纳米TiO_2薄膜修饰PMMA IOL的功能探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:对比研究纳米二氧化钛(Titanium Dioxide, TiO_2)光催化剂薄膜修饰聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)人工晶状体(intraocular lens, IOL)与未修饰TiO_2薄膜PMMA IOL的表面性能,为今后相关的实验和临床应用提供理论依据。
     方法:以主波长为365nm的a波紫外光(ultraviolet a, UVA)作为激发光源(平均光照强度382μW/cm2)。实验分为两个部分,第一部分:①以接触角对样品TiO_2/PMMA IOL进行表征;②细胞黏附实验:将两组晶体UVA预照射不同时间(0、20、40min)后,分别固定于24孔培养板孔内,再接种20μL浓度为2~3×104个/mL的细胞悬液,培养3h后行HE染色观察其形态,并镜下计数IOL表面晶体上皮细胞黏附量;③细胞杀伤实验:细胞同上培养5h后,行TUNEL染色观察形态,并用Image-Pro□Plus图像分析软件评估IOL表面细胞的凋亡率;④计算并分析比较细胞在两组晶体表面的黏附自由能。第二部分:①血小板黏附实验:先采用传统离心法制备富血小板血浆(platelet-rich plasma,PRP),再将两组晶体经UVA预照射不同时间(0、10、30min)后,固定于24孔培养板孔内,每枚接种20μL PRP,培养2h后取出,通过瑞特染色观察其形态,运用软件评估IOL表面血小板的黏附率。②)细菌杀灭实验:两组晶体UVA预照射不同时间(0、10、30min)后,分别置于培养孔后,每孔接种2 mL浓度为1×105cfu/mL的金黄色葡萄球菌和大肠杆菌,培养2h后取出,进行革兰氏染色后普通光学显微镜下观察,用软件评估IOL表面金葡菌的存活率;③分析比较细菌在两组晶体表面的黏附自由能。
     结果:第一部分:①随着UVA预照射时间的延长,TiO_2/PMMA IOL表面接触角逐渐减小,亲水性增强,统计学上有显著性差异(P<0.05)。②细胞黏附实验中,UVA预照射不同时间段后,晶体上皮细胞在TiO_2/PMMA IOL表面的黏附量逐渐减少,与PMMA IOL相比差异有统计学意义(P<0.05)。③细胞杀伤实验中,UVA预照20分钟后TiO_2/PMMA IOL表面即可见较多细胞呈凋亡形态,且随预照时间的延长,凋亡率增高,同PMMA IOL相比有显著性差异(P<0.05)。④细胞在TiO_2/PMMA IOL表面黏附自由能△Fadh﹥0,而在PMMA IOL表面的△Fadh<0,从热力学角度可知TiO_2/PMMA IOL表面更不利于细胞黏附。
     第二部分: UVA预照射不同时间段后,血小板和细菌在TiO_2/PMMA IOL表面的黏附量均逐渐减少,与PMMA IOL相比差异有统计学意义(P<0.05)。UVA预照射30min后,TiO_2/PMMA IOL表面的血小板黏附率和细菌存活率较低;瑞氏和革兰氏染色后观察到血小板和细菌在TiO_2/PMMA IOL表面都是呈单个散在分布,而在PMMA IOL表面却多数成簇聚集。同样,细菌在TiO_2/PMMA IOL表面黏附自由能△Fadh﹥0,而在PMMA IOL表面的△Fadh<0,从热力学角度可知TiO_2/PMMA IOL表面更不利于细菌黏附。
     结论:(1)实验所用TiO_2/PMMA IOL,经过纳米TiO_2薄膜修饰,表面的水接触角变小,亲水性增强;且随着UVA激发时间的延长,TiO_2/PMMA IOL表面水接触角逐渐减小,亲水性逐渐增强。(2)TiO_2/PMMA IOL经UVA激发后,人眼晶体上皮细胞、血小板及金黄色葡萄球菌和大肠杆菌在其表面的黏附与生长受到了明显的抑制。(3)表面黏附自由能计算结果表明,人眼晶体上皮细胞、金黄色葡萄球菌和大肠杆菌在TiO_2/PMMA IOL表面的黏附自由能显著提高,从而不利于黏附。
PURPOSE: To compare the surface property of titanium dioxide (TiO_2) -coated polymethyl methacrylate (PMMA) intraocular lens (IOL) and noncoated PMMA IOLs. This may provide basic information for related study and clinical application in the future.
