均方根末端距和回旋半径,从而预测了氟聚物在何种溶剂、何种浓度下能够对TATB产生较好的润湿效果。关于本论文的具体研究成果和结论概述如下:
     在DFT/B3LYP/6-31G水平下,本论文研究了硅烷偶联剂与TATB分子间的相互作用,求得硅烷偶联剂与TATB混合体系的三种优化构型、电子结构等;经自然键轨道分析可知,硅烷偶联剂与TATB间的较大电荷转移主要是通过TATB硝基上O的孤对电子与硅烷偶联剂羟基上O和H的反键轨道间的相互作用而发生的:TATB硝基上的O原子与硅烷偶联剂羟基上的H原子间可形成相对较强的氢键作用,与实验结果相吻合;另外,经零点振动能和基组叠加误差校正后精确求得混合体系的最大结合能为-17.969kJ/mol.
     同样地在B3LYP/6-31G水平上,本论文运用密度泛函理论研究了高聚物粘结剂与硅烷偶联剂分子间的相互作用,求得高聚物粘结剂与硅烷偶联剂混合体系的四种优化构型,经零点振动能和基组叠加误差校正后精确求得混合体系的最大结合能为24.514kJ/mol,大于硅烷偶联剂与TATB分子间的最大结合能。又经原子净电荷和自然键轨道分析表明二者之间存在较强电荷转移,分子间存在H……O和F……H等氢键作用。由分子间的最大结合能和分子间的氢键作用可以预测,若在TATB、高聚物粘结剂和硅烷偶联剂的混合体系中,硅烷偶联剂有可能处在高聚物粘结剂的聚集体中,而非同于一般的偶联剂,处在填料与粘结剂间起到“分子桥”的连接作用。
     为了验证采用量化计算对硅烷偶联剂在TATB基PBX中偶联机制的预测,本论文利用耗散粒子动力学对四种TATB基PBX的介观结构形貌及其演变过程进行了研究。结果表明:氟聚物粘结剂在TATB中形成线形网状结构,但不能完全包覆TATB;随着三氟氯乙烯重复单元在氟聚物粘结剂中含量比例的增加,氟聚物粘结剂在TATB中的扩散变得越来越容易;升高温度促进了氟聚物粘结剂在TATB中的扩散以及对TATB的包覆作用;研究结果表明,温度在400K时,氟聚物形成蜂窝状结构,能很好地包覆TATB。
     为了研究硅烷偶联剂在TATB基PBX中的偶联机制,本论文利用耗散粒子动力学方法研究了在添加硅烷偶联剂时TATB基PBX的介观结构形貌、氟聚物的聚集状态、粒子数密度分布;并以未添加硅烷偶联剂时TATB基PBX的介观结构形貌为参考,分别从粘结剂与炸药间的粘结机理——吸附理论、润湿理论和扩散理论的角度分析了添加硅烷偶联剂对氟聚物与TATB间粘结性的促进作用,得到了氟聚物与TATB间的粘结机理和硅烷偶联剂的偶联机制。结果表明,硅烷偶联剂在TATB基PBX中具有独特的偶联机制,硅烷偶联剂将与TATB亲和性差的三氟氯乙烯结构单元拽拉在它的周围,一起聚集在氟聚物团的内部,而将与TATB亲和性好的偏氟乙烯结构单元排挤在氟聚物团的表面上,即使得与TATB亲和性好的偏氟乙烯结构单元更多地聚集在TATB和氟聚物粘结剂间的界面上,从而提高了TATB与氟聚物粘结剂间的粘结作用。
     本论文的还利用耗散粒子动力学方法研究了F2311和F2314分别在乙酸乙酯和乙酸丁酯溶剂中在多种浓度下的链的伸展状况,为氟聚物选择何种溶剂何种浓度能够对TATB产生最佳的润湿效果提供了理论数据。结果发现乙酸乙酯是F2311的良溶剂,在浓度小于10%时,能够对TATB颗粒产生较好的润湿效果。乙酸丁酯是F2314的良溶剂,浓度为6%时,能够对TATB颗粒产生最好的润湿效果。
     总之,本文以改善氟聚物粘结剂与TATB间的粘结性和包覆性为目的,运用先进的量子化学计算方法和介观尺度上的耗散粒子动力学计算方法,深入研究了硅烷偶联剂与TATB基PBX内各组分分子间的相互作用和TATB基PBX的介观结构形貌及其宏观性质,丰富了高聚物粘结炸药配方设计和改善高聚物粘结炸药综合性能的研究,属于量子炸药化学和大尺度混合炸药化学研究领域的最新研究成果。
1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is the famous insensitive high explosive, and its based polymer-bonded explosives (PBX) are widely used. But the bindings between TATB and its polymeric binders are weak, which deduces the interfacial "bebonding" Therefore, the combination properties of TATB-based PBX are influenced and the applications of TATB-based PBX are limited. The coupling technique is a valid method to restrain the interfacial "bebonding". However, the understandings of the coupling mechanism of the coupling agent are insufficient. The selecting of the coupling agents in experiments is mainly based on explorations, so the theoretical guidance is urgently needed. Based on above, the intermolecular interactions between the recognized perfect TATB's coupling agent-the hydrolysate of y-Aminopropyltriethoxysilane (KH550) and the components of the TATB-based PBX are investigated at the microscopic level using the density functional theory (DFT) method. According to the optimized geometries of the mixing systems, natural bond orbital analysis and the intermolecular interaction energies, the coupling mechanism of the silane coupling agent in TATB-based PBX is predicated. In order to prove above prediction and observe the behavior of the hydrolysate of KH550 in TATB-based PBX visually, the dissipative particle dynamics method was used to investigate the mesoscopic morphologies, the distribution of the particle numerical density and some macroscopic properties of the TATB-based PBX with the addition of the coupling agent or not at the mesoscopic level. The results not only show the bonding mechanism between TATB and fluoropolymer, but also the behaviors of the coupling agent