铍/不锈钢扩散连接的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铍属稀有金属,因其具有密度低,比强度和比热容高以及导热性好等优点,被广泛用于核能、航空和航天工业。铍的缺点是延性差,脆性大,从而给铍构件的设计和制造带来不少困难。另外,铍的化学活性高,在高温下极易氧化,还与其它许多金属反应生成脆性的金属间化合物,影响构件的性能和使用寿命,因而研究铍/不锈钢热静压扩散连接工艺、成分、组织、结构与性能的关系,具有重要的理论意义和实用价值。
    论文得出以下结论:
    1)经剥层X射线物相鉴定表明,扩散连接区的主要物相为α-Be, 有少量的金属间化合物B11Fe、Be5Fe和FeBe2及α-Fe,也有微量的Be21Ni、Be12Cr、MoBe12和BeO。
    2)铍/不锈钢扩散连接区的显微组织,可粗略的地划分为三个白亮带区,一个暗区、三个黑白相混合的带状区,带的纵向都大致垂直于外加应力方向。
    3) 白亮带区主要是金属间化合物,黑白相间的区域为两相区,暗区为α-Be。
    4) 俄歇谱上的台阶与金属间化合物相对应。
    5) 扩散连接区因生成金属间化合物而变脆,硬度特别高,耐蚀性也比较好。
    6) 热静压过程中,沿晶扩散的速度远大于晶内扩散,因此,金属间化合物主要分布在晶界。
    7)用计算机模拟的热等静压试样的成分分布,与实测值比较吻合,计算机是优化热静压的重要手段。
Metal beryllium has widely applied to industry of nuclear, space flight and airplane due to the characteristic of low density, high strength ratio, high specific heat and excellent property of heat. But beryllium's high brittleness and low ductibility bring its component's design much difficulty. Furthermore, beryllium is an active element, which is prone to be oxidized especially at high temperature and react with many other metals to form brittle intermetals, which influence the component's use and life. Bonding beryllium with HR-1 stainless has important significance and great-applied value, but the numbers .It has been showed aboard that it is very difficult to bond beryllium with stainless steel due to weld stress and crackle resulting from brittle inter-phase has not studied it in China. Diffusion bonding and brazing may be good methods to bond beryllium with HR-1 stainless successfully, but choosing the perfect technological parameter, interlayer and characterizing bonding interface for bonding be with HR-1 stainless have great difficulty. The diffusion and brittle-phase formation mechanics is ambiguous, and the model of diffusion concentration field isn't reported in document. So researching the diffusion bonding between be and HR-1 stainless plays an important role in production and practice, especially studying the relationship among diffusion bonding technics, component, structure and performance.
    In this paper, Be and HR-1 stainless steel are bonded by diffusion bonding and brazing. The following conclusions may be obtained:
    1)X- radial phase analysis after peeling shows that the diffusion bonding area consists
    of α-Be mostly and a little intermetals, such as Be11Fe, Be5Fe, FeBe2, Be21Ni5, Be12Cr,
    MoBe12 etc.α-Fe and BeO also exist。
    2) The microstructure in the diffusion bonding area forms three white area, a dark area and three area in which white and black coexist.
    3) The white area mainly consists of intermetals and them distribute on grain boundary. In the dark area ,α-Be is the most component. While the white and black coexisting area is two phase area.
    4) The sidesteps in the AES correspond with intermetals.
    5) The diffusion bonding area become much brittler and has high hardness and good capability to corrosion because of intermetals and solid solution existing.
    6) During the process of hot pressing, the diffusion rate on the grain boundary is bigger than the inner grain ones. The intermetals mainly lie on grain boundary.
    
    
    7) The simulation of concentration profile for the HIP and hot pressing specimen accords with the experiment profile. The computer is a good tool to optimize technology parameters.