     METHODS: Ultraviolet A (UVA,λ=365nm, 4W, 382μW /cm2) was used as the excitation light source. The study consisted of two parts. Part One: The attribute of TiO_2/PMMA IOL was represented by means of water contact angle; Human lens epithelial cells(HLECs) adhesion test in vitro: after UVA pre-irradiation for different time (0min, 20min, 40min), the IOLs coated or non-coated with Nano-TiO_2 films were cultured with 2~3×104cells/mL of HLECs for 3 hours. At the end of culture, the number of cells adhering to the surfaces of the IOLs was counted under inversion phase microscope; Cell apoptosis test: after UVA illumination for different time(0 min、20 min、40min),cells were cultured for 5 hours, cell morphous was observed by TUNEL staining under ordinary light microscope and the apoptosis rate was evaluated by Image-Pro Plus analysis software. The surface energy components of the various substrates and HLECs were calculated based on Lifshitz-van del Waals/acid-base approach (LW-AB). The surface free energies obtained were used to calculate the interfacial free energies of adhesion (△Fadh ) of cells on various IOLs. Part Two: Platelets adhesion test:after the preparation of platelet rich plasma (PRP) by centrifugation, each IOL with the pre-irradiation for different minutes(0 min、10 min、30min) was cultured with 20μL PRP for 2 hours, then the platelets adhering to the IOL surface were observed with Wright staining and the adhesive rate was assessed by the analysis software; in Sterilization test:after the pre-irradiation of UVA for diffrernt time(0 min、10 min、30min), each IOL was placed under a culture of Staphylococcus aureus (S.A.,1×10~5 colony forming units [CFU]/mL) or Escherichia coli (E.C.BL21, 1×10~5 CFU /mL). After Gram staining, the survival percentage of S.A. was evaluated by software. The interfacial free energies of adhesion (△Fadh ) of two kinds of bacteria on various IOLs was calculated.
     RESULTS: The first part of the study showed that as the time of ultraviolet irradiation increased, the contact angle of TiO_2/PMMA IOL grew down apparently(P﹤0.01) comparing with the control group. Cell adhesion test showed that as the pre-irradiation time increased, the number of the adhering cells was significantly lower in the TiO_2-coated IOL group than the noncoated IOL group (P﹤0.01). TUNEL staining showed that most HLECs began apoptosing when exposed to UVA for 20min. The TiO_2/PMMA IOL group had a higher apoptosis rate than PMMA IOL group(P﹤0.01). The second part: As the pre-irradiation time extended, the number of platelets and bacteria sticking on TiO_2/PMMA IOL reduced and the number was notably lesser in the TiO_2-coated IOL group than the noncoated IOL group (P﹤0.01). After UVA pre-irradiation for 30min, platelets and S.A. showed lower adhesive and survival rate on TiO_2/PMMA IOL surface. And Wright and Gram staining showed that both the distribution of platelets and bacteria on TiO_2/PMMA IOL suface were scattered singly, while most were clustered together on the PMMA IOL surface. The facial adhesion free energies of HLECs and bacteria to TiO_2/PMMA IOL were both positive(△Fadh﹥0), while PMMA IOL were negative. So TiO_2/PMMA IOLs would be more unfavourable for cells and bacteria adhesion from the point of view of thermodynamics.