in TATB-based PBX. In addition, there is a close relationship between the warp of the fluoropolymers to TATB and the extension of the fluoropolymer in the different solvents and at different concentrations. So the dissipative particle dynamics method was used to investigate the two important parameters which can illuminate the extension of fluoropolymers-root mean square end-to-end distance and radius of gyration. Therefore, in which solvent and at which concentrations, the fluoropolymer being of the excellent warp properties to TATB is predicted. Our achievements and conclusions are as follows:
     At DFT-B3LYP-6-31G level, the intermolecular interactions between silane coupling agent and TATB are investigated, the three fully optimized geometries of the mixture and the electronic structures are obtained. Based on the natural bond orbital analysis, the great intermolecular charge transfer between silane coupling agent and TATB is mainly caused by the interactions between the lone pair electrons of oxygen atom in nitro group of TATB and antibonding orbital between O and H in the hydroxyl group of silane coupling agent; a strong hydrogen bond between the O of TATB and the H of the hydroxyl group of silane coupling agent is found. In addition, the accurate intermolecular interaction energies are calculated with zero point energy correction and basis set superposition error correction. The largest corrected intermolecular interaction of the mixtures is -17.969kJ/mol.
     Likewise, the intermolecular interactions between silane coupling agent and polymeric binder are investigated at the B3LYP/6-31G level by means of the density functional theory. Four fully optimized geometries of the mixture are obtained. The accurate intermolecular interaction energies are calculated with zero point energy correction and basis set superposition error correction. The largest corrected intermolecular interaction of the mixture is 24.514kJ/mol, which is larger than that of the silane coupling agent and TATB. Atomic net charges and nature bond orbital analysis is performed. Charge transfer between two molecules is great. The hydrogen bonds are formed in H...O and F...H. Based on the the largest corrected intermolecular interaction and the hydrogen bonds, it is predicted that the silane coupling agent will be in the aggregation of the polymeric binder in the mixture of the polymeric binder, silane coupling agent and TATB, rather than playing a molecular brigde role between filler and binder.
     In order to prove the prediction of the coupling mechanism of the silane coupling agent in the TATB-based PBX, which is predicted by means of the quantum calculations, the mesoscopic structures of TATB-based PBXs and their time evolutions were investigated using the dissipative particle dynamics (DPD) method. The results indicate that most of the polymers are condensed to spheres and only several polymer chains extend into TATB, the polymers form reseau structure in TATB; TATB is fixed in the polymers, but can not be wrapped perfectly by the polymers. At the same time, with the increasing of the temperature and the content of the polychlorotrifluoroethylene (PCTFE) monomers in the polymer, more polymers are dispersed in TATB. When the temperature is up to 400K, the polymers form the alveolate structure, and wrap TATB perfectly.