引文
[1]G.Cam and M.Kocak, Progress in Joining of Advanced Materials, International Materials Reviews, 1998 .43 (1),35-40;
    [2]李志远,钱乙余,张九海等编著,先进连接方法[M],北京.机械工业出版社,2000.6, 130-150;
    [3]Liu Yong et al, Densification Abnormality in Reactive Hot Pressing of Ti and Al Elemental Powders,Trans.Nonferrous Met.Soc.China.2000,10 (4),453-455;
    [4]Zhang Jiuhai et al. Diffusion Bonding Between Nickel-base Super Alloy K24 and Heat Resisting Steel (1Cr11Ni2W2MoV).China Weld.1996.(5),109-112;
    [5]S.B.Dunkerton, Diffusion Bonding Process and Applications,Welding & Metal Fabrication , 1991 (4),132-136;
    [6][苏]H.ф.卡扎柯夫著.何康生等译.真空扩散焊接.第一版.北京.国防工业出版社.1976年6月出版.:4-6;
    [7][苏]H.ф.卡扎柯夫著.何康生等译.材料中的扩散焊接. 第一版.北京.国防工业出版社.1982年2月出版:7-11
    [8][美] M.M.舍瓦尔兹著.袁文钊等译.金属焊接手册 第二版..北京.国防工业出版社.1988年1月出版:323-329;
    [9]何康生等.异种金属焊接.第一版.北京.机械工业出版社.1986年10月出版.308-400;
    [10]刘中青等.异种金属焊接技术指南.第一版.北京.机械工业出版社.1997年12月出版:269-439;
    [11]Tohimasa Kuroda et al. Development of Joining Technology for Be/Cu-alloy and Be/SS by HIP. Journal of Nuclear Materials 258-263(1998) 258-264;
    [12]T.Makino et al. Interface Formation and Strength of Be/DSCu Diffusion Bonding. Journal of Nuclear Materials.258-263(1998)313-317;
    [13]Ben c.jr. Beryllium-copper Diffusion Bonding for an ITER first Wall Application. Proceedings - Symposium on Fusion Engineering v 2 Oct1997, 6-10;
    [14]Flament.t. Compatibility of Stainless Steels and Lithium Based Ceramics with Beryllium,Journal of Nuclear Materials v 191-94 pt A Sep 1992 ,163-167
    [15]周荣林等.钛合金与不锈钢网的扩散连接.宇航材料工艺 1999 第一期 46-50;
    [16]深井卓.用 Fe-Ti合金扩散连接SiC陶瓷 焊接学报.19(2).1998..6 :92-96;
    [17]陈飞雄等.硬质合金与金属的扩散连接...稀有金属与硬质合金..1994.118.(9)14-20;
    [18]戚正风,固态金属中的扩散于相变,机械工业出版社,1998年7月第一版,1-62;
    
    
    [19]M.A.DAYANDA,et al,Metall.Mater.Trans.15A:649-659(1984);
    [20]M.A.DAYANDA,et al,Metall. Mater.Trans..14A:1851-1858(1983);
    [21]M.A.DAYANDA,et al,Defect Diffusion Forum95-98:521-535(1993);
    [22]M.A.DAYANDA,et al, Metall. Mater.Trans.27A:2504-2509(1996);
    [23]M.A.DAYANDA,et al, Metall. Mater.Trans.30A:535-543(1999);
    [24]Barrer,R.M, Diffusion in and Through Solids, Cambridge uni.Press,1951;
    [25]Shewmon,P.G., Diffusion in Solids, Mc Graw-Hill,1963;
    [26]Jost,W., Diffusion in Solids, Liquids and Gases, Academic Press,1960;
    [27]Lazarus,D., Diffusion in Metals, solid state physics.1970;
    [28]周如松,金属物理,北京,高等教育出版社,1992年;
    [29]丁学勇等,三元合金中组元扩散系数的预测模型,金属学报,2000,36(8),28-32;
    [30]张九海等,扩散连接行为数值模拟的发展现状,焊接学报,21(4),2000,84-91;
    [31]刘会杰等,SiC与TiAl扩散连接中界面反应层的成长模型,焊接学报,22(1),2001,53-55;
    [32]张贵锋等,日本关于固相扩散焊界面空洞收缩机理的研究,焊接学报,2001(10),14-18;
    [33]陈楚,数值分析在有限元中的应用,上海交通大学出版社,1985.1;
