基于磁性纳米颗粒的荧光藻胆蛋白制备分离及载负应用研究探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为藻类的天线色素蛋白,藻胆蛋白以其独特的分子结构和光谱特性在生物医学领域得到了广泛的应用。藻胆蛋白的生物合成和组装改造,不仅为藻胆蛋白的光学研究提供了新的线索,而且为藻胆蛋白荧光探针的开发和应用提供了新的途径。另外,生物纳米技术的快速发展为生物细胞和生命活性物质的富集和分离提供了新的技术和手段。其中,磁性纳米颗粒基于其独特的磁响应特性为核酸、蛋白质和细胞的快速分离检测带来一种全新的纳米介质。本论文充分结合基因重组技术和生物纳米技术,开展了重组荧光藻胆蛋白的组装、分离和应用研究,并利用磁性纳米颗粒的分离特性,进行了新型生物分离介质的制备和研发。
     1、重组荧光藻胆蛋白的磁性纳米分离介质研究
     制备了锌离子修饰硅壳磁性纳米颗粒,并将其应用于菌体破碎液中组氨酸标签藻胆蛋白的分离。首次证明锌离子修饰硅壳磁性纳米颗粒对组氨酸标签蛋白的高选择性吸附作用。常温下,该颗粒对组氨酸标签藻胆蛋白的等温吸附曲线满足Langmuir吸附定律,饱和吸附容量与蛋白质的分子质量及空间阻力均有关系。基于这种锌离子修饰硅壳磁性纳米颗粒作为吸附分离介质,可以在不影响藻胆蛋白光谱特性的情况下,实现菌体破碎液中组氨酸标签藻胆蛋白的快速、高效分离。该研究不仅为组氨酸标签藻胆蛋白提供了一种新型亲和吸附分离介质,而且为活性藻胆蛋白的载送提供了一种新的靶向载体。
     2、重组荧光别藻蓝蛋白的组装研究
     鉴于组氨酸标签别藻蓝蛋白在层析分离中表现出的独特光谱变化,通过紫外可见和荧光分光光度检测的方法,考察了不同因素对天然别藻蓝蛋白和重组别藻蓝蛋白的光谱特性影响。在一定的浓度范围内,咪唑、EDTA、锌离子和镍离子等四种因素对天然别藻蓝蛋白的光谱基本没有影响,而对组氨酸标签重组别藻蓝蛋白的光谱特性却有明显影响。咪唑和EDTA均对组氨酸标签重组别藻蓝蛋白表现出明显的解聚作用,并且该解聚作用与咪唑和EDTA的浓度呈现很好的线性关系;锌离子和镍离子均对组氨酸标签重组别藻蓝蛋白表现出明显的促聚合作用,该促聚合作用与咪唑和EDTA表现出的解聚作用具有一定的可逆效果。该研究通过检测别藻蓝蛋白光谱变化,探索了重组组氨酸标签别藻蓝蛋白自组装三聚体的稳定性,为重组别藻蓝蛋白三聚体的组装研究提供了新的线索。
     3、功能化荧光别藻蓝蛋白的生物医学应用研究
     基于双标签设计法对聚球藻Synechocystis sp. PCC6803别藻蓝蛋白进行分子设计和异源表达,通过大肠杆菌发酵表达的方法制备出具有生物亲和功能的组氨酸标签荧光别藻蓝蛋白;基于金属离子螯合作用将双标签别藻蓝蛋白固定在锌离子修饰磁性纳米颗粒表面,制备出一种粒径为20±5 nm的红色荧光超顺磁性球状材料,该荧光磁性纳米颗粒表现链酶亲和素结合功能;以凋亡Hela细胞的分离目标,对基因重组技术制备的功能化荧光磁性纳米颗粒在生物分离中的应用进行了初步研究,结果表明该颗粒可以通过免疫结合反应对细胞进行快速识别和分离。该研究充分结合基因重组技术和生物纳米技术,不仅为生物检测提供了一种新的分离介质,同时也拓宽了重组藻胆蛋白在生物医学研究中的应用。
As light-harvesting chromoproteins, phycobiliproteins have received more and more attentions in the field biomedicine for their unique molecular structures and spectral characterizations. The biosynthesis and reconstruction of phycobiliproteins not only provided novel clews for the research on their spectra, but also supplied a new way for the development and application of fluorescent probes based on phycobiliproteins. In addition, the fast development of bio-nanotechnology provided alternative techniques and means for the collection and separation of cells and bioactive molecules. Based on the particular magnetic property, magnetic nanoparticles were utilized as adsorbents in the fast separation and detection of nucleic acid, protein and cells. Combined with both DNA recombinant technology and bio-nanotechnology, this study investigated the reconstruction, separation and application of recombinant fluorescent phycobiliproteins, and also explored the preparation and application of novel magnetic adsorbents with magnetic nanoparticles.
     1. Research on the magnetic nanoadsorbents for the separation of recombinant holo-phycobiliproteins with nanoparticles
     Zinc decorated silica coated magnetic nanoparticles (ZnSiMNPs) were prepared and utilized in the rapid extraction of His-tagged holo-phycobiliproteins from Escherichia coli lysates. It provided the first evidence for the high selective adsorption between ZnSiMNPs and His-tagged protein. The equilibrium adsorption isotherms for His-tagged holo-phycobiliproteins on ZnSiMNPs could be described by the Langmuir adsorption equation, the maximum adsorption amounts of which were relevant to the molecular weights and dimensional resistances of proteins. With this kind of ZnSiMNPs nanoadsorbent, these His-tagged holo-phycobiliproteins were rapidly and efficiently separated from their lysates without spectral variation. Consequently, ZnSiMNPs served as a useful tool for the magnetic separation and delivery of the His-tagged phycobiliprotein.
