海浪河下游真菌群落结构及理化因子相关性初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择海浪河下游为研究区段,根据流域受污染情况设置了10个采样点,于2009年3月至2010年1月采集水及底泥样品,运用常规微生物分离方法等研究方法对该流域水生真菌群落结构进行研究,同时对相应的水环境理化因子进行检测和分析。采用SPSS Statistics 17.0软件、Pearson相关分析法、Shannon-Wiener指数法对海浪河真菌多样性指数与环境因子进行相关分析,探讨真菌群落结构与理化因子的相关性,为该地区的保护和治理以及生态修复提供科学参考依据。
     调查期间共采集、分离鉴定出真菌32种,隶属5目7科13属,其中24株鉴定到种,8株鉴定到属。真菌种类数:曲霉属15种;青霉属6种;木霉属2种;根霉属、酵母属、显革菌属、梨孢霉属、链格孢属、小孢霉属、地霉属、尾孢菌属、卵形孢霉属、水栉霉属各1种。优势真菌共16种,包括黑曲霉(Aspergillus nig)、两形头曲霉(Aspergillus janus)、烟曲霉原变种(Aspergillus fumigatus var fumigatus)、根霉未定种(Rhizopus sp.)、哈茨木霉(Trichoderma harzianum)、小孢霉未定种(Microsporum gruby sp.)、啤酒酵母菌(Saccharomyces cerevisiae)、曲霉(Aspergillus niger)、黄曲霉原变种(Aspergillus flavus Link:Fr.var.flavus)、局限曲霉(Aspergillus restrictus)青霉属未定种(Penicillium sp.)、托姆青霉(Penicillium thomii)、炭黑曲霉(Aspergillus carbonarius)、杨奇青梅(Penicillium janczewskii)、塔宾曲霉(Aspergillus tubingensis)和水栉霉(Leptomitus agardh)。
     海浪河下游水体真菌种类受季节影响波动明显,代表冬季的2009年3月和11月分离出的真菌种数最多,分别为32种和31种;种数最少的是代表夏季的2009年7月,共分离出真菌21种。海浪河流域真菌数量时空分布情况表明,5月份真菌数量最多,1月份最少;从水平分布情况上看,1“海浪河大桥、7#海浪河入口牡丹江下游2km、8#英雄桥、9#河夹大坝上游300m、10#河夹大坝上游100m处真菌数量较多,5#河夹大坝、4#海南桥、3“海浪河入口牡丹江上游2km真菌数量较少。
     真菌多样性分析表明,海浪河下游真菌Shannon-Wiener指数全年在0.00-2.20之间,以2010年1月最高,平均值为1.79,2009年9月最低,平均值为0.72。从空间分布情况上看,5#河夹大坝多样性指数最高,全年平均值为1.36;其次是9#河夹大坝上游300m,全年平均值为1.24;最低值为2#海浪河口内,全年平均值为0.60,其它样点波动性不明显。
     通过真菌多样性指数与环境因子的相关性分析可知,真菌多样性与河流温度变化极显著相关,与磷含量呈显著相关;真菌多样性指数与磷含量变化成显著相关,与氮变化无相关性。真菌数量与河流的温度、流速、Fe3+,氮,磷,COD变化做相关分析表明,全年5个月检测的真菌总量变化与河流的温度、流速、Fe3+,氮,磷,COD变化没有相关性。
This thesis experiments with Hejiacun section in Hailang area of Mudanjiang River, collected samples from ten typical sampling stations in March, May, July, September, November 2009 and January 2010, by means of molecular biology research to study the diversity of fungi which grow in this area. Fungi community structure and biodiversity were examined with multivariate and analysis of the correlated water environmental physical and chemical factors, discussed based on results of SPSS Statistics 17.0, Pearson analysis, and Shannon-Wiener index. This paper aimed to provide a guideline of environmental administration and protection, and restoration of the ecosystem in Hailang River of Mudanjiang.