     In order to investigate the coupling mechanism of the silane coupling agent in TATB-based PBX, the mesoscopic morphologies of TATB-based PBXs, the assembly of the fluoropolymers and the distributions of the particle'numerical density were studied using the dissipative particle dynamics method. The TATB-based PBXs without the addition of the silane coupling agent are made as the references, the improvement of the bindings between TATB and fluoropolymers are analyzed according to the binding mechanism between explosive and polymeric binders-adsorption theory, wetting theory and diffusion theory, therefore, the interaction mechanism between TATB and fluoropolymer as well as the coupling mechanism of the silane coupling agent are obtained. The simulation results show the silane coupling agent being of an extraordinary coupling mechanism. The silane coupling agents pull the TATB'unaffinity group-chlorotrifluoroethylene structural unit together assembling inside of the fluoropolymers ball, while push the TATB'affinity group-vinylidene fluoride structural unit outside of the fluoropolymer ball. Because of the assembling of the TATB' affinity groups at the interface, the bindings between TATB and fluoropolymers are enhanced.
     The extension of F2311 and F2314 in ethyl acetate and butyl acetate solvents at different concentrations was also studied using the dissipative particle dynamics. It provides the theoretical date for selecting which solvent and which concentration for fluoropolymers being of the excellent warp properties to TATB. The results show that ethyl acetate is the good solvent for F2311, when the concentrations are below 10%, F2311 is of the excellent wetting effect to TATB. Butyl acetate is the good solvent for F2314, when the concentration is at 6%, F2314 is of the excellent wetting effect to TATB.
     In summary, the advanced quantum chemistry calculation method was used to investigate the intermolecular interactions between the coupling agent and the components of TATB-based PBX, and the dissipative particle dynamics was used to investigate the mesoscopic morphologies and some macroscopic properties of the TATB-based PBX. Our studies have enriched the studies of the formulation designs of polymer-bonded explosive and the improvement of the combination properties of polymer-bonded explosive, which are belong to the newest achievements of the quantum explosive chemistry and the large scale composite explosive chemistry.
引文
1. H. H. Cady, A. C. Larson, The crystal structure of 1,3,5-triamirio-2, 4,6-trinitrobenzene.Acta Crvst,1965,18(3),485-496.
    2.董海山,周芬芬,高能炸药及相关物性能.北京:科学出版社,1989.
    3. J. Sharma, W. L. Garrett, F. J. Owens, V. L. Vogel, X-ray photoelectron study of electronic structure, ultraviolet, and isothermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene. J. Phys Chem,1982,86(9),1657-1661.
    4. W. E. Cady, L. E. Caley, Properties of Kel-F 800 polymer. Lawrence Livermore, UCRL-52301,1977.
    5.曹欣茂,塑料粘结炸药脱粘的研究.现代兵器,1993,1(3),41-42.
    6. J. R. Kolb, H.F.Rizzo, Growth of 1,3,5-Triamino -2,4,6-Trinitrobenzene (TATB) Propellants Explos,1979,4(1),10-16.
    7. U. Bemm, H. Ustmark, 1,1-diamino-2,2-dinitroethylene:a novel energetic material with infinite layer in two dimension. Acta Crvst, Section C,1998,54(12),1997-1999.
    8. N. V. Latypov, J. Bergman, A. Langlet, U. Wellmar, U. Bemm, Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene.Tetrahedron,1998,54(38),11525-11536.
    9. M. D. Brigitta, The insensitive high explosive Triaminotrinitrobenzene(TATB): development and characterization-1888 to 1994 LOS Alamos, LA-1314-H,1995.
    10. J. S. Hallam, TATB formulation study. Lawrence Livermore Laboratory, report UCID-17087,1976.
    11. J. R. Humphrey, H.F.Rizzo, A-new TATB Plasitc-Bonded-Explosive. Lawrrence Livemore Laboratory, report preprint UCRL-82657 Revision,1979.
    12. H. D. Johnson, A. G. Osborn, T. L. Stallings, TATB PBX Formulations. Mason & Hanger, Slias Mason, Company, Pantex plant report MHSMP-76-5,1975.
    13. B. A. Stott, D. A. Sbrocca, Plastic-Bonded Explosive compositions and the preparation thereof. USP 3,985,170,1973.
    14.罗世凯,PBX氟聚合物粘结剂的辐射效应研究.北京,中国工程物理研究院,2002.
    15. J.Z.Zhang, X. J. Yu, Surface modification of polytetrafluoroethylene by nitrogen ion implantation.Applied Surface Science,2002,185(3-4),255-261.
    16.刘学恕,金杰,低温等离子体对F24表面处理的研究,化学与粘合,1995,1,1-5.
