压力在TLP焊接过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬时液相扩散焊连接技术由于具有焊接温度低、连接构件的尺寸精度高、残余应力小、接头强度高等优点,在新材料的制备、连接、修复等方面有很大的潜力。但是,瞬时液相扩散焊技术也有美中不足之处,比如降熔元素扩散需要的时间较长,因此在大气环境中焊接时,需要保护焊接接头区域不被氧化的时间也长,成本较高;而且瞬时液相扩散焊对焊接端面的粗糙度要求严格,这些缺点一直制约着TLP焊接技术在钢管焊接方面的广泛应用。本文试图通过改变压力来解决TLP焊接过程中存在的问题,为此进行了以下研究工作:
     通过正交试验确定出电站锅炉常用钢管12Cr1MoV的最佳焊接工艺参数,在最佳焊接温度和保温时间的条件下,单独研究压力对接头组织和性能的影响规律,并对不同压力下接头的力学性能进行了分析测试,得出随着压力的增加,接头的抗拉强度不断增大,只是压力增大到一定的范围后对强度的影响较小,过大的压力反而降低了强度。比较了12Cr1MoV在TLP和TIG两种不同焊接工艺下接头的显微硬度,发现在TLP焊接条件下接头各区域的综合力学性能均优于TIG。
     计算了降熔元素Si在不同压力下的扩散系数,比较了不同压力下元素扩散所需的时间。计算结果表明,增加压力可增大扩散距离,从而减少扩散所需要的时间,能提高TLP的焊接效率,并且总结出了压力在整个TLP焊接过程中所起的作用。
     最后,采用有限元分析软件ABAQUS模拟TLP焊接接头区域温度场和应力场的变化规律,探讨焊后接头的残余应力分布情况。
Transient Liquid Phase Bonding with the advantages of low temperature, the size of connected components with high precision, the little residual stress, the strong joint strength etc, has great potential in the preparation of new materials, connectivity, restoration. However, TLP has some disadvantages, such as the Melting Point Depressant element diffusion requires long time. Therefore, when welding in atmosphere, it needs longer time to protect the weld joint area preventing from oxided, and much cost; TLP strictly requires the roughness of welding surface, These shortcomings have been restricted the broader applications of TLP technology in steel pipe welding. This article attempts to solve the problems during TLP process by changing the pressure, so did the following researches:
     We determine the optimal welding parameters of the common 12Cr1MoV steel in boiler by orthogonal test, in the best conditions of welding temperature and holding time, separately study influence of law of pressure on the joint microstructure and properties, and analysis the mechanical properties of joint in different pressure, we discover that as the pressure increases, increasing the tensile strength of joints, but, when the pressure increases to a certain extent , its influence gradually smaller on the tensile strength, on the contrary, too much pressure reduces the tensile strength. We compare the joint microhardness of 12Cr1MoV under two different welding technology, TLP and TIG., and discover the integrated mechanical properties of joint of each region under the TLP conditions are superior to TIG.
     We calculate the diffusion coefficient of MPD Si under the different pressures, and compare the time required for elements diffusion under the different pressure. The results show that, increase pressure can increase the diffusion distance, thereby, reduce the time required for diffusion, and improve the TLP welding efficiency, and summed up what roles the pressure play in the entire TLP process.
     Finally, we simulate the variation of temperature and stress of TLP joint field by the finite element analysis software ABAQUS, and discuss the distribution of residual stress of joint after welding.