     2. Research on the assembly of recombinant holo-allophycocyanin
     Based on the interesting spectra change of recombinant His-tagged holo-allphycocyanin during the separation process, UV–visible and fluorescence spectroscopy were employed to research effects of some different factors on the spectra of holo-allophycocyanin. It was unexpected that different responses were detected for native and recombinant holo-allophycocyanin. As for the recombinant holo-allophycocyanin, imidazole, EDTA showed obvious disassembly ability linear with their concentrations, while Zn(II) and Ni(II) showed assembly-promoting ability, reversely. However, these factors showed no obvious influence for the spectra of native holo-allophycocyanin. Thus, the stability of the recombinant His-tagged holo-allophycocyanin self-assembly trimer was studied through the detection of spectra changes, providing novel clews for the reconstruction of allophycocyanin trimer.
     3. Research on the biomedical application of functionlized holo-allphycocyanin
     Allophycocyanin from Synechocystis sp. PCC6803 was biosynthesized with both Strep II-tag and His-tag at N terminal in Escherichia coli, resulting in the preparation of His-tagged holo-allophycocyanin with streptavidin-binding ability for its Strep II-tag. Metal chelating immobilization of this recombinant protein on zinc decrated silica coated magnetic nanoparticles made a novel kind of multifunctional nanoparticles, characterized as a superparamagnetic and spherical material with a diameter of 20±5 nm, streptavidin-binding ability and red fluorescence. Primary utilization of these nanoparticles on the separation of apoptotic Hela cells indicated its availability in the rapid immuno-recognition and separation of cells. Therefore, this study utilized both DNA recombinant technology and bio-nanotechnolgy to provide novel adsorbents for biological analysis and exploit the application of recombinant phycobiliprotein in biomedicine.
引文
[1] Glazer, A. (1994) Phycobiliproteins-a family of valuable, widely used fluorophores. J. Appl. Phycol., 6, 105-112.
    [2] Glazer, A. (1985) Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem., 14, 47-77.
    [3] Bryant, D. A. (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. Microbiology, 128, 835-844.
    [4] Glazer, A. N., Hixson, C. S. and DeLange, R. J. (1979) Determination of the number of thioether-linked cysteine residues in cytochromes c and phycobiliproteins. Anal. Biochem., 92, 489-496.
    [5] Ducret, A., Müller, S. A., Goldie, K. N., Hefti, A., Sidler, W. A., Zuber, H. and Engel, A. (1998) Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 71201. J. Mol. Biol., 278, 369-388.
    [6] MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol., 124, 311-334.
    [7] Glazer, A. (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem., 264, 1-4.
    [8] Sekar, S. and Chandramohan, M. (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol., 20, 113-136.
    [9] Bryant, D. A., Guglielmi, G., Marsac, N. T., Castets, A. M. and Cohen-Bazire, G. (1979) The structure of cyanobacterial phycobilisomes: a model. Arch. Microbiol., 123, 113-127.
    [10] MacColl, R., Habig, W. and Berns, D. S. (1973) Characterization of phycocyanin from Chroomonas species. J. Biol. Chem., 248, 7080-7086.
    [11] MacColl, R., Guard-Friar, D. and Csatorday, K. (1983) Chromatographic and spectroscopic analysis of phycoerythrin 545 and its subunits. Arch. Microbiol., 135, 194-198.
    [12] MacColl, R., Guard-Friar, D. and Williams, E. C. (1992) Spectroscopic studies on phycoerythrin 545, its bilins, and its isoproteins. J. Lumin., 51, 21-28.
    [13] McGregor, A., Klartag, M., David, L. and Adir, N. (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J. Mol. Biol., 384, 406-421.
    [14] Sidler, W. (2004) Phycobilisome and phycobiliprotein structures. The molecular biology of cyanobacteria. Dordrecht: Kluwer, 139-216.
    [15] Ke, B. (2003) Phycobiliproteins and phycobilisomes. Photosynthesis, 10, 251-269.
    [16] Adir, N. (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res., 85, 15-32.
    [17] Adir, N., Dines, M., Klartag, M., McGregor, A. and Melamed-Frank, M. (2006) Assembly and disassembly of phycobilisomes. Complex Intracellular Structures in Prokaryotes. Berlin:Heidelberg, 47-77.
    [18] Maccoll, R., Csatorday, K., Berns, D. and Traeger, E. (1981) The relationship of the quaternary structure of allophycocyanin to its spectrum. Arch. Biochem. Biophys., 208, 42-48.
    [19] MacColl, R. (1983) Stability of allophycocyanin's quaternary structure. Arch. Biochem. Biophys., 223, 24-32.
    [20] Tandeau de Marsac, N. (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res., 76, 193-202.
    [21] Trinquet, E., Maurin, F., Preaudat, M. and Mathis, G. (2001) Allophycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. Anal. Biochem., 296, 232-244.
    [22] Huang, C., Berns, D. S. and MacColl, R. (1987) Kinetics of allophycocyanin's trimer-monomer equilibrium. Biochemistry, 26, 243-245.
    [23] MacColl, R. (2004) Allophycocyanin and energy transfer. Biochim. Biophys. Acta: Bioenergetics, 1657, 73-81.
    [24] MacColl, R., Eisele, L. and Menikh, A. (2003) Allophycocyanin: Trimers, monomers, subunits, and homodimers. Biopolymers, 72, 352-365.
    [25] MacColl, R., Berns, D. S. and Koven, N. L. (1971) Effect of salts on C-phycocyanin. Arch. Biochem. Biophys., 146, 477-482.