    17.王晓川,黄辉,聂福德,TATB粒子表面改性研究.火炸药学报,2001,1(24),33-35.
    18. T. M. Benziger, Insensitive explosive composition of halogenated copolymer and triaminotriobenzene. USP 3,985,595,1976.
    19. H. C. Allen, Bonding agent for nitroamines in rocket propellacts. US 4389263,1983.
    20. F. J, Kincaid, Bonding agent for HMX(cyclotetra methylene tetra nitramine). US 4350542,1982.
    21.黄辉,王晓川,偶联剂在HMX基浇注固化炸药中的作用.含能材料,2000,1(8),13-17.
    22.姬广富,罗顺火,廖鸿铭,γ-(2,3-环氧丙基)氧化丙基三甲氧基硅烷与TATB的界面作用.含能材料,1995,4(3),35.
    23.刘永刚,雷延茹,余雪江,罗顺火,TATB/氟聚合物塑料粘结炸药的表(界)面特性研究[J].粘结,2003,24(4),6-9.
    24.刘学涌,常昆,王蔺,王晓川,彭宇行,郑朝晖,丁小斌,偶联剂对TATB造型粉表面性质及力学性能的影响.合成化学,2003,11(5),413-416.
    25.刘桂林,张文传,彭宇行,姬广富,罗顺火,偶联剂与TATB相互作用机理的研究.高分子材料科学与工程,2001,17(4),131-133.
    26.曹阳,聂福德,李越生,TATB基PBX复合材料的微观结构分析.火炸药学报,2004,27(3),58-61.
    27.李玉斌,聂福德,孙杰,郝莹,温茂萍,PBX药柱的不可逆长大对TATB/粘结剂界面粘结性能的影响.火炸药学报,2001,24(4),15-21.
    28. G. Demol, A study of themicrostructure of pressed TATB and its evolution after several kinds of insults. Snowmass,11th International Detonation Symposium,1998.
    29. P. D. Peterson, Microstructural characterization of energetic materials IPS2002. The 29th International Pyrotechnics Seminar,2002.
    30. P. S. Wang, Surface characterization of TATB by XPS and FT-NMR. Materials Science, 1989,24 (5),1533-1538.
    31.宋华杰,董海山,氟聚物与TATB界面作用的XPS评价.南京理工大学学报,2002,26(3),303-307.
    32.宋华杰,董海山,TATB, HMX与氟聚合物的表面能研究.含能材料,2000,8(3),104-107.
    33.张鹏,白树林,周文灵,一种高分子粘结炸药代用材料的微观结构及损伤演化的研究.高压物理学报,2003,17(4),319-325.
    34.李玉斌,沈明,李敬明,TATB颗粒填充高聚物材料的热膨胀特性.含能材料,2003,11(1),24-27.
    35. C. B. Skidmore, T. A. Butler, C. W. Sandoval, The elusive coefficients of thermal expansion in PBX 9502. Los Alamos National Laboratory, LA-14003,2003.
    36. M. S. Campbell, D. Garcia, D. Idar, Effects of temperature and pressure on the glass transitions of plasitc bonded explosives. Thermochimica Acta,2000,357-358,89-95.
    37. I. G. Kaplan, Theory of molecular interactions. Amsterdam:Elsevier, New York,1986.
    38. Y. B. Sun, J. M. Hui, X. M. Cao, Military mexed explosives. Beijing:Ordnance industry press,1995.
    39. H. M. Xiao, S. L. Jin, H. S. Dong, A quantum-chemical study of PBX:intermolecular interaction of TATB with CH2F2 and with linear fluorine-containing polymers. J. Phys. Org. Chem.,2001,14 (9),644-649.
    40. A. S. Cumming, G.A. Leiper, E. Robson,24th international annual conference of ICT. Karbsrude Germany,1993.
    41. X. F.Ma, F.Zhao, G. F. Ji, W. H. Zhu, J.J.Zhao, H.M.Xiao, Computational study of structure and performance of four constituents HMX-based composite material [J]. Journal of Molecular Structure:THEOCHEM,2008,851,22.
    42. X. J. Xu, H.M.Xiao, J.J.Xiao, W. Zhu, H.Huang, J.S.Li, Molecular dynamics simulations for pure s-CL-20 and e-CL-20 based PBXs. J. Phys. Chem. B,2006,110 (14),7203-7207
    43. J.S.Li, H.M.He, H.S.Dong, P. Gao, Fundamental research for the design of mexed explisives foumulation:Intermolecular interaction calculation.26th International Pyrotechnics Seminar, Nanjing China,1999.