    [34]Kawamura,Hiroshi. Compatibility Test Between Beryllium and Ferritic Stainless Steel(F82H) Fusion Engineering and Design 29 pt C Mar 3 1995 Elsevier Science S.A. 475-480;
    [35]蒋元清.铍钎焊工艺研究.宇航材料工艺 1995(1),41-45;
    [36]杨爱群等.日益重要的高新科技铍.化学教育.1997 8.1-5;
    [37]刘国勋,金属学原理,冶金工业出版社,1980年7月第一版,211-280;
    [38]陈国良等, 有序金属间化合物结构材料物理金属学基础,冶金工业出版社,1999年10月1版,118-124;
    [39]S.S劳尔著,傅子智译,工程中的有限元法,科学出版社,1985.1;
    [40]孔祥谦等,有限元单元法在传热学中的应用,科学出版社,1991.7;
    [41]潘金生等,材料科学基础,清华大学出版社,1998.6;
    [42]夏立芳,金属中的扩散,哈尔滨工业大学出版社,1989.7;
    [43] Ernst Kozeschnik,Multicomponent Diffusion Simulation Based on Finite Elements, Metallurgical and Materials Transactions A, Volume 30A, October 1999, 2575~2582;
    [44]V.R.Barabash L.S.Gitarsky et al, Beryllium-metals Joints for Application in the Plasma-Facing Components, Journal of Nuclear Materials, 212-215(1994), 1604-1607;
    [45]H.Nishi Y.Muto K.Sato, Solid-state Diffusion Bonding of Alumina Dispersion-strengthened Copper to 316 Stainless Steel, Journal of Nuclear Materials, 212-215(1994), 1585~1594;
    [46]T.Hatano M.Kanari et al, Fracture Strengths of HIPed DS-Cu/SS Joints for ITER Shielding Blanked/first Wall, Journal of Nuclear Materials, 258-263(1998), 950~954;
    
    
    [47]M.A.Ashworth M.H.Jacobs et al, Basic Mechanisms and Interface Reactions in HIP Diffusion Bonding, Materials and Design 21(2000), 351-358;
    [48]A.Hill E.R.Wallach, Modelling Solid-State Diffusion Bonding , Acta Metal, 1989, Vol.37, NO.9, 2425-2437;
    [49]M.A.Dayananda Y..H.Sohn, A New Analysis For the Determination of Ternary Interdiffusion Coefficients from a Single Diffusion Couple, Metallurgical and Materials Transactions A, Volume 30A, March 1999 ,535~545;
    [50]K.Schleisiek T.Lechler et al, Diffusion Welding Parameters and Mechanical Properties of Martensitic Chromium Steels, Journal of Nuclear Materials 283-287(2000), 1196~1200;
    [51]G.Le Marois Ch.Dellis, HIP of Copper Alloys to Stainless Steel, Journal of Nuclear 233-237(1996), 927~931;
    [52]Y.Takahashi K.Inoue, Recent Void Shrinkage Models and Their Applicability to Diffusion bonding, Materials Science and Technology, November 1992, Vol. 8, 953~965;
    [53]S.Sato T.Hatano et al, Optimization of HIP Bonding Condition s for ITER Shielding Blanket/first Wall Made From Austenitic Stainless Steel And Dispersion Strengthened Copper alloy, Journal of Nuclear Materials, 258-263(1998), 265~270;
    [54]J.E.Morral 著 乔芝郁 译,多元合金扩散系数的的计算,冶金和材料计算物理化学/乔芝郁等编著,北京:冶金工业出版社,1998,9,162-167;
    [55]D.H.Carter M.A.M.Bourke, Neutron Diffraction Study of The Deformation Behavior of Beryllium-aluminum Composites, Acta mater 48(2000) , 2885~2900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700