    [26] Edwards, M. R., Hauer, C., Stack, R. F., Eisele, L. E. and MacColl, R. (1997) Thermophilic C-phycocyanin: effect of temperature, monomer stability, and structure. Biochim. Biophys. Acta: Bioenergetics, 1321, 157-164.
    [27] Siebzehnrübl, S., Fischer, R., Kufer, W. and Scheer, H. (1989) Photochemistry of phycobiliproteins: reciprocity of reversible photochemistry and aggregation in phycoerythrocyanin from Mastigocladus laminosus. Photochem. Photobiol., 49, 753-761.
    [28] Glazer, A. N. and Stryer, L. (1984) Phycofluor probes. Trends Biochem. Sci., 9, 423-427.
    [29] MacColl, R., Csatorday, K., Berns, D. S. and Traeger, E. (1980) Chromophore interactions in allophycocyanin. Biochemistry, 19, 2817-2820.
    [30] Jiang, Z. (2002) Recent research on extraction and purification of phycobiliproteins. Food Sci., 11, 159-161.
    [31] Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D’Amici, G.M., Zolla, L. and Canestrari, F. (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J. Chromatogr. B, 833, 12-18.
    [32] Chen, T., Wong, Y. S. and Zheng, W. (2006) Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Phytochemistry, 67, 2424-2430.
    [33] Furuki, T., Maeda, S., Imajo, S., Hiroi, T., Amaya, T., Hirokawa, T., Ito, K. and Nozawa, H. (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic celldisruption. J. Appl. Phycol., 15, 319-324.
    [34] Jaouen, P., Lépine, B., Rossignol, N., Royer, R. and Quéméneur, F. (1999) Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis. Biotechnol. Tech., 13, 877-881.
    [35] Minkova, K. M., Tchernov, A. A., Tchorbadjieva, M. I., Fournadjieva, S. T., Antova, R. E. and Busheva, M. C. (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J. Biotechnol., 102, 55-59.
    [36] Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V. and Kalil, S. J. (2007) Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour. Technol., 98, 1629-1634.
    [37] Patil, G., Chethana, S., Madhusudhan, M. C. and Raghavarao, K. S. M. S. (2008) Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresour. Technol., 99, 7393-7396.
    [38] Patil, G., Chethana, S., Sridevi, A. S. and Raghavarao, K. S. M. S. (2006) Method to obtain C-phycocyanin of high purity. J. Chromatogr. A, 1127, 76-81.
    [39] Patil, G. and Raghavarao, K. S. M. S. (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem. Eng. J., 34, 156-164.
    [40] Bryant, D. A., De Lorimier, R., Lambert, D. H., Dubbs, J. M., Stirewalt, V. L., Stevens, S. E., Porter, R. D., Tam, J. and Jay, E. (1985) Molecular cloning and nucleotide sequence of the alpha and beta subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc. Natl. Acad. Sci. USA, 82, 3242-3246.
    [41] Qin S., Hiroyuki, K., Yoshikazau, K., Shin-ichi Y. and Zeng C. (1998) Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta). Chin. J. Oceanol. Limnol., 16, 6-11.
    [42]葛保胜. (2005)抗肿瘤新药重组别藻蓝蛋白(镭普克)的药学研究及抗肿瘤机理探索: [博士论文].北京:中国科学院.
    [43]唐志红. (2004)镭普克(rAPC)关键工艺的建立及抗肿瘤活性的研究: [博士论文].北京:中国科学院.
    [44]王庭健. (2005)天然藻胆蛋白的提取与纯化及其与基因重组藻胆蛋白抗氧化活性的比较研究: [硕士论文].北京:中国科学院.
    [45]杨雨. (2007)光学活性重组别藻蓝蛋白的初步研究: [硕士论文].北京:中国科学院.
    [46] Ge, B., Tang, Z., Lin, L., Ren, Y., Yang, Y. and Qin, S. (2005) Pilot-scale fermentation and purification of the recombinant allophycocyanin over-expressed in Escherichia coli. Biotechnol. Lett., 27, 783-787.
    [47] Ge, B., Tang, Z., Zhao, F., Ren, Y., Yang, Y. and Qin, S. (2005) Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochem., 40, 3190-3195.
    [48]孔杰,隋正红,张学成. (2000)龙须菜藻红蛋白亚基基因的克隆及监测.海洋科学, 24, 9-11.
    [49]于平,岑沛霖,励建荣,张燕萍,秦松. (2004)极大螺旋藻藻蓝蛋白基因在巴斯德毕赤酵母X-33中表达的研究.科学通报, 20, 21-23.
    [50] Beale, S. I. and Cornejo, J. (1991) Biosynthesis of phycobilins. 15, 16-Dihydrobiliverdin IX alpha is a partially reduced intermediate in the formation of phycobilins from biliverdin IX alpha. J. Biol. Chem., 266, 22341-22345.
    [51] Rhie, G. and Beale, S. I. (1992) Biosynthesis of phycobilins. Ferredoxin-supported nadph-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J. Biol. Chem., 267, 16088-16093.
    [52] Beale, S. I. (1993) Biosynthesis of phycobilins. Chemical reviews, 93, 785-802.
    [53] Gambetta, G. A. and Lagarias, J. C. (2001) Genetic engineering of phytochrome biosynthesis in bacteria. Proc. Natl. Acad. Sci. USA, 98, 10566-10571.
    [54] Shen, G., Schluchter, W. M. and Bryant, D. A. (2008) Biogenesis of phycobiliproteins. I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC7002 define a heterodimeric phycocaynobilin lyase specific forβ-phycocyanin and allophycocyanin subunits. J. Biol. Chem., 283, 7503-7512.