引文
[1]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,1999
    [2]杨富,章应霖,任永宁等编著.新型耐热钢焊接[M].北京:中国电力出版社,2007
    [3]唐晓锋,赵院婷,金海嵘. 12Cr2MolR手工焊工艺研究[J].现代焊接,2007(03):15~17
    [4]曲文卿.异种材料TLP扩散连接过程及界面力学失配性研究[D].北京:北京航空航天大学博士论文,2001
    [5]张贵锋,张建勋.日本T91钢管液相扩散焊技术的研究发展[J].电焊机,2006,36(1): 37~40
    [6]范振红.管道的瞬时液相扩散焊技术研究[D]. [硕士学位论文]中国石油大学(华东),东营,2004
    [7]张贵锋,张建勋,王士元等.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002,23(6):92~96
    [8] GaleW F,ButtsD A.Transient liquid phase bonding–An Overview [J].Science and Technology of Welding and Joining,2004,9(4):283~300
    [9] Duvallds,Owczarskiwa,Paulonisdf.TLP Bonding:A new method for joining heat resistant alloys[J].Welding Journal,1974,53(4):203~214
    [10]陈思杰.耐热钢瞬时液相扩散连接界面结构与强化机制研究[D].西安:西安理工博士论文,2008,9~15
    [11] Padron T, Khan T I, Kabir M J. Modelling the transient liquid phase bonding behaviour of a duplex stainless steel using copper interlayers[J]. Materials Science and Engineering 2004, 385(12):220~228
    [12] Li W, Jin T, Sun X F, et a1.Study of Ni-Cr-Co-W-Mo-B interlayer alloy and its bonding behaviour for a Ni-base single crystal superalloy[J]. Scripta Materialia.2003,48(9):1283~1288
    [13] Yin X H, Li M S, Zhou Y C. Microstructure and mechanical strength of transient 1iquid phase bonded Ti3SiC2 joints using A1 interlayer[J]. Journal of the European Ceramic Society. 2007,27(12):3539~3544
    [14] FGW, ABD. Transient liquid phase bonding[J].Science and Technology of Welding and Joining. 2004, 9(4):283~300
    [15]孙咸,张心保,陶保国.高温运行对镍基异种金属接头力学性能的影响[J].焊接,2002(8):20~24
    [16] Illingworth T C, Golosnoy I O, Clyne T W.Modelling of transient liquid phase bonding in binary systems--A new parametric study[J].Materials Science and Engineering:A.2007, 445~446:493~500
    [17]王学刚,严黔,李辛庚.瞬时液相扩散焊接45MnMoB钢钻杆接头的热处理[J].金属热处理, 2006(12):73~75
    [18] D M W, W E T. Transient liquid phase bonding[J]. Annu. Rev. Mater. Sci. 1992(22):23~46
    [19] HI, YN, TI. Theoretical consideations on the metallurgical process in TLP bonding Nickel~base superalloys[J]. Trans Jpn Weld Soc.1979, 10(1):24~29
    [20]叶雷,毛唯,谢永慧等.定向凝固高温合金ICIO瞬态液相(TLP)扩散焊接头组织研[J].材料工程, 2004(3):42~44
    [21]何鹏,冯吉才,钱乙余.异种材料扩散连接接头残余应力的分布特征及中间层的作用[J].焊接学报,2002,23(1):77~80
    [22]邹僖.钎焊(第二版)[M].北京:机械工业出版社,1991
    [23] Klan T etal. Transient liquid phase diffusion bonding and associated recrystallization phenomenon when joinnig ODS ferritic superalloys,Journal of materials science,1996,31(11),2937~2957
    [24] Zhou Y , Gale W F , North T H . Modelling oftransient liquid phase bonding[J].1ntemational Materials Review,1995,40(5):181~196
    [25] Duvall D S,Owezarski W A,Paulonic D F.TLP bonding:a new method for joining heat resistant alloys[J].Welding Journal, 1974,53(4):203~214
    [26]美国焊接学会.焊接手册(第三卷)[M].清华大学焊接教研室译.北京:机械工业出版社,1986
    [27]赵熹华.压力焊[M].北京:机械工业出版社,2001
    [28] Cam G,Kocak M.Progress in joining advanced materials[J].International Materials Review,1998,43(1):1~30
    [29] Zhou Y , Gale W F , NoAh T H . Modelling of transient liquid phase bonding[J].International Materials Review,1995,40(5):181~196
    [30]北野健次,小沟裕一.钢管のアモルフアス高速接合システム[J].配管技术,1989,(5):65~70
    [31]邹家生,许志荣,初亚杰等.Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4二次部分瞬间液相连接强度[J].焊接学报,2005,26(2):41~44
    [32]陈思杰,井晓天,李辛庚.20钢管的瞬间液相扩散焊工艺研究[J].热加工工艺,2003,(6):37~38.