     CONCLUSION: (1) The TiO_2/PMMA IOLs coated with nano- TiO_2 thin film were shown to have smaller water contact angle and stronger hydrophilicity. And as the time of UVA irradiation extended, the angle got smaller and the hydrophilicity increased. (2) After UVA irradiation, the adhesion and growth of human lens epithelial cells, platelets, Staphylococcus aureus and Escherichia coli on the surface of TiO_2/PMMA IOL were all suppressed obviously. (3)The computation indicated that the facial adhesion free energy of HLECs, S. aureus and E. coli to TiO_2/PMMA IOLs elevated significantly, resulting an unfavourable intraocular surface for adhesion.
引文
[1] Ciulla TA,Starr MB,Masket S.Bacterial endophthalmitis prophylaxis for cataract surgery:an evidence-based update.Ophthalmology,2002,109:13-24.
    [2] Shigeta M, Tanaka T, Koike N, et al. Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses[J]. J Cataract Refract Surg ,2006,32 (5):859–866.
    [3] 袁佳琴, 孙慧敏, 徐延山,等. 氟-肝素表面修饰人工晶状体的实验研究[J]. 眼科新进展, 2003,23(3):153-156.
    [4] 王桂琴,彭秀军,顾汉卿.表面修饰硅凝胶人工晶状体植入兔眼的生物相容性[J]. 国际眼科杂志,2006,6(1):54-56.
    [5] Yuan Z,Sun H,Yuan J . A 1-year study on carbon , titanium surface-modified intraocular lens in rabbit eyes[J].Graefes Arch Clin Exp Ophthalmol, 2004,242 (12):1008-1013.
    [6] Davidson MR, Mitchell SA, Bradley RH. UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment[J]. Colloids Surf B Biointerfaces ,2004, 34 (4):213–219.
    [7] Matsushima H, Iwamoto H, Mukai K, et al.Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification[J].J Cataract Refract Surg, 2006,32(6):1035-1040.
    [8] Yuen C, Williams R, Batterbury M, et al. Modification of the surface properties of a lens material to influence posterior capsular opacification[J]. Clin Experiment Ophthalmol, 2006,34 (6):568-574.
    [9] Cooke C,McGimpsey S,Mahon G, et al.An in vitro study of human lens epithelial cell adhesion to intraocular lenses with and without a fibronectin coating[J].Invest Ophthalmol Vis Sci, 2006,47(7):2985-2989.
    [10] Okajima Y, Saika S, Sawa M. Effects of surface modification on foreign body reaction of intraocular lenses[J]. Nippon Ganka Gakkai Zasshi, 2005,109 (5):267–273.
    [11] Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. J Cataract Refract Surg ,2006,32 (4):666-671.
    [12] 曲超,姚克,寇瑞强,等.а-烯丙基葡糖苷对聚甲基丙烯酸甲酯人工晶状体的表面修饰[J].生物医学工程学杂志,2004,21(1):115-117.
    [13] Yao K,Huang X-D,Huang X-J ,et al.Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties[J].J Biomed Mater Res A ,2006,78 (4):684-692.
    [14] 黄晓丹,姚克,曲超,等.前表面磷脂修饰的硅凝胶人工晶状体表面生物学特性研究[J].中华眼科杂志,2007,43(2):167-169.
    [15] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,7(1):238-245.
    [16] Wu J,Qi B.Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water[J].J.Phys.Chem.,2007,111:666-673.
    [17] Kazuya Iketam,Ren-De Sun,Motoyuki Toki,et a1.Sol-gel-derived TiO2/poly(dimethylsiloxane)hybrid films and their photocatalytic activities[J].Phys Chem Solids,2003,64(3):507-513.
    [18] JC Yu, W Ho, J Lin,et al. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol, 2003; 37(10): 2296-2301.
    [19] Matsunaga T, Tomoda R , Nakajima T, Wake H.Photochemical sterilization of microbial cells by semiconductor powders [J] . FEMS Microbiol Lett , 1985,29 :211-214.