    [55] Stadnichuk, I. N. (1995) Phycobiliproteins: Determination of chromophore composition and content. Phytochem. Anal., 6, 281-288.
    [56] Storf, M., Parbel, A., Meyer, M., Strohmann, B., Scheer, H., Deng, M. G., Zheng, M., Zhou, M. and Zhao, K. H. (2001) Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry, 40, 12444-12456.
    [57] Tu, J. M., Kupka, M., B?hm, S., Pl?scher, M., Eichacker, L., Zhao, K. H. and Scheer, H. (2008) Intermediate binding of phycocyanobilin to the lyase, CpeS1, and transfer to apoprotein. Photosynth. Res., 95, 163-168.
    [58] Tu, J. M., Zhou, M., Haessner, R., Pl?scher, M., Eichacker, L., Scheer, H. and Zhao, K. H. (2009) Toward a mechanism for biliprotein lyases: revisiting nucleophilic addition to phycocyanobilin. J. Am. Chem. Soc., 131, 5399-5401.
    [59] Zhou, J., Gasparich, G., Stirewalt, V., De Lorimier, R. and Bryant, D. (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J. Biol. Chem., 267, 16138-16145.
    [60] Fairchild, C. D., Zhao, J., Zhou, J., Colson, S. E., Bryant, D. A. and Glazer, A. N. (1992) Phycocyanin alpha-subunit phycocyanobilin lyase. Proc. Natl. Acad. Sci. USA, 89, 7017-7021.
    [61] Zhao, K. H., Wu, D., Wang, L., Zhou, M., Storf, M., Bubenzer, C., Strohmann, B. and Scheer, H. (2002) Characterization of phycoviolobilin phycoerythrocyanin-α84- cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur. J. Biochem., 269, 4542-4550.
    [62] Cobley, J. G., Clark, A. C., Weerasurya, S., Queseda, F. A., Xiao, J. Y., Bandrapali, D’Silva,I., Thounaojam, M., Oda, J. F. and Sumiyoshi, T. (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol. Microbiol., 44, 1517-1531.
    [63] Shen, G., Saunée, N. A., Williams, S. R., Gallo, E. F., Schluchter, W. M. and Bryant, D. A. (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on theβsubunit of phycocyanin in Synechococcus sp. PCC7002. J. Biol. Chem., 281, 17768-17778.
    [64] Shen, G., Saunee, N., Gallo, E., Begovic, Z., Schluchter, W. and Bryant, D. (2004) Identification of novel phycobiliprotein lyases in cyanobacteria. Conference Proceedings. 325, 14-15.
    [65] Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Pl?scher, M., Eichacker, L., Yang, B., Zhou, M. and Scheer, H. (2007) Phycobilin: cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc. Natl. Acad. Sci. USA, 104, 14300-14305.
    [66] Zhao, K. H., Zhang, J., Tu, J. M., B?hm, S., Pl?scher, M., Eichacker, L., Bubenzer, C., Scheer, H., Wang, X. and Zhou, M. (2007) Lyase activities of CpcS-and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyaninβsubunits. J. Biol. Chem., 282, 34093-34103.
    [67] Tooley, A. J., Cai, Y. A. and Glazer, A. N. (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-αsubunit in a heterologous host. Proc. Natl. Acad. Sci. USA, 98, 10560-10565.
    [68] Guan, X., Qin, S., Su, Z., Zhao, F., Ge, B., Li, F. and Tang, X. (2007) Combinational biosynthesis of a fluorescent cyanobacterial holo-α-phycocyanin in Escherichia coli by using one expression vector. Appl. Biochem. Biotechnol., 142, 52-59.
    [69] Liu, S., Chen, Y., Lu, Y., Chen, H., Li, F. and Qin, S. (2010) Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli. Photosynth. Res., 105, 135-142.
    [70] Romay, C., Armesto, J., Remirez, D., Gonzalez, R., Ledon, N. and Garcia, I. (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflam. Res., 47, 36-41.
    [71] Bhat, V. B. and Madyastha, K. (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun., 275, 20-25.
    [72] Parij, N., Nagy, A. M. and Neve, J. (1995) Linear and non linear competition plots in the deoxyribose assay for determination of rate constants for reaction of non steroidal antiinflammatory drugs with hydroxyl radicals. Free Radical Res., 23, 571-579.
    [73] Reddy, C. M., Bhat, V. B., Kiranmai, G., Reddy, M. N., Reddanna, P. and Madyastha, K. (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem. Biophys. Res. Commun., 277, 599-603.
    [74] Romay, C., Gonzalez, R., Ledon, N., Remirez, D. and Rimbau, V. (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Prot. Pep. Sci., 4, 207-216.
    [75] González, R., Rodriguez, S., Romay, C., González, A., Armesto, J., Remirez, D. and Merino, N. (1999) Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol. Res., 39, 55-59.
    [76] Remirez, D., González, A., Merino, N., González, R., Ancheta, O., Romay, C. and Rodriguez, S. (1999) Effect of phycocyanin in zymosan-induced arthritis in mice—phycocyanin as an antiarthritic compound. Drug Dev. Res., 48, 70-75.
    [77] Rimbau, V., Camins, A., Romay, C., González, R. and Pallàs, M. (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci. Lett., 276, 75-78.
    [78] Romay, C., Armesto, J., Remirez, D., González, R., Ledon, N. and García, I. (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflam. Res., 47, 36-41.
    [79] Romay, C., Delgado, R., Remirez, D., González, R. and Rojas, A. (2001) Effects of phycocyanin extract on tumor necrosis factor-alpha and nitrite levels in serum of mice treated with endotoxin. Arzneimittelforschung, 51, 733-736.
