高温服役奥氏体不锈钢的再制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了缓解资源浪费和短缺的矛盾,减小失效、报废产品对环境的危害,最大限度地利用废旧产品,再制造工程作为一种新的发展模式应运而生。在高温服役过程中,奥氏体不锈钢因其化学成分的特点,σ相析出是必然的,大多数针对σ相析出的热处理工艺和合金元素的添加仅仅延缓了其析出的时间,而。相的存在严重地影响不锈钢的高温力学性能和耐腐蚀性能,进而影响其服役寿命。为了提高奥氏体不锈钢高温服役寿命和使用效率,需要尽快发展相应的再制造工程。
     本文主要针对在高温下长时间服役导致组织劣化的奥氏体不锈钢,探索研究其再制造的可能性,以在700℃下服役8万小时的AISI 321不锈钢为研究对象,将固溶处理技术作为其再制造工艺方法。本文首先对服役后AISI 321不锈钢的组织、性能进行了研究,对比研究了固溶处理对服役后的AISI 321不锈钢的微观组织、室温和高温力学性能的影响。
     通过研究,得到以下主要结论:
     1.在700℃服役8万小时后, AISI 321不锈钢的母材、热影响区和熔合区已经析出了大量的σ相,组织劣化严重。6相的析出使烟机管线材料严重脆化,承受应力能力大大降低。
     2.服役后的AISI 321不锈钢固溶处理后,由于超过了σ相存在的温度区间,熔合区、热影响区和母材中的σ相逐渐溶解;在σ相溶解的同时,奥氏体晶粒不断长大;部分奥氏体晶界在扩展的时候绕过σ相,使部分。相的位置从晶界处移到了晶内。
     3.在1050℃下进行固溶处理后,显微硬度明显降低;室温冲击韧性明显增大,大约为服役后不锈钢的10倍,固溶处理时间为2h至10h间的室温冲击韧性变化不明显;室温抗拉强度明显下降,断后伸长率有明显的升高,固溶后断口组织从固溶前的脆性断裂到固溶后的韧性断裂。
     4.在1050℃下固溶处理后,AISI 321不锈钢母材的高温抗拉强度有着明显升高的趋势,在固溶处理初期,断后伸长率明显的升高,当固溶处理达到2h后,断后伸长率显著降低。
     综上所述,固溶处理工艺可以使高温服役的奥氏体不锈钢中有害的σ相消除,恢复组织和力学性能,由此证明在高温下服役后组织劣化的奥氏体不锈钢有再制造的可能,固溶处理可作为经济、实用的一种工艺手段。
In order to alleviate the contradiction of wastes and shortages of resources, reduce the harm of failure products to environment and make use of failure products at the maximum limit, remanufacturing engineering as a new kind of development mode arises at the historic moment. As aging at high temperature the precipitation of a phase from austenitic stainless steel due to its chemical composition is inevitable, while different processing technology and adding the elements only delay the precipitation time of a phase. The precipitation of a phase reduces seriously the properties and corrosion resistance of stainless steel, and then influences its service life. In order to improve its service life and its efficiency at high temperature, re-manufacturing engineering of austenitic stainless steel with the micro structure degradation needs to be developed as soon as possible.
     In this paper the possibility of the remanufacturing mainly for austenitic stainless steel service at high temperature for a long time with the degradation of the micro-structures was researched, AISI 321 stainless steel service for 80000 hours at 700℃as the research object, and solution treatment as the method of remanufacturing technol-ogy. In this paper, the tests of microstructure and properties of AISI 321 stainless steel service for 80000 hours at 700℃was carried out, and the influence of solution treat-ment with AISI 321 stainless steel service for 80000 hours at 700℃on the microstruc-ture, properties at room temperature and high temperature was discussed.
     The main conclusions are summarized as follows:
     1. After service for 80000 hours at 700℃, the parent, HAZ and weld precipitated a large number of a phase, and the degradation of micro structures was seriously. The precipita-tion of a phase made austenite stainless steel brittle, and the capacity to stand strain was reduced to a great extent.
     2. After solution treatment, a phase in all areas gradually dissolved. The higher temperature of solution treatment is, the fasterσphase dissolved. Austenitic grains obviously grew up and the growth of grains was the reason for the relative size ofσphase from intergranular to intragranular.