     From samples collected in Hejiacun section of Hailang River area,32 species of fungi were isolated, belonging to 5 Order,7 Family,13 Genus, among which 24 species were identified to species rate,8 species were identified to genus rate.15 species belonged to Aspergillus,6 species belonged to Penicillium,2 species belonged to Trichoderma, Rhizopus, Saccharomyces, Phanerochaete, Piricaulalia, Alternaria Nees, Microsporum gruby, Geotrichum Link, Cercospora Fres, Oospora and Leptomitus contented 1 species each.
     Total of dominant fungi was 16, including Aspergillus nig, Aspergillusjanus, Aspergillus fumigatus var fumigates, Rhizopus sp., Trichoderma harzianum, Microsporum gruby sp., Saccharomyces cerevisiae, Aspergillus niger, Aspergillus flavus Link:Fr. var. flavus, Aspergillus restrictus, Penicillium sp., Penicillium thomii, Aspergillus carbonarius, Penicillium janczewskii, Aspergillus tubingensis, Leptomitus agardh.
     The results showed that fungi communities in Hailang River fluctuated with season significantly. Total of species isolated in March、November 2009 represent winter was 33 and 31, which were the most among all the year; the least of the whole year was 21, which was isolated in July 2009 represented summer. Fungi biomass distributed the most in May 2009, the least in January 2010; spatial distribution showed fungi biomass in sampling station 1,7,8,9, 10 higher than in 5,4,3.
     The whole year diversity index showed that Shanno-Wiener index was from 0.00 to 2.20, the index reached 1.79 in Jan.2010 which was the highest of the whole year, while the lowest was 0.72 in Sep.2009. From the spatial distribution of Shanno-Wiener index, sampling station 5,9 highest and 2 lowest.
     Correlation analysis showed fungi diversity significant related with water temperature、P content; Shanno-Wiener index of fungi significant related with P diversification, unrelated with N diversification. The result of relational analysis of fungi biomass with environmental factors showed total biomass unrelated with water temperature, speed, Fe3+, N, P, COD.
引文
[1]贾淑芬等.葛洲坝建坝前后水体中的微生物种群动态[J].环境科学与技术,1983,(03)
    [2]黑龙江省水利厅.黑龙江省水资源公报(1990—2004)[R].哈尔滨:黑龙江省水利厅,1991-2005
    [3]黑龙江省环境保护局.2004年黑龙江省环境质量公报[R].哈尔滨:黑龙江省环境保局,2005
    [4]齐品瑶,张杰,周彦.哈尔滨污水资源化问题研究[J].给水排水,2005,31(4):29-31
    [5]于洪贤,覃雪波.黑龙江省水资源现状与可持续利用对策研究[J].东北农业大学学报,2006,37(3):427-432
    [6]孙惠聪,刘英,孙乃武.谈水栉霉的防治措施[J].水利天地,2008,2
    [7]刘宝晨,王玫.牡丹江市水源地水栉霉污染事件成因分析及对策研究[J].环境科学与管理,2007,32(1):56-57
    [8]周红艳,秦玉宽,李茂铎.牡丹江市区水资源水质与水环境分析[J].黑龙江水专学报,2005,32(2):97-98
    [9]王立华,蔺玉华.牡丹江水质状况对水生生物影响及评价[J].水产学杂志,1996,9(2):54-59
    [10]赵新昌,姜宏义,张千武.牡丹江流域水环境分析[J].黑龙江水专学报,加01,28(3):58-59
    [11]朱普玉.海浪河水系污染情况调查分析[J].哈铁科技通讯,1979,07:27-30
    [12]李为民,战辉,王志兴等.海浪河流域水资源开发利用前景[J].黑龙江水利科技,1999,3(3):87-90
    [13]车玉伶,王慧,胡洪营等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133
    [14]金静,王远路,刘建萍.砚河水域水生真菌的分离[J].当代生态农业.2004,(1):34-46
    [15]Stefanie P. Templer, Laura M. Wehrmann, Yu Zhang, Crisogono Vasconcelos, Judith A. McKenzie. Microbial community composition and biogeochemical processes in cold-water coral carbonate mounds in the Gulf of Cadiz, on the Moroccan margin [J]. Marine Geology, Volume 282, Issues 1-2,30 March 2011, Pages 138-148