    [80] Romay, C., Ledón, N. and González, R. (1998) Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflam. Res., 47, 334-338.
    [81] Vadiraja, B. (1998) Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicty in rats. Biochem. Biophys. Res. Commun., 249, 428-431.
    [82] Rimbau, V., Camins, A., Pubill, D., Sureda, F. X., Romay, C., González, R., Jiménez, A., Escubedo, E., Camarasa, J. and Pallàs, M. (2001) C-phycocyanin protects cerebellar granule cells from low potassium/serum deprivation-induced apoptosis. Naunyn-Schmiedeberg’s Arch. Pharmacol., 364, 96-104.
    [83] Farooq, S. M., Asokan, D., Sakthivel, R., Kalaiselvi, P., Varalakshmi, P. (2004). Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury. Clin. Chim. Acta, 348(1-2), 199-205.
    [84] Farooq, S. M., Asokan, D., Kalaiselvi, P., Sakthivel, R., Varalakshmi, P. (2004). Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury. Chemico-Bio. Interact., 149(1), 1-7.
    [85] Schwartz, J., Scklar, G. and Suda, D. Growth inhibition and destruction of oral cancer cells by extracts of Spirulina. Proc. Am. Acad. Oral. Pathol., 1986. 13.
    [86]张少斌,燕安,刘慧,刘国琴. (2006)螺旋藻多糖和藻胆蛋白对人白血病Jurkat细胞生长的影响.中国现代医学杂志, 16, 2115-2117.
    [87]唐书明,王希华. (1999)基因重组别藻蓝蛋白对小鼠S180肉瘤的抑制作用.药物生物技术, 6, 168-170.
    [88] Wang, H., Liu, Y., Gao, X., Carter, C. L. and Liu, Z. R. (2007) The recombinantβsubunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett., 247, 150-158.
    [89]李冠武,吴健谊,陈爱云,温博贵,王广策. (2005)藻胆蛋白与血卟啉衍生物光敏剂的光毒性比较.汕头大学医学院学报, 18, 193-196.
    [90]黄蓓,张平,孙兆奇. (2006)藻胆蛋白色素肽与癌光啉光敏作用的比较实验.激光生物学报, 15, 471-477.
    [91] Nemoto-Kawamura, C., Hirahashi, T., Nagai, T., Yamada, H., Katoh, T. and Hayashi, O. (2004) Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J. Nutr. Sci. Vitaminol., 50, 129-136.
    [92] Chueh, C. C. (2002). Method of allophycocyanin inhibition of enterovirus and influenza virus reproduction resulting in cytopathic effect. Patent No.: US 6,346,408 Bl.
    [93] Shih, S. R., Tsai, K. N., Li, Y. S., Chueh, C. C. and Chan, E. C. (2003) Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J. Med. Virol., 70, 119-125.
    [94] Oi, V. T., Glazer, A. N. and Stryer, L. (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol., 93, 981-986.
    [95] Parks, D., Hardy, R. and Herzenberg, L. (1984) Three-color immunofluorescence analysis of mouse B-lymphocyte subpopulations. Cytometry, 5, 159-168.
    [96] Lansdorp, P. M., Smith, C., Safford, M., Terstappen, L. W. M. M. and Thomas, T. E. (1991) Single laser three color immunofluorescence staining procedures based on energy transfer between phycoerythrin and cyanine 5. Cytometry, 12, 723-730.
    [97] Hawkins, T. L., O'Connor-Morin, T., Roy, A. and Santillan, C. (1994) DNA purification and isolation using a solid-phase. Nucleic Acids Res., 22, 4543-4544.
    [98] Davies, M. J., Taylor, J. I., Sachsinger, N. and Bruce, I. J. (1998) Isolation of plasmid DNA using magnetite as a solid-phase adsorbent. Anal. Biochem., 262, 92-94.
    [99] Maier, M., Fritz, H., Gerster, M., Schewitz, J. and Bayer, E. (1998) Quantitation of phosphorothioate oligonucleotides in human blood plasma using a nanoparticle-based method for solid-phase extraction. Anal. Chem., 70, 2197-2204.
    [100]Zhao, X., Tapec-Dytioco, R., Wang, K. and Tan, W. (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem., 75, 3476-3483.
    [101]Saiyed, Z., Bochiwal, C., Gorasia, H., Telang, S. and Ramchand, C. (2006) Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal. Chem., 356, 306-308.
    [102]Saiyed, Z., Ramchand, C. and Telang, S. (2008) Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J. Phys.: Condens. Matter, 20, 204153.
    [103]Bucak, S., Jones, D. A., Laibinis, P. E. and Hatton, T. A. (2003) Protein separations usingcolloidal magnetic nanoparticles. Biotechnol. Progr., 19, 477-484.
    [104]Chen, D. H. and Huang, S. H. (2004) Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles. Process Biochem., 39, 2207-2211.
    [105]Huang, S. H., Liao, M. H. and Chen, D. H. (2006) Fast and efficient recovery of lipase by polyacrylic acid-coated magnetic nano-adsorbent with high activity retention. Sep. Purif. Technol., 51, 113-117.
    [106]Xu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., Zhang, X. and Xu, B. (2004) Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc., 126, 3392-3393.
    [107]Xu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X., Guo, Z. and Xu, B. (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc., 126, 9938-9939.
    [108]Herdt, A. R., Kim, B. S. and Taton, T. A. (2007) Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. Bioconjugate Chem., 18, 183-189.
    [109]Safarik, I. and Safarikova, M. (1999) Use of magnetic techniques for the isolation of cells. J. Chromatogr. B, 722, 33-53.