    44. J. S. Li, M. X. He, H. S. Dong, Theoretical study on intermolecular interaction of epoxyethane dimer. Int. J. Quantum Chem,2000,78 (2),94-98.
    45. J. S. Li, H. M. He, A study on the intermolecuar interaction of energetic system-mixtures cnstaining-CNO2 and-NH2 groups. Propellants, Explosives, Pyrotechnics,2000,25 (1), 26-30.
    46. P. J. Hoogerbrugge, J. M. V. A. Koleman, Simulation Microscopic Hydrodynamics Phenomena with dissipative particle dynamics. Europhys. Lett,1992,19(3),155-160.
    47. J. M. V. A. Koleman, P. J. Hoogerbrugge, Dynamics simulations of hard-sphere suspenisons under steady shear [J].Europhys. Lett,1993,21 (3),363-368.
    48. R. D. Groot, T. J. Madden, Dynamic simulation of diblock copolymer microphase seperation [J].J. Chem. Phys,1998,108 (20),8713-8724.
    49. J. A. Elliott, A. H. Windle, A dissipative particle dynamics method for modeling the geometrical packing of filler particles in polymer composites. J. Chem. Phys,2000,113 (22),10367-10376.
    50. H. J. Qian, Z. Y. Lu, L. J. Chen, Z. S. Li, C. C. Sun, Dissipative particle dynamics study on the interfaces in imcompatible A/B homopolymer blends and with their block copolymers. J. Chem. Phys,2005,122 (18),184907-184908.
    51. H. J. Qian, Z. Y. Lu, L.J.Chen, Z.S.Li, C. C. Sun, Computer simulation of cyclic block copolymer microphase separation. Macromolecules,2005,38 (4),1395-1401.
    52. R. D. Groot, Mesoscopic simulation of polymer-surfactant aggregation. Langmuir, 2000,16 (19),7493-7502.
    53. R. E. VanVliet, H. C. J. Hoefsloot, P. J. Hamersma, P. D. Iedema, Pressure-induced phase separation of polymer-solvent systems with dissipative particle dynamics. Macromol. Theory. Simul,2000,34 (9),689.
    54. X. Cao, G. Xu, Y.Li, Z.Zhang, Aggregation of poly(ethylene oxide)-poly (propylene oxide) block copolymers in aqueous solution:DPD simulation study. J. Phys. Chem A, 2005,109 (45),10418-10423.
    55. I. Pagonabarraga, M. H. J. Hagen, D. Frenkel, Self-consistent dissipative particle dynamics algorithm. Europhys. Lett,1998,42 (4),377-382.
    56. C. P. Lowe, An alternative approach to dissipative particle dynamics. Europhys. Lett, 1999,47 (2),145-151.
    57. K. W, den Otter, J. H. R. Clarke, A new algorithm for dissipative particle dynamics. Europhys. Lett,2001,53 (4),426-431.
    58. P. Nikunen, M. Karttunen, I. Vattulainen, How would you integrate the equations of motion in dissipative particle dynamics simulation. Comput. Phys. Commun,2003,153 (3),407-423.
    59. I. Vattulainen, M. Karttunen, G. Besold, J. M. Polson, Integration schemes for dissipative particle dynamics simulations:from softly interacting systems towards hydrid models.J. Chem. Phys,2002,116 (10),3967-3979.
    60. F. Goujon, P. Malfreyt, D. J. Tildesley, Dissipative particle dynamics simulations in the grand canonical ensemble:applications to polymer brushes. Chem. Phys. Chem,2004, 5 (4),457-464.
    61. R. D. Groot, Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J. Chem. Phys,2003,118(24),11265-11277.
    62. A. Maiti, S. M. Grother, Bead-bead interaction parameters in dissipative particle dynamics:relation to bead-size, solubility parameter and surface tension. J. Chem. Phys,2004,120 (3),1594-1601.
    63. R. H. Gee, S. M. Roszak, L. E. Fried, Theoretical studies of interactions between TATB molecules and the origins of anisotropic thermal expansion and growth. Lawrence Livermore National Laboratory, UCRL-JC-146807,2002.
    64. M. Born, K. Huang, Dynamical theory of crystal lattices[M].Oxford:Oxford University Press,1954.
    65. G. Hoover, Canonical dynamics:Equilibrium phase-space distributions [J].Phys. Rev. A,1985,31 (3),1695-1697.
    66.谢希德,陆栋,《固体的能带理论》.上海:复旦大学出版社,1998.