    [16]Michael M. Marshall, Rebecca N. Amos, Vincent C. Henrich, Parke A. Rublee. Developing SSU rDNA metagenomic profiles of aquatic microbial communities for environmental assessments [J]. Ecological Indicators, Volume 8, Issue 5, September 2008, Pages 442-453
    [17]Chi-Wen Lin, Hung-Chun Lin, Chi-Yung Lai. MTBE biodegradation and degrader microbial community dynamics in MTBE, BTEX, and heavy metal-contaminated water [J]. International Biodeterioration & Biodegradation, Volume 59, Issue 2, March 2007, Pages 97-102
    [18]Kristian K. Brandt, Niels O. G. Jφrgensen, Tommy H. Nielsen, Anne Winding. Microbial community~level toxicity testing of linear alkylbenzene sulfonates in aquatic microcosms [J]. FEMS Microbiology Ecology, Volume 49, Issue 2,1 August 2004, Pages 229~241
    [19]Marika Truu, Jaanis Juhanson, Jaak Truu. Microbial biomass, activity and community composition in constructed wetlands [J]. Science of the Total Environment, Volume 407, Issue 13,15 June 2009, Pages 3958~3971
    [20]Udin Hasanudin, Masafumi Fujita, Tadao Kunihiro, Koichi Fujie, Teruaki Suzuki. The effect of clams (Tapes philippinarum) on changes in microbial community structure in tidal flat sediment mesocosms, based on quinone profiles [J]. Ecological Engineering, Volume 22, Issue 3,1 May 2004, Pages 185~196
    [21]Ming Li, Qiaohong Zhou, Min Tao, Ying Wang, Lijuan Jiang, Zhenbin Wu. Comparative study of microbial community structure in different filter media of constructed wetland [J]. Journal of Environmental Sciences, Volume 22, Issue 1, January 2010, Pages 127~133
    [22]Wen-Tso Liu, On-Chim Chan, Herbert H. P. Fang. Microbial community dynamics during start-up of acidogenic anaerobic reactors [J]. Water Research, Volume 36, Issue 13, July 2002, Pages 3203~3210
    [23]Ursula Dorigo, Laurence Volatier, Jean-Francois Humbert. Molecular approaches to the assessment of biodiversity in aquatic microbial communities [J]. Water Research, Volume 39, Issue 11, June 2005, Pages 2207-2218
    [24]Ruben Araya, Katsuji Tani, Tatsuya Takagi, Nobuyasu Yamaguchi, Masao Nasu. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis [J]. FEMS Microbiology Ecology, Volume 43, Issue 1,1 February 2003, Pages 111~119
    [25]Seidu Malik, Michael Beer, Mallavarapu Megharaj, Ravi Naidu. The use of molecular techniques to characterize the microbial communities in contaminated soil and water [J]. Environment International, Volume 34, Issue 2, February 2008, Pages 265~276
    [26]R.K. Vaisanen, M.S. Roberts, J.L. Garland, S.D. Frey, L.A. Dawson. Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes [J]. Soil Biology and Biochemistry, Volume 37, Issue 11, November 2005, Pages 2007~2016
    [27]Viviane Radl, Karin Pritsch, Jean Charles Munch, Michael Schloter. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical [J]. Environmental Pollution, Volume 137, Issue 2, September 2005, Pages 345~353
    [28]Felix Kucnerowicz, Willy Verstraete. Evolution of microbial communities in the activated sludge process [J]. Water Research, Volume 17, Issue 10,1983, Pages 1275-1279