    [110]Sonti, S. V. and Bose, A. (1995) Cell separation using protein-A-coated magnetic nanoclusters. J. Colloid and interface Sci., 170, 575-585.
    [111]张立德,牟季美. (1994)纳米材料学.辽宁科学技术出版社.
    [112]Gu, H., Ho, P.L., Tsang, K. W. T., Wang, L. and Xu, B. (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc., 125, 15702-15703.
    [113]Gu, H., Ho, P. L., Tsang, K. W. T., Yu, C. W. and Xu, B. (2003) Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun., 9, 1966-1967.
    [114]龚萍. (2008)功能化核壳型复合纳米颗粒的制备及其在生物医学研究中的应用: [博士论文].长沙:湖南大学.
    [115]Herr, J. K., Smith, J. E., Medley, C. D., Shangguan, D. and Tan, W. (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem., 78, 2918-2924.
    [116]Smith, J. E., Medley, C. D., Tang, Z., Shangguan, D., Lofton, C. and Tan, W. (2007) Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem., 79, 3075-3082.
    [117]Xie, H. Y., Zuo, C., Liu, Y., Zhang, Z. L., Pang, D. W., Li, X. L., Gong, J. P., Dickinson, C. and Zhou, W. (2005) Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small, 1, 506-509.
    [118]Wang, G. P., Song, E. Q., Xie, H. Y., Zhang, Z. L., Tian, Z. Q., Zuo, C., Pang, D. W., Wu, D. C. and Shi, Y. B. (2005) Biofunctionalization of fluorescent-magnetic- bifunctional nanospheresand their applications. Chem. Commun., 2005, 4276-4278.
    [119]Song, E. Q., Wang, G. P., Xie, H. Y., Zhang, Z. L., Hu, J., Peng, J., Wu, D. C., Shi, Y. B. and Pang, D. W. (2007) Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. Clin. Chem., 53, 2177-2185.
    [120]Evers, T., Appelhof, M., Meijer, E. and Merkx, M. (2008) His-tags as Zn (II) binding motifs in a protein-based fluorescent sensor. Protein Eng. Des. Sel., 21, 529-536.
    [121]Evers, T., Appelhof, M., de Graaf-Heuvelmans, P., Meijer, E. and Merkx, M. (2007) Ratiometric detection of Zn (II) using chelating fluorescent protein chimeras. J. Mol. Biol., 374, 411-425.
    [122]Zhao, Y., Sun, J., Shi, Z., Pan, C. and Xu, M. Zinc (II)-selective ratiometric fluorescent probe based on perylene bisimide derivative. Luminescence. DOI 10.1002/bio.1214
    [123]Bele, M., Hribar, G., ?ampelj, S., Makovec, D., Gaberc-Porekar, V., Zorko, M., Gaber??ek, M., Jamnik, J. and Venturini, P. (2008) Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release. J. Chromatogr. B, 867, 160-164.
    [124]Cai, Y. A., Murphy, J. T., Wedemayer, G. J. and Glazer, A. N. (2001) Recombinant phycobiliproteins: recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal. Biochem., 290, 186-204.
    [125]Ge, B., Qin, S., Han, L., Lin, F. and Ren, Y. (2006) Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J. Photochem. Photobiol. B: Biology, 84, 175-180.
    [126]Guan, X. Y., Zhang, W. J., Zhang, X. W., Li, Y. X., Wang, J. F., Lin, H. Z., Tang, X. X. and Qin, S. (2009) A potent antioxidant property: fluorescent recombinantα-phycocyanin of Spirulina. J. Appl. Bacteriol., 106, 1093-1100.
    [127]Hu, I. C., Lee, T.R., Lin, H. F., Chiueh, C. C. and Lyu, P. C. (2006) Biosynthesis of fluorescent allophycocyanin alpha-subunits by autocatalytic bilin attachment. Biochemistry, 45, 7092-7099.
    [128]Liu, S., Chen, H., Qin, S., Zhang, W., Guan, X. and Lu, Y. (2009) Highly soluble and stable recombinant holo-phycocyanin alpha subunit expressed in Escherichia coli. Biochem. Eng. J., 48, 58-64.
    [129]Kapanidis, A., Ebright, Y. and Ebright, R. (2001) Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni2+: Nitrilotriacetic acid) n-fluorochrome conjugates. J. Am. Chem. Soc., 123, 12123-12125.
    [130]Lata, S., Gavutis, M., Tampé, R. and Piehler, J. (2006) Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J. Am. Chem. Soc., 128, 2365-2372.
    [131]Lim, N., Yao, L., Freake, H. and Brückner, C. (2003) Synthesis of a fluorescent chemosensor suitable for the imaging of zinc (II) in live cells. Bioorg. Med. Chem. Lett., 13, 2251-2254.
    [132]Soh, N. (2008) Selective chemical labeling of proteins with small fluorescent molecules based on metal-chelation methodology. Sensors, 8, 1004-1024.
    [133]van Dongen, E., Dekkers, L., Spijker, K., Meijer, E., Klomp, L. and Merkx, M. (2006) Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn (II) based on copper chaperone domains. J. Am. Chem. Soc., 128, 10754-10762.
    [134]Vinkenborg, J., Koay, M. and Merkx, M. (2010) Fluorescent imaging of transition metal homeostasis using genetically encoded sensors. Curr. Opin. Chem. Boil., 14, 231-237.
    [135]Keefe, A. D., Wilson, D. S., Seelig, B. and Szostak, J. W. (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expres. Purif., 23, 440-446.
    [136]Schmidt, T., Koepke, J., Frank, R. and Skerra, A. (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol., 255, 753-766.