    [20] Huang Z, Maness P C , Blake D M, Wolfrum E J , Sharon L S , Jacoby W A. Bactericidal mode of titanium dioxidephotocatalysis[J] . J of Photochem and Photobio A:Chem ,2000 ,130 :163-170.
    [21] Sunada K, Kikuchi Y, Hashimoto K, Fujishima A.Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J].Environmental Science and Technology ,1998 ,32(5) :726-728.
    [22] Jacoby W A , Maness P C , Wolfrum E J , Mineralization of bacterial cell mass on a photocatalytic surface in air [J] .Environmental Science and Technology ,1998 ,32 (17) :2650-2653.
    [23] Dunford R , Salinaro A ,Cai L ,et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients[J].FEBS Lett,1997,418:87 -90.
    [24] Blake D M, Maness P C , Huang Z, Wolfrum E J , Huang J . Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells [J].Separation and Purification Metyods,1999,28(1):1-50.
    [25] 马晓敏,王怡中. 二氧化钛光催化杀菌的研究及进展[J] . 环境污染治理技术与设备,2002,3 (5):15-19.
    [26] Kikuchi Y, Sunada K, Lyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin film: dynamic view of the active oxygen species responsible for the effect [J]. J of Photochem and Photobio A:Chem,1997,106:51-56.
    [27] 黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究[J].现代化工,2001,(4):45-48.
    [28] Kubota Y, Shuin T, Kawasaki C,et al. Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer, 1994,70(6): 1107-1111.
    [29] 熊先立,吴美玲,李世普.纳米二氧化钛对人肝癌 Bel-7402细胞周期的影响[J].肿瘤防治研究,2003,30(4):300-300.
    [30] 张爱平,孙彦平,梁镇海,王俊文. TiO2 薄膜表面分形结构对光催化氧化杀伤胃癌细胞的影响[J].稀有金属材料与工程,2005,34(2):279-282.
    [31] 林云朝,杨方耀,刘业滋.人工晶体表面细胞的光镜染色及扫描电镜技术.眼科研究,1995,4(13):280-282.
    [32] Schneider R P, Conditioning film-induced modification of substratum physicochemistry-analysis by contact angles. Journal of Colloid and Interface Science, 1996, 182:204-213.
    [33] Bellon-Fontaine MN, Mozes N, Van der Mei HC, et al. A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata.. Cell Biophys,1990,17(1): 93-106.
    [34] 王杮超.TiO2/PMMA IOL 的制备与抗菌性能研究.福州大学硕士论文,2008,1.
    [35] 唐建,刘谊.紫外线对晶状体上皮细胞损伤的研究进展.眼视光学杂志,2003,5(3):187-189.
    [36] 高铁,钱朝勇,于向阳.材料导报,2000,14(7):27-29.
    [37] Akira F,Tara N R,Donald AT.J.Photochem.Photobio1.,2000,1:1-2l.
    [38] 刘平,凌岚,林华香等.光催化抗雾膜材料的制备及其亲水性研究.高等学校化学学报,2000,21(3):462-465.
    [39] K Anselme.Osteoblast adhesion on biomaterials[J]Biomaterials,2000, 21(7):667-681.
    [40] Hynes RO. Integrins:Verastility,modulation and signaling in cell adhesion[J].Cel1,1992,69(1):11-25.
    [41] 贝建中,屈 雪,王身国. 生物材料与细胞的相互作用.北京生物医学工程,2005,24(1):64-70.
    [42] Grunkemeier JM, Tsai WB,Horbett TA. Hemocompatibility of treated polystyrene substrates: Contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res,1998,41(4):657-670.
    [43] Miyake K, Ota I, Miyake S, et al.Correlation between intraocular lens hydrophilicity and anterior capsule opacification and aqueous flare[J].J Cataract Refract Surg,1996,22 (Suppl):764-769.