    [29]Thomas L. Bott, Laurel J. Standley. Incorporation of trifluoroacetate, a hydrofluorocarbon decomposition byproduct, by freshwater benthic microbial communities [J]. Water Research, Volume 33, Issue 6, April 1999, Pages 1538~1544
    [30]Zhanfeng Liu, Bojie Fu, Xiaoxuan Zheng, Guohua Liu. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe:A regional scale study [J]. Soil Biology and Biochemistry, Volume 42, Issue 3, March 2010, Pages 445~450
    [31]Chong~Bang Zhang, Shi~Sheng Ke, Jiang Wang, Ying Ge, Scott X. Chang, Si~Xi Zhu, Jie Chang. Responses of microbial activity and community metabolic profiles to plant functional group diversity in a full~scale constructed wetland [J]. Geoderma, Volume 160, Issues 3-4,15 January 2011, Pages 503~508
    [32]Matthew W. Fields, Tingfen Yan, Sung-Keun Rhee, Susan L. Carroll, Phil M. Jardine, David B. Watson, Craig S. Criddle, Jizhong Zhou. Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid-uranium waste [J]. FEMS Microbiology Ecology, Volume 53, Issue 3,1 August 2005, Pages 417-428
    [33]Deborah A. Bossio, Jacob A. Fleck, Kate M. Scow, Roger Fujii. Alteration of soil microbial communities and water quality in restored wetlands [J]. Soil Biology and Biochemistry, Volume 38, Issue 6, June 2006, Pages 1223~1233
    [34]C. Ahn, P..M. Gillevet, M. Sikaroodi. Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading [J]. Ecological Indicators, Volume 7, Issue 4, November 2007, Pages 852~863
    [35]Viviane Radl, Karin Pritsch, Jean Charles Munch, Michael Schloter. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine~disrupting chemical [J]. Environmental Pollution, Volume 137, Issue 2, September 2005, Pages 345~353
    [36]Chong~Bang Zhang, Jiang Wang, Wen~Li Liu, Si~Xi Zhu, Han~Liang Ge, Scott X. Chang, Jie Chang, Ying Ge. Effects of plant diversity on microbial biomass and community metabolic profiles in a full~scale constructed wetland [J]. Ecological Engineering, Volume 36, Issue 1, January 2010, Pages 62~68
    [37]Alison L. Dann, Rodney S. Cooper, John P. Bowman. Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron~ and sulfate~rich industrial waste water [J]. Water Research, Volume 43, Issue 8, May 2009, Pages 2302~2316
    [38]Wen~Tso Liu, On-Chim Chan, Herbert H.P Fang. Characterization of microbial community in granular sludge treating brewery wastewater [J]. Water Research, Volume 36, Issue 7, April 2002, Pages 1767-1775
    [39]Goh, T.K. and Hyde, K.D. Biodiversity of freshwater fungi [J]. Journal of Industrial Microbiology,1996(17):328~345
    [40]杨发蓉,丁骅孙.洱海湖体真菌类群分布的研究[J].云南大学学报(自然科学版),1985(3)
    [41]余永年,梁枝荣.北京地区水霉科真菌季节性分布[J].菌物学报,1983(3)
    [42]杨发蓉,杨瑞华,丁骅孙等.滇池水体中水生真菌类群分布的研究[J].云南大学学报(自然科学版),1985(1)
    [43]朱旭东,余永年.北京和安徽的水生丝孢菌[J].真菌学报,1992(11)
    [44]金福杰,孙晓怡,来永斌等.浑河(抚顺段)水体中微生物的消涨状况[J].辽宁城乡环境科技,2000,20(1):41-44
    [45]黄德锋,李田,陆斌.复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J].环境科学研究,2007,20(6):137-141
    [46]刘妮.溶源性浮游细菌的生态分布及其基因多样性[D].中国优秀硕士学位论文全文数据库,2008,11
    [47]柴晓娟,骆大伟,吴春笃等.水体中微生物分布及与环境因素的相关性研究[J].人民长江,2008,39(3)
    [48]胡嘉东,张锡辉,万正茂等.典型城市河流中嗅味物质和微生物菌落特征[J].环境科学研究,2009,1:47-51
    [49]周秀华,杨秀冬,林海坤.秋季阿什河水体真菌群落研究[J].长春大学学报,2010,6:31-35