    [137]Voss, S. and Skerra, A. (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng., 10, 975-982.
    [138]Skerra, A. and Schmidt, T. (2000) Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol., 326, 271-304.
    [139]Junttila, M. R., Saarinen, S., Schmidt, T., Kast, J. and Westermarck, J. (2005) Single-step Strep-tag(R) purification for the isolation and identification of protein complexes from mammalian cells. Proteomics, 5, 1199-1203.
    [140]Schmidt, T. G. M. and Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc., 2, 1528-1535.
    [141]Skerra, A. and Schmidt, T. G. M. (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol. Eng., 16, 79-86.
    [142]Arciero, D., Bryant, D. and Glazer, A. (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J. Biol. Chem., 263, 18343-18349.
    [143]Schirmer, T., Bode, W., HuberWalter, R. and Zuber, H. (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol., 184, 257-277.
    [144]Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M. and Hackert, M. L. (1986) Crystal structure analysis and refinement at 2.5 ? of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: The molecular model and its implications for light-harvesting. J. Mol. Biol., 188, 651-676.
    [145]Schirmer, T., Bode, W. and Huber, R. (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 resolution: A common principle of phycobilin-protein interaction. J. Mol. Biol., 196, 677-695.
    [146]Fischer, R. and Scheer, H. (1992) Dissociating effect of chromophore modifications on C-phycocyanin heterohexamers. J. Photochem. Photobiol. B: Biology, 15, 91-103.
    [147]Toole, C. M., Plank, T. L., Grossman, A. R. and Anderson, L. K. (1998) Bilin deletions andsubunit stability in cyanobacterial light-harvesting proteins. Mol. Microbiol., 30, 475-486.
    [148]Ueda, E., Gout, P. and Morganti, L. (2003) Current and prospective applications of metal ion-protein binding. J. Chromatogr. A, 988, 1-23.
    [149]Lissi, E. A., Pizarro, M., Aspee, A. and Romay, C. (2000) Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radical Biol. Med., 28, 1051-1055.
    [150]Yang, Y., Ge, B., Guan, X., Zhang, W. and Qin, S. (2008) Combinational biosynthesis of a fluorescent cyanobacterial holo-α-allophycocyanin in Escherichia coli. Biotechnol. Lett., 30, 1001-1004.
    [151]Zhang, W., Guan, X., Yang, Y., Ge, B., Chen, H., Li, F. and Qin, S. (2009) Biosynthesis of fluorescent allophycocyaninα-subunits by autocatalysis in Escherichia coli. Biotechnol. Appl. Biochem., 52, 135-140.
    [152]Chiang, C. L., Chen, C. Y. and Chang, L. W. (2008) Purification of recombinant enhanced green fluorescent protein expressed in Escherichia coli with new immobilized metal ion affinity magnetic absorbents. J. Chromatogr. B, 864, 116-122.
    [153]De, M., Rana, S. and Rotello, V. M. (2009) Nickel-ion-mediated control of the stoichiometry of his-tagged protein/nanoparticle interactions. Macromol. Biosci., 9, 174-178.
    [154]Franken, K., Hiemstra, H. S., van Meijgaarden, K. E., Subronto, Y., Den Hartigh, J., Ottenhoff, T. H. M. and Drijfhout, J. W. (2000) Purification of his-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent. Protein Expres. Purif., 18, 95-99.
    [155]Frenzel, A., Bergemann, C., K?hl, G. and Reinard, T. (2003) Novel purification system for 6×his-tagged proteins by magnetic affinity separation. J. Chromatogr. B, 793, 325-329.
    [156]Ha, E. J., Kim, Y. J., An, S. S. A., Kim, Y. R., Lee, J. O., Lee, S. G. and Paik, H. J. (2008) Purification of his-tagged proteins using Ni2+-poly(2-acetamidoacrylic acid) hydrogel. J. Chromatogr. B, 876, 8-12.
    [157]Hoffmann, A. and Roeder, R. G. (1991) Purification of his-tagged proteins in non-denaturing conditions suggests a convenient method for protein interaction studies. Nucleic Acids Res., 19, 6337-6338.
    [158]Li, Y. C., Lin, Y. S., Tsai, P. J., Chen, C. T., Chen, W. Y. and Chen, Y. C. (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem, 79, 7519-7525.
    [159]Nilsson, J., Stahl, S., Lundeberg, J., Uhlén, M. and Nygren, P. A. (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expres. Purif., 11, 1-16.
    [160]Safarik, I. and Safarikova, M. (2004) Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol., 2, 7.
    [161]Schmitt, J., Hess, H. and Stunnenberg, H. G. (1993) Affinity purification of histidine-tagged proteins. Mol. Boil. Rep., 18, 223-230.
    [162]Killilea, S. D., O'Carra, P. and Murphy, R. F. (1980) Structures and apoprotein linkages of phycoerythrobilin and phycocyanobilin. Biochem. J., 187, 311-320.
    [163]He, X., Chen, Y., Wang, K., Wu, P., Gong, P. and Huo, H. (2007) Selective separation of proteins with pH-dependent magnetic nanoadsorbents. Nanotechnology, 18, 365604.
    [164]Tran, H. H., Roddick, F. A. and O'Donnell, J. A. (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions-I. adsorption and kinetics. Water Res., 33, 2992-3000.
    [165]Yip, T. T., Nakagawa, Y. and Porath, J. (1989) Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal. Biochem., 183, 159-171.
    [166]Huang, S. H. and Chen, D. H. (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mat., 163, 174-179.
    [167]Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., Liu, J., Wei, Y. and Li, Y. (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 1, 293-298.