     3. After solution treatment, the micro hardness was obviously reduced; the impact tough-ness was drastically increased compared to AISI 321 service for 80000 hours at 700℃, about 10 times. The difference in impact toughness between 2-10 hours was small; the tensile strength at room temperature was obviously reduced after solution treatment, the fracture was changed from the obvious brittle after service to ductile after solution treat-ment and percentage elongation was raised after solution treatment.
     4. The tensile strength at the temperature of 700℃was increased with solution treatment time. Percentage elongation was raised with of solution time before two hours, after that it was reduced with the solution time.
     In all, solution treatment was capable to mend the microstructure and improve the me-chanical properties of AISI 321 service for 80000 hours at 700℃.So austenitic stainless steel with the microstructure degradation due to serve at high temperature for a long time is able to be reproduced, and solution treatment is able to be as the process of remanufacturing tech-nology of AISI 321 stainless steel service.
引文
[1]清华.中国环境污染状况备忘录[M].1998:40-42.
    [2]徐滨士,朱胜,王海斗.再制造工程及其失效分析[J].金属热处理.2007(z1):1-5.
    [3]“绿色再制造工程及其在我国的应用前景”列入中国工程院咨询项目[J].中国表面工程.2000(3):7.
    [4]徐匡迪.工程师—从物质财富的创造者到可持续发展的实践者[J].中国表面工程.2004,17(6):1-6.
    [5]徐滨士,刘世参,史佩京.再制造工程和表面工程对循环经济贡献分析[J].中国表面工程.2006,19(1):1-6.
    [6]胡桂平,王树炎,徐滨士.绿色再制造工程及其在我国应用的前景[J].水利电力机械.2001(6):33-35.
    [7]陈翔宇,梁工谦.再制造业及其生产模式研究综述——美国的经验与中国的方向[J].中国软科学.2006(5):80-88.
    [8]刘志峰,万举勇.再制造工程若干问题探讨[J].工程机械与维修.2004(12):135-136.
    [9]徐滨士.发展再制造工程,实现节能减排[J].装甲兵工程学院学报.2007(5):1-5.
    [10]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明理工大学,2008.
    [11]李登超.不锈钢钢板带材生产技术[M].北京:化学工业出版社,2008.
    [12]陆士英.不锈钢概论[M].北京:中国科学技术出版社,2007.
    [13]王富岗,王焕庭.石油化工高温装置材料及其损伤[M].大连:大连理工大学出版社,1991.
    [14]张俊善.材料的高温变形和断裂[M].北京:科学出版社,2007.
    [15]Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600℃ up to 10 years[Z].2007132-138.
    [16]Kallqvist J, Andren H 0. Microanalysis of a stabilised austenitic stainless steel after long term ageing[J]. Materials Science and Engineering A.1999,270(1):27-32.
    [17]唐纳德·皮克纳,伯恩斯坦I.M.不锈钢手册[Z].机械工业出版社,1987.
    [18]李德俊.310钢中的σ相及其对钢机械性能的影响[D].大连:大连工学院,1981.
    [19]Conejero 0, Palacios M, Rivera S. Premature corrosion failure of a 316L stainless steel plate due to the presence of sigma phase[J]. Engineering Failure Analysis.2009,16(3): 699-704.
    [20]刘鹏虎,张而耕,关凯书,等.Cr-Ni奥氏体不锈耐热钢中碳化物、σ相变热力学和转变动力学探讨[J].化工机械.2002(2):82-84.
    [21]Lippold John C., Kotecki Damian J.不锈钢焊接冶金学及焊接性[Z].北京:机械工业出版社,2008.
    [22]徐滨士,梁秀兵,李仁涵.绿色再制造工程的进展[J].中国表面工程.2001(2):1-5.
    [23]李健.汽车再制造工程及其部件再制造技术的研究[D].武汉理工大学,2009.
    [24]Leitnaker J, Bentley J. Precipitate phases in type 321 stainless steel after aging 17 years at ~600" C[J]. Metallurgical and Materials Transactions A.1977,8(10):1605.
    [25]Schwind M, Llqvist J K E, Nilsson J 0, et al. σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Materialia.2000,48(10):2473-2481.