    67. C. Lee, W. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J].Phys. Rev. B,1988,37(2),785-789.
    68. A. D. Becke, Density-functional thermochemistry:Ⅲ. The role of exact exchange. J. Chem.Phys,1993,98 (7),5648-5652.
    69. M. A. Frisch, J. A. Pople, J. S. Binkley, Self-consistent molecular orbital methods 25. supplementary functions for Gaussian basis sets. J. Chem. Phys,1984,80 (7), 3265-3269.
    70.苏克和,魏俊,胡小铃,分子几何构型优化的系统性比较.物理化学学报,2000,16(7),643-651.
    71.廖沐真,吴国是,刘洪霖,量子化学从头算方法.北京:清华大学出版社,1984.
    72.徐光宪,黎乐民,王德民,量子化学:基本原理和从头算法(中册)北京:科学出版社,1985.
    73.张瑞勤,步宇翔,李述汤,黄建华,韩克利,何国钟,一种选择从头算基函数的有效方法.中国科学,2000,30(5),419-427.
    74. B. J. Ransil, Studies in molecular structure.Ⅳ.Potential curve for the interaction of two Helium atoms in single-configuration LCAO-MO-SCF approximation. J. Chem. Phys, 1961,34,2109-2118.
    75. S. F. Boys, F. Bernadi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys,1970, 19(4),553-566.
    76.孙业斌,惠君明,曹欣茂,军用混合炸药.北京:兵器工业出版社,1995.
    77.孙国祥,高分子混合炸药.北京:国防工业出版社,1984.
    78. B. M. Bobratz, P. C. Crawford, LLNL explosives handbllk-properties of chemical explosives and explosive simulants. Lawrence Livermore National Laboratory, UCRL-52997,1985.
    79. T. R. Gibbs, A. Popolato, LASL high explosive property date. California:University of California press,1980.
    80.肖鹤鸣,硝基化合物的分子轨道理论.北京:国防工业出版社,1993.
    81.姬广富,高能钝感炸药分子和晶体的结构和性能的理论研究.南京,南京理工大学,博士,2002.
    82.肖继军,谷成刚,方国勇,朱伟,肖鹤鸣,TATB基PBX结合能和力学性能的理论研究.化学学报,2005,63(6),439-444.
    83.黄玉成,胡英杰,肖继军,殷开梁,肖鹤鸣,TATB基PBX结合能的分子动力学 模拟.物理化学学报,2005,21(4),425-429.
    84.谷成刚,TATB基高聚物粘结炸药(PBX)配方设计的分子水平研究.南京, 南京理工大学,2004.
    85.李金山,高能材料中分子间相互作用的量子化学研究.南京,南京理工大学,2000.
    86.李凡,用于PBX的偶联剂及聚氨酯粘结剂研究.成都,四川大学,2007.
    87. J. J. P. Stewart, Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem.,1989,10(2),209-220.
    88.肖鹤鸣,李金山,董海山,高能体系分子间的相互作用研究——含NNO2和NH2混合体系.化学学报,2000,58(3),297-302.
    89. P. Hobza, H. L. Selzle, E. W. Schlag, Structure and properties of benzene containing molecular cluster. Chem Rev,1994,94 (7),1767-1785.
    90. D. J. Idar, S. A. Larson, C. B. Skidmore, J. R. Wendelberger, PBX 9502 tensile analysis. Sandia National Laboraties-Livermore, CA, LA-UR-00-4948,2000.
    91. A. G. Osborn, R. W. Ashcraft, The effect of TATB particle size on LX-17 properties. Mason & Hanger, Silas Mason Company, Inc., Pantex Plant report MHSMP-87-20, 1987.
    92. W. G. Madden, Y. Kong, C. M. Manke, A. G. Schlijper, Simulation of a confined polymer in solution using the dissipative particle method. Int. J. Thermophys,1994,15 (6),1093-1101.
    93. G. Schlijper, P. J. Hoogerbrugge, C. W. Manke., Computer simulations of dilute polymer solutions with the dissipative particle dynamics method. J. Rheol.,1995,39 (3), 567-579.