    [50]AMANN R I, LUDWIG W, SCHLEIFER K H. Phylogenetic identification and insitudetection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995,59:143~169
    [51]HILL G T, MITKOWSKI N A, ALDRICH-WOLFE, et al. Methods for assessing the composition and diversity of soil microbial communities [J]. Applied Soil Ecology,2000, 15:25~36
    [52]VICTORIO L, GILBRIDE K A, ALLEN D G, et al. Phenotypic fingerprinting of microbial communities in wastewater treatment systems [J]. Water Research,1996, 30:1077~1086
    [53]IBEKWE A M, KENNEDY A C. Phospholipids fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions[J]. FEMS Microbiology Ecology,1998,26:151~163
    [54]姚槐应.评估红壤微生物群落结构BIOLOG体系的改进[J].浙江农业科学,2003(4):200-203YAO HUAI-YING. Improvement on BIOLOG system of Evaluating community structure microorganisms exist in red soil[J]. Journal of Zhejiang Agricultural Sciences, 2003,4:200~203
    [55]INS AM H. A new set of substrates proposed for community characterization in environmental samples [A]. In:INS AM H, RANGGER A, Eds. Microbial Communities[C]. Heidelberg:Springer,1997:259~260
    [56]HUH Y, LIMB R,GOTO N, et al. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples[J]. Journal of Microbiological Methods,2001,47:17~24
    [57]SAITOU K, NAGASAKI K, YAMAKAWA H, et al. Linear relation between the amount of respiratory quinones and the microbial biomass in soil[J]. Soil Science Plant Nutrition, 1999,45:775~778
    [58]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用[J].微生物学通报,2002,29(4):95-98HU HONG-YING, TONG ZHONG-HUA. Bacterial quinone profile for the study of microbial community structure in environmental samples[J]. Microbiology,2002,29(4): 95~98
    [59]GLUCKSMAN A M, SKIPPER H D, BRIGMON R L, et al. Use of the MIDI-FAME technique to characterize groundwater communities[J]. Journal of Applied Microbiology, 2000,88:711~719
    [60]CALDERON F J, JACKSON L E, SCOW K M, et al. Microbial responses to simulated tillage incultivated and uncultivated soils[J]. Soil Biology and Biochemistry,2000,32: 1547~1559
    [61]SONG X H, HOPKE P K. Pattern recognition of soil samples based on the microbial fatty acid contents[J]. Environmental Science & Technology,1999,33:3524~3530
    [62]冯胜,李定龙.淡水湖泊沉积物微生物多样性研究方法进展[J].常州大学学报(自然科学版),2010,(02)
    [63]GRIFFITHS B S, RITZ K, GLOVER L A, et al. Broad-scale approaches to the determination of soil microbial community structure:application of the community DNA hybridization technique[J]. Microbial Ecology,1996,31:269~280
    [64]TORSVIK V, GOSKYR J, DAAE F L. High diversity in DNA of soil bacteria [J]. Applied Environmental Microbiology,1990,56:782~787
    [65]ATLAS R M, HORWITZ A, KRICHEVSKY M, et al. Response of microbial populations to environmental disturbance [J]. Microbial Ecology,1991,22:249~256
    [66]HOLBEN W E, HARRIS D. DNA-based monitoring of total bacterial community structure in environmental samples [J]. Molecular Ecology,1995,4:627~631
    [67]ANNETTE M, ULFB G. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms [J]. Journal of Microbiological Methods,2000,41:85~112