    [26]Villanueva D M E, Junior F C P, Plaut R L, et al. Comparative study on sigma phase precipitation of three types of stainless steels:austenitic, superferritic and duplex[J]. Materials Science And Technology.2006,22(9):1098-1104.
    [27]Barcik J. The kinetics of σ-phase precipitation in AISI310 and AISI316 steels[J]. Metallurgical and Materials Transactions A.1983,14(3):635-641.
    [28]Sato Y S, Kokawa H. Preferential precipitation site of sigma phase in duplex stainless steel weld metal[J]. Scripta Materialia.1999,40(6):659-663.
    [29]Pohl M, Storz 0, Glogowski T. Effect of intermetallic precipitations on the properties of duplex stainless steel[J]. Materials Characterization.2007,58(58):65-71.
    [30]Terada M, Escriba D M, Costa I, et al. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing at 600 ℃[J]. Materials Characterization.2008,58:663-668.
    [31]王印培,陈进,孙晓明,等.SUS347不锈钢长期服役后的高温持久强度[J].机械工程材料.2004(9):26-28.
    [32]Zda J B, Madej J. Cracking of the mixing chamber caused by sigma phase precipitation in austenitic steel welded joints[J]. Engineering Failure Analysis.2008,4(15): 368-377.
    [33]Jahromi S A J, Javadpour S, Gheisari K. Failure analysis of welded joints in a power plant exhaust flue[J]. Engineering Failure Analysis.2006,13(4):527-536.
    [34]王来,马海涛,赵杰.催化车间旋风分离器熔合区开裂原因分析[C].2006.
    [35]Li D J, Gao Y, Tan J L, et al. Effect of σ-Phase on the creep properties of Cr25Ni20 stainless steel[J]. Scripta Metallurgica.1989,23(8):1319-1321.
    [36]Liu F, Hwang Y H, Nam S W. Precipitation of σ-phase and creep-fatigue behavior of 308L steel weldment [J]. Materials Science and Engineering:A.2008,483-484:418-421.
    [37]Garces G R, Le Coze J, Garin J L, et al. σ-phase precipitation in two heat-resistant steels—influence of carbides and microstructure [J]. scripta materialia.2004,50(5): 651-654.
    [38]Liu F, Hwang Y H, Nam S W. The effect of post weld heat treatment on the creep-fatigue behavior of gas tungsten arc welded 308L stainless steel [J]. Materials science and engineering:A.2006,427(1-2):35-41.
    [39]Badjia R, Bouabdallah M, Bacroix B, et al. Effect of solution treatment temperature on the precipitation kinetic of σ-phase in 2205 duplex stainless steel welds [J]. Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing.496(1-2):447-454.
    [40]Petzow G. Metallographic etching:metallographic and ceramographic methods for revealing microstructure [M]. Ohio:American Society for Metals,1978.
    [41]严彪.不锈钢手册[M].北京:化学工业出版社,2009.
    [42]周玉.材料分析方法[M].北京:机械工业出版社,2006.
    [43]拉施柯H Φ.北京:国防工业出版社,1982.
    [44]韩英,邹德宁,李姣,等.双相不锈钢中。相的析出及其数学模型[J].铸造技术.2009(6).
    [45]Guan K S, Xu X D, Zhang Y Y, et al. Cracks and precipitate phases in 321 stainless steel weld of flue gas pipe [J]. Engineering Failure Analysis.2005,12(4):623-633.
    [46]胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2006.
    [47]美国金属学会.金属手册第三卷[M].北京:机械工业出版社,1991.
    [48]郭建亭.高温合金材料学[M].北京:科学出版社,2008.
    [49]许金泉.材料强度学[M].上海:上海交通大学出版社,2009.
    [50]赵西成,于大全.预先热处理对20MnVB钢奥氏体晶粒度及冲击韧性的影响[J].机械工程材料.1999(4).
    [51]赵文军,刘操,夏天东,等.Al-Ti-B和Al-Ti-C对变形铝合金8011晶粒细化及力学性能的影响[J].有色金属.2007(1):25-26.
    [52]李红英.金属拉伸试样的断口分析[J].山西大同大学学报(自然科学版).2011(1):76-79.
    [53]高岩.塑性变形对Cr25Ni20合金组织的影响及σ相对高温蠕变断裂性能的影响[D].大连:大连工学院,1987.
    [54]束德林.金属力学性能[M].北京:机械工业出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700