    [168]Phan, T. N. T., Louvard, N., Bachiri, S. A., Persello, J. and Foissy, A. (2004) Adsorption of zinc on colloidal silica, triple layer modelization and aggregation data. Colloids Surf., A: Physicoche. Eng. Asp., 244, 131-140.
    [169]Waychunas, G. A., Fuller, C. C. and Davis, J. A. (2002) Surface complexation and precipitate geometry for aqueous Zn (II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis. Geochim. Cosmochim. Acta, 66, 1119-1137.
    [170]Waychunas, G. A., Fuller, C. C., Davis, J. A. and Rehr, J. J. (2003) Surface complexation and precipitate geometry for aqueous Zn (II) sorption on ferrihydrite: II. XANES analysis and simulation. Geochim. Cosmochim. Acta, 67, 1031-1043.
    [171]Xia, H. and Tang, F. (2003) Surface synthesis of zinc oxide nanoparticles on silica spheres: preparation and characterization. J. Phys. Chem. B, 107, 9175-9178.
    [172]Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R. and Santamaría, J. (2007) Magnetic nanoparticles for drug delivery. Nano Today, 2, 22-32.
    [173]Banerjee, S. S. and Chen, D. H. (2009) A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology, 20, 185103.
    [174]Gao, J., Gu, H. and Xu, B. (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res, 42, 1097-1107.
    [175]Ichiyanagi, Y., Moritake, S., Taira, S. and Setou, M. (2007) Functional magnetic nanoparticles for medical application. J. Magn. Magn. Mater., 310, 2877-2879.
    [176]Jarzyna, P. A., Skajaa, T., Gianella, A., Cormode, D. P., Samber, D. D., Dickson, S. D., Chen, W., Griffioen, A. W., Fayad, Z. A. and Mulder, W. J. M. (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging.Biomaterials, 30, 6947-6954.
    [177]Jeong, J., Ha, T. H. and Chung, B. H. (2006) Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal. Chim. Acta, 569, 203-209.
    [178]Kuan, I., Liao, R., Hsieh, H., Chen, K. and Yu, C. (2008) Properties of Rhodotorula gracilis D-Amino acid oxidase immobilized on magnetic beads through His-Tag. J. Biosci. Bioeng., 105, 110-115.
    [179]Levy, L., Sahoo, Y., Kim, K. S., Bergey, E. J. and Prasad, P. N. (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater, 14, 3715-3721.
    [180]Lim, Y. T., Lee, K. Y., Lee, K. and Chung, B. H. (2006) Immobilization of histidine-tagged proteins by magnetic nanoparticles encapsulated with nitrilotriacetic acid (NTA)-phospholipids micelle. Biochem. Biophys. Res. Commun., 344, 926-930.
    [181]Nagesha, D., Devalapally, H., Sridhar, S. and Amiji, M. M. (2008) Multifunctional magnetic nanosystems for tumor imaging, targeted delivery, and thermal medicine. Multifunctional Pharmaceutical Nanocarriers, 381-408.
    [182]Shieh, D. B., Su, C. H., Chang, F. Y., Wu, Y. N., Su, W. C., Hwu, J. R., Chen, J. H. and Yeh, C. S. (2006) Aqueous nickel-nitrilotriacetate modified Fe3O4-NH3+ nanoparticles for protein purification and cell targeting. Nanotechnology, 17, 4174.
    [183]Zhang, Z., Mascheri, N., Dharmakumar, R., Fan, Z., Paunesku, T., Woloschak, G. and Li, D. (2009) Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging. Cytotherapy, 11, 43-51.
    [184]Zhou, L., Yuan, J., Yuan, W., Sui, X., Wu, S., Li, Z. and Shen, D. (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J. Magn. Magn. Mater., 321, 2799-2804.
    [185]He, X., Wang, K., Li, D., Tan, W., He, C., Huang, S., Liu, B., Lin, X. and Chen, X. (2003) A novel DNA-enrichment technology based on amino-modified functionalized silica nanoparticles. J. Dispersion Sci. Technol., 24, 633-640.
    [186]He, X., Huo, H., Wang, K., Tan, W., Gong, P. and Ge, J. (2007) Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs). Talanta, 73, 764-769.
    [187]Lee, I. S., Lee, N., Park, J., Kim, B. H., Yi, Y. W., Kim, T., Kim, T. K., Lee, I. H., Paik, S. R. and Hyeon, T. (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc., 128, 10658-10659.
    [188]Ma, Z., Guan, Y. and Liu, H. (2006) Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. J. Magn. Magn. Mater., 301, 469-477.
    [189]Ajayaghosh, A., Carol, P. and Sreejith, S. (2005) A ratiometric fluorescence probe for selective visual sensing of Zn2+. J. Am. Chem. Soc., 127, 14962-14963.
    [190]Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H. and Nagano, T. (2004) Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore rational designof potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc., 126, 3357-3367.
    [191]Ohkuma, S. and Poole, B. (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA, 75, 3327-3331.
    [192]Radu, D. R., Lai, C. Y., Wiench, J. W., Pruski, M. and Victor, S. Y. L. (2004) Gatekeeping layer effect: a poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters. J. Am. Chem. Soc., 126, 1640-1641.
    [193]Sytnik, A. and Litvinyuk, I. (1996) Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Proc. Natl. Acad. Sci. USA, 93, 12959-12963.
    [194]Tung, C. H., Bredow, S., Mahmood, U. and Weissleder, R. (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chem., 10, 892-896.
    [195]Zhao, C. L., Winnik, M. A., Riess, G. and Croucher, M. D. (1990) Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir, 6, 514-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700