    [68]VIVES-REGO J, LEBARON P, NEBE-VON CARON G. Current and future applications of low cytometry in aquatic microbiology[J]. FEMS Microbiology Reviews, 2000,24:429~448
    [69]SCHMALENBERGER A,SCHWIEGER F,TEBBE C C. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling[J]. Applied Environmental Microbiology,2001,67:3557-3563
    [70]HOSHINO T, NODA N, TSUNED A S, et al. Direct detection by in situ PCR of the amoA gene in biofilm resulting from a nitrogen removal process[J]. Applied Environmental Microbiology,2001,67:5261~5266
    [71]CHEN F, DUSTMEN W A, HODSON R E. Microbial detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR[J].Hydrobiologia,1999,401:131~138
    [72]RANJARDL, POLY F, NAZARET S. Monitoring complex bacterial communities using culture-indep-endent molecular techniques:application to soil environment[J]. Research in Microbiology,2000,151:167~177
    [73]MCCAIG A E, GLOVER L A, PROSSER J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J]. Applied Environmental Microbiology,1999,65:1721~1730
    [74]HULTON C S, HIGGINS C F, SHARP P M. ERIC sequences:a novel family of repetitive element in the genomes of Escherichia coli., Salmonella typhimurium and other enterobacteria [J]. Molecular Microbiology,1991,5:825~834
    [75]GILLINGS M, HOLLEY M. Repetitive element PCR fingerprinting(rep-PCR) using enterobacterial Repetitive Intergenic Consensus (ERIC) primers is not necessarily directed at ERIC elements[J]. Letters in Applied Microbiology,1997,25:17~21
    [76]潘莉,杜惠敏,黄海东等.腹泻儿童肠道菌群结构特征的ERIC-PCR旨纹图分析[J].中国微生态学杂志,2003,15(3):141-143PAN LI, DU HUI-MIN, HUANG HAI-DONG, et al. ERIC-PCR fingerprinting of structural features of microbial communities in children's intestines with different types of diarrhea [J]. Chinese Journal of Microecology,2003,15(3):141~143
    [77]陈敏,魏桂芳,高平平等.用ERIC-PCR结合分子杂交监测焦化废水处理系统(A2/O)中微生物群落结构的变化[J].生态学报,2004,24:1330-1334 CHEN MIN, WEI GUI-FANG, GAO PING-PING, et al. Using ERIC-PCR and molecular hybridization for monitoring changes in the structure of microbia 1 community in coking wastewater treatment system[J]. Acta Ecologica Sinica,2004,24:1330-1334
    [78]朱红惠,姚青,赵立平.用ERIC-PCR法研究番茄根际细菌群落结构变化[J].微生物学通报,2003,30(4):10-14
    [79]许文涛,郭星,罗云波等.微生物菌群多样性分析方法的研究进展[J].食品科学,2009,(07)
    [80]PALLEMNIN J. Anton Van Leeuwenhoek[EB/OL]. [2008-03-11]. http://www.ucnp. berkeley. edu/history/leeuwen-hoek. html.
    [81]COCOLIN L, MANZANO M. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in thebacterial population during fermentation of italian sausages[J]. Appl Environ Microbiol 2001,67:5113~5121
    [82]SAUAU A, BONNET R. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut[J]. Appl Environ Microbiol,1999,65(11):4799~4807
    [83]沈萍,范秀容,李广武.微生物学试验[M],高等教育出版社,2002
    [84]韩利刚,聂宏俊.真菌的盖玻片培养及扫描电镜片的制作[J].南京军医学院学报,1999,3:165-167
    [85]魏景超.真菌鉴定手册[M].上海:上海科技出版社,1979
    [86]沈亚恒,叶东海.中国真菌志[M].科技出版社,2006
    [87]郑维,权春善,朴永哲等.一种快速提取细菌总DNA的方法研究[J].中国生物工程志,2006,26(4):75-80
    [88]林剑伟,阙友维,陈天生等.核糖体DNA的内转录间隔区序列标记在真菌分类鉴定中的应用[J].生物技术通讯,2007,18(2):292-294
    [89][美]J.萨姆布鲁克著,金冬雁等译.分子克隆实验指南(第三版)上册[M].北京:科学出版社,2003
    [90]刘佳宁.扎龙湿地水生真菌多样性的研究[D].中国优秀硕士学位论文全文数据库,2008,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700