    [44] Martin J F,Bark P M ,BurrM L.Inf1uence of p1ate1et size on outcome after myocardial infarction.Lancet,1991,338:1409-1412.
    [45] Dougherty JH J r,Levy DE,Weks1er BB.Platelet activation in acute cerebral ischaemia.Serial measurements of platelet function in cerebrovascular disease. Lancet,1997,1(8016):821-824.
    [46] Assia EI,Jubran RZ,Solberg Y,et a1.The role of intraocular lenses in anterior chamber contamination during cataract surgery[J].Graefes Arch Clin Exp Ophthalmol,1998,236:721-724.
    [47] Zegans ME,Becker HI,Budzik J,et a1.The role of bacterial biofilms in ocular infections.DNA Cell Biol,2002,21(5-6):415-420.
    [48] 彭文璟,汤华钊,向晶晶等.纳米TiO2抑菌机理研究.四川大学学报:自然科学版,2006,43(4):908-912.
    [49] 涂启梁 ,付时雨,李红剑. 纳米二氧化钛在物体表面的抗菌作用.广州化工,2006,34(2):35-37.
    [50] 徐瑞芬,许秀艳,付国柱.纳米TiO2在涂料中的抗菌性能研究.北京化工大学学报,2002,29(5):45-48.
    [51]胡彦涛,孙淑清,奚正英等. 液相沉积法制备TiO2 薄膜及杀菌性能. 化学 工业与工程,2006,23(2):138-141.
    [52] M Yoshinari,Y Oda,T Kato,et al. Influence of surface modifications to titanium on antibacterial activity in vitro.Biomaterials, 2001, 22(14): 2043-2048.
    [53]JC Yu, W Ho, J Yu,et al.Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol, 2005,39(4): 1175-1179.
    [54] Ming-Show Wong, Wen-Chen Chu, Der-Shan Sun, etal. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens.Appl. Envir. Microbiol., 2006,72: 6111- 6116.
    [55] Tanaka T, Shigeta M, Yamakawa N, et al.Cell adhesion to acrylicintraocular lens associated with lens surface properties[J]. J Cataract Refract Surg,2005,31(8):1648-1651.
    [56] Burillon C,Kodjikian L,Pelion G,et a1.In vitro study 0f baeterial adherence to different types of intraocular lenses[J].Drug Dev Ind Pharm,2002,28:95-99.
    [57] Shigeta M, Tanaka T, Koike N, et al. Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses[J]. J Cataract Refract Surg ,2006,32 (5):859–866.
    [58] Ng EW ,Barrett GD,Bowman R.In vitro bacterial adherence to hydrogel and poly(methyl methacrylate)intraocular lenses[J].J Cataract Refract Surg,1996,22:1331-1335.
    [59] 吴仁毅,姚克,孙朝辉,等.不同材料人工晶体表面细菌粘附的比较研究[J].中华眼科杂志,1999,35:453-455.
    [60] Kodjikian L,Burillon C,Roques C,et a1.Bacterial adherence of Staphylococcus epidermidis to intraocular lenses:a biolumineseenee and scanning electron microscopy study.Invest Ophthalmol Vis Sci,2003,44:4388-4394.
    [61] Cunanan CM, Tarbaux NM, Knight PM. Surface properties of intraocular lens materials and their influence on in vitro cell adhesion[J]. J Cataract Refract Surg 1991;17(6):767-773.
    [62] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [63] 祖庸等.纳米TiO2-新型的无机抗菌剂.现代化工,1999,19(8):46-49.
    [64] Amy L L,Guangquan L,John T,et a1.Photocatalysis on TiO2 surrface: Principles, Mechanisms, and selected Results.ChemlRev,1995,95(3):735-741.
    [1] Trocme SD,Li H. Effect of heparin-surface-modified intraocular lenses on postoperative inflammation after Phacoemulsification:a randomized trial in a United States patient population[J].Ophthalmology,2000,107 (6):1031-1037.