    94. P. Espa~nol, P. Warren, Statistical Mechanics of Dissipative Particle Dynamics. Europhys. Lett.,1995,30 (4),191-196.
    95. P. Espa~nol, Hydrodynamics from dissipative particle dynamics. Phys. Rev. E,1995, 52 (2),1734-1742.
    96. R. D. Groot, P. B. Warren, Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys.,1997,107 (11),4423-4435.
    97. C. Marsh, Theoretical Aspects of Dissipative Particle Dynamics. Oxford, Lincoln College Theoretical Physics University of Oxford,1998.
    98. C. A. Marsh, J. M. Yeomans, Dissipative particle dynamics:The equilbrium for finite time steps. Europhys. Lett.,1997,37 (8),511-516.
    99. C. A. Marsh, G. Backx, M. H. Ernst, Fokker-Planck-Boltzmann equation for dissipative particle dynamics. Europhys. Lett,1997,38 (6),411-415.
    100.C. A. Marsh, G. Backx, M. H. Ernst, Static and dynamic properties of dissipative particle dynamics. Phys. Rev. E,1997,56 (2),1676-1691.
    101.J. Masters, P. B. Warren, Kinetic theory for dissipative particle dynamics:the importance of collisions. Europhys. Lett.,1999,48 (1),1-7.
    102.M. Serrano, P. Espa~nol, I. Z'u~niga, Collective effects in dissipative particle dynamics. Comp.Phys.Comm.,1999,121 (122),306-308.
    103.P. Espa~nol, M. Serrano, Dynamical regimes in the dissipative particle dynamics model. Phys. Rev. E,1999,59(6),6340-6347.
    104.M. S. R. Hernando, Kinetic Theory of Dissipative Particle Dynamics Models. Madrid, Universidad Nacional de Educaci'on a Distancia,2002.
    105.J. B. Avalos, A. D. Mackie, Dissipative particle dynamics with energy conservation. Europhys. Lett.,1997,40 (2),141-146.
    106.P. Espa~nol, Dissipative particle dynamics with energy conservation. Europhys. Lett., 1997,40 (6),631-636.
    107.M. Ripoll, P. Espa~nol, M. H. Ernst, Dissipative particle dynamics with energy conservation:Heat conduction. Int. J. Mod. Phys. C,1998,9 (8),1329-1338.
    108.J. B. Avalos, A. D. Mackie., Dynamic and transport properties of dissipative particle dynamics with energy conservation. J. Chem. Phys.,1999,111 (11),5267-5276.
    109.S. M. Willemsen, T. J. H. Vlugt, H. C. J. Hoefsloot, B. Smit, Combining Dissipative Particle Dynamics and Monte Carlo Techniques. J. Comp. Phys.,1998,147 (2), 507-517.
    110.M. Venturoli, B. Smit, Simulating the self-assembly of model membranes. Phys. Chem. Comm.,1999,2 (10),45-49.
    111.M. Kranenburg, Phase transitions of lipid bilayers:a mesoscopic approach. Amsterdam, Universiteit van Amsterdam,2004.
    112.W. K. d. Otter, J. H. R. Clarke, The temperature in dissipative particle dynamics. Int. J. Mod. Phys. C,2000,11 (6),1179-1193.
    113.I. Pagonabarraga, M. H. J. Hagen, D. Frenkel, Self-consistent dissipative particle dynamics algorithm. Europhys. Lett.,1998,42 (4),377-382.
    114.J. B. Gibson, K. Chen, S. Chynoweth, The Equilibrium of a Velocity-Verlet Type Algorithm for DPD with Finite Time Steps. Int. J. Mod. Phys. C.1999,10(1),241-261.
    115.K. E. Novik, P. V. Coveney, Finite-difference methods for simulation models incorporating nonconservative forces. J. Chem. Phys.,1998,109 (18),7667-7677.
    116.C. P. Lowe, An alternative approach to dissipative particle dynamics. Europhys. Lett., 1999,47 (2),145-151.
    117.W. K. d. Otter, J. H. R. Clarke, A new algorithm for dissipative particle dynamics. Europhys.Lett.,2001,53 (4),426-431.
    118.E. G. Flekk(?)y, P. V. Coveney, From Molecular Dynamics to Dissipative Particle Dynamics. Phys. Rev. Lett.,1999,83 (9),1775-1778.
    119.E. G. Flekk(?)y, P. V.Coveney, G. d. Fabritiis., Foundations of dissipative particle dynamics. Phys. Rev. E,2000,62 (22),2140-2157.
    120.G. d. Fabritiis, P. V. Coveney, E. G. Flekk(?)y, Multiscale dissipative particle dynamics. Phil. Trans. R. Soc. Lond. A,2002,360(1792),317-331.