    [2] Tognetto D,Toto L,Ballone E,et a1.Biocompatibility of hydrophilic intraocular lenses[J].J Cataract Refract Surg ,2002,28 (4):644-651.
    [3] Okajima Y, Saika S, Sawa M. Effects of surface modification on foreign body reaction of intraocular lenses[J]. Nippon Ganka Gakkai Zasshi, 2005,109 (5):267–273.
    [4] Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. J Cataract Refract Surg ,2006,32 (4):666-671.
    [5] Shigeta M, Tanaka T, Koike N, et al. Suppression of fibroblast and bacterial adhesion by MPC coating on acrylic intraocular lenses[J]. J Cataract Refract Surg ,2006,32 (5):859–866.
    [6] Yao K,Huang X-D,Huang X-J ,et al.Improvement of the surface biocompatibility of silicone intraocular lens by the plasma-induced tethering of phospholipid moieties[J].J Biomed Mater Res A ,2006,78 (4):684-692.
    [7] 曲超,姚克,寇瑞强,等.а-烯丙基葡糖苷对聚甲基丙烯酸甲酯人工晶状体的表面修饰[J].生物医学工程学杂志,2004,21(1):115-117.
    [8] 袁佳琴, 孙慧敏, 徐延山,等. 氟-肝素表面修饰人工晶状体的实验研究[J]. 眼科新进展, 2003,23(3):153-156.
    [9] 王桂琴,彭秀军,顾汉卿.表面修饰硅凝胶人工晶状体植入兔眼的生物相容性[J]. 国际眼科杂志,2006,6(1):54-56.
    [10]Yuan Z,Sun H,Yuan J . A 1-year study on carbon , titanium surface-modified intraocular lens in rabbit eyes[J].Graefes Arch Clin Exp Ophthalmol, 2004,242 (12):1008-1013.
    [11] 黄晓丹,姚克,曲超,等.前表面磷脂修饰的硅凝胶人工晶状体表面生物学特性研究[J].中华眼科杂志,2007,43(2):167-169.
    [12]Davidson MR, Mitchell SA, Bradley RH. UV-ozone modification of plasma-polymerised acetonitrile films for enhanced cell attachment[J]. Colloids Surf B Biointerfaces ,2004, 34 (4):213–219.
    [13] Wang YX,Robertson JL,Spillman WB.Efects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility[J].Pharm Res,2004,21(8):1362-1373.
    [14] Matsushima H, Iwamoto H, Mukai K, et al.Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification[J].J Cataract Refract Surg, 2006,32(6):1035-1040.
    [15] Yuen C, Williams R, Batterbury M, et al. Modification of the surface properties of a lens material to influence posterior capsular opacification[J]. Clin Experiment Ophthalmol, 2006,34 (6):568-574.
    [16] Cooke C,McGimpsey S,Mahon G, et al.An in vitro study of human lens epithelial cell adhesion to intraocular lenses with and without a fibronectin coating[J].Invest Ophthalmol Vis Sci, 2006,47(7):2985-2989.
    [17] Yamakawa N, Tanaka T, Shigeta M ,et al. Surface roughness of intraocular lenses and inflammatory cell adhesion to lens surfaces[J]. J Cataract Refract Surg,2003,29 (2):367-370.
    [18] Tanaka T, Shigeta M, Yamakawa N ,et al. Cell adhesion to acrylic intraocular lens associated with lens surface properties[J]. J CataractRefract Surg,2005,31(8):1648-1651.
    [19] Wemer L,Mamalis N,Izak AM,et a1.Posterior capsule opacification in rabbit eyes implanted with 1-piece and 3-piece hydrophobic acrylic intraocular lenses[J].J Cataract Refract Surg,2005,31(12):805-811.
    [20] Saika S.Relationship between posterior capsule opacification and intraocular lens biocompatibility[J]. Prog Retin Eye Res ,2004,23 (3):283-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700