    121.M. Serrano, G. d. Fabritiis, P. Espa~nol, E. G. Flekk(?)y, P. V. Coveney, Mesoscopic dynamics of Voronoi fluid particles. J. Phys. A:Math. Gen.,2002,35(7),1605-1625.
    122.P. Espa-nol, M.Serrano, I. Z'u~niga, Coarse-graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamics. Int. J. Mod. Phys. C, 1997,8 (4),899-908.
    123.P. Espa~nol, Fluid particle model. Phys. Rev. E,1998,57 (3),2930-2948.
    124.P. Espa~nol, Dissipative Particle Dynamics revisited. In D'onal Mac Kernan, editor, Challenges in Molecular Simulations, SIMU Newsletter 4, chapter Ⅲ. Centre Europ'een de Calcul Atomique et Mol'eculaire,2002.
    125.P. Espa~nol, M. Revenga, Smoothed Dissipative Particle Dynamics. Phys. Rev. E,2003, 67 (4),26705-26716.
    126.T. Soddemann, Dissipative particle dynamics:A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E,2003,68 (44), 46702-46708.
    127.P. B.Warren, Dissipative particle dynamics. Curr. Op. Coll. Interf. Sci.,1998,3 (6), 620-624.
    128.A. G. Schlijper, P. J. Hoogerbrugge, C. W. Manke, Computer simulations of dilute polymer solutions with the dissipative particle dynamics method. J. Rheol.,1995,39 (3),567-579.
    129.A. G. Schlijper, C. W. Manke, W. G. Madden, Y. Kong, Computer simulation of non-Newtonian fluid rheology. Int. J. Mod. Phys. C,1997,8 (4),919-929.
    130.Y. Kong, C. W. Manke, W. G. Madden, A. G. Schlijper, Modeling the rheology of polymer solutions by dissipative particle dynamics. Tribology Lett.,1997,3(1), 133-138.
    131.K. E. Novik, P. C. Coveney, Using dissipative particle dynamics to model binary immiscible fluids. Int. J. Mod. Phys. C,1997,8 (4),909-918.
    132.M. Venturoli, B. Smit, Simulating the self-assembly of model membranes. Phys. Chem. Comm,1999,2 (10),45-49.
    133.B. Dunweg, W. Paul, Brownian dynamics simulations without gaussian random ni\umbers. Int. J. Mod. Phys. C,1991,2(3),817-827.
    134.S. Chandrasekhar, Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys, 1943,15 (1),1-89.
    135.H. Risken, The Fokker-Planck Equation. Berlin:Springer-Verlag,1984.
    136.I. Pagonbarraga, D. J. Frenkel, Disspative particle dynamics for interaction systems. J. Chem.Phys,2001,115 (11),5015-5026.
    137.M. P. Allen, D. J. Tildesley, Computer simulation of liquids.Oxford:1987.
    138.郑昌仁,高聚物分子量及其分布.北京:化学工业出版社,1986.
    139.E. C. Martin, R. Y. Yee, Effects of surface interactions and mechanical properties of PBXs on explosive Sensitivity. Naval Weapons Center China Lake, CA, AD-A146 368, 1984.
    140.姬广富,TATB表面状态及偶联剂在粘结TATB中的应用研究.成都,四川大学,硕士,1996.
    141.R. E. vanVliet, M. W. Dreischor, H. C. J. Hoefsloot, P. D. Iedema, Dynamics of liquid-liquid demixing:mesoscopic simulations of polymer solutions. Fluid Phase Equilibria,2002,201 (1),67-78.
    142.S. H. Wu, Polymer interface and adhesion. New York:Marcel Dekker INC,1982.
    143.徐庆兰,高聚物粘结炸药包覆过程及粘结机理的初步探讨.含能材料,1993,1(2),1-5.
    144.C. J. VanOss, M. K. Chaudhury, R. J. Good, Interfacial Lifshitz-van der Waals and polar interaction in macroscopic systems. Chem. Rev,1988,88(6),927-941.
    145.傅明源,孙酣经,聚氨酯弹性体及其应用.北京:化学工业出版社,1994.
    146.何曼君,张红东,陈维孝,董西侠,高分子物理(第三版).上海:复旦大学出版社,2006.
    147.聂福德,孙杰,张凌,氟聚合物溶液对TATB的润湿效果研究.含能材料,2000,8(2),83-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700