    [33]王学刚,严黔,李辛庚.20钢管高温钎焊与瞬时液相扩散焊接组织与性能[J].焊接学报,2005,26(5):56~60.
    [34]陈思杰,井晓天,李辛庚.T91钢管液相扩散焊接[J].焊接学报,2004,25(6):73~76
    [35]陈思杰,井晓天,李辛庚.TP304H钢管的瞬时液相扩散焊工艺研究[J].热加工工艺.2004,(11):58~60
    [36]井晓天,卢俊峰,李辛庚.TP304H/12CrlMoV异种钢管的瞬时液相扩散连接[J].焊接学报,2006,27(2):97~101
    [37]陈思杰,李辛庚.瞬时液相扩散连接的双温工艺模型[J].焊接学报,2005,26(4):69~72
    [38] Chunguang Zhang,Guanjun Qiao,Zhihao Jin.Active brazing of pure alumina to Kovar alloy based on the partial transient liquid phase(PTLP)technique with Ni– Ti interlayer[J].Journal of the European Ceramic Society,2002,(22):2181~2186
    [39]范振红,孙永兴等.45钢的瞬时液相扩散焊[J].热加工工艺,2006,(19):19~21
    [40] CHEN Zheng,ZHA0 Qbzhang,W U Bin,eta1.Thestrength and fracture of partial transient liquid-phasebonding of Si3 N4/Ti/Ni/Ti/Si3 N4[J].The ChineseJournal of Nonferrous Metals,1999,9(S1):166~171
    [41] M.Ghosh,K.Bhanumurthy,G.B.Kale,et al.Diffusion bonding of titanium to 304 stainless steel[J].Journal of Nuclear Materials,2003,(322):235~241
    [42] N.S.Bosco,F.W.Zok.Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system[J].Acta Materialia,2004,(52):2965~2972
    [43] Shirzadi AA, Wallaeh E R.Analytical Modeling of Transient Liquid Phase (TLP) Diffusion Bonding When A temperature Gradient Is Imposed[J]. Aeta.Master, 1999, 47(33):3351~3560
    [44]何鹏,冯吉才,等.扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,22(1):53~55
    [45]张贵锋,张建勋,裴怡等.液相扩散焊等温凝固阶段的特征及解析解[J].焊管,2004,27(6):25~30
    [46]曲文卿,张彦华.TLP连接技术研究进展[J].焊接技术,2002,31(3):4-7
    [47]曲文卿,庄鸿寿等.异种材料TLP扩散连接过程的非对称性[J].中国有色金属学报,2003,13(2):300~304
    [48] Tual—poku, M D, B M T.A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint[J]. Metall Trans.1988,19(2): 675~685
    [49] Y.N.Liang,M.I.Osendi,P.Miranzo.Joining mechanism in Si3N4 bonded with a Ni–Cr–B interlayer[J].Journal of the European Ceramic Society,2003,(23):547~550
    [50]路文江,张国栋,俞伟元等.非晶态合金钎料真空钎焊接头组织研究.甘肃工业大学学报,1999,25(1):1~25
    [51]张贵锋,张建勋,牛靖.高效焊管新工艺—金属管液相扩散焊[J ].热加工艺,2006,35 (7):20~25
    [52]赵熹华.压力焊[M].北京:机械工业出版社,2001
    [53]陈铮,周飞,王国凡.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001:205~211
    [54]邹家生.材料连接原理与工艺[M].哈尔滨:哈尔滨工业大学出版社,2005:354~361
    [55]李志远,钱乙余,张九海.先进的连接方法[M].北京:机械工业出版社,2006:135~140
    [56]任家烈,吴爱萍.先进材料的连接.先进焊接制造技术丛书[M].北京:机械工业出版社,2000:198~203
    [57]邹家生.材料连接原理[M].哈尔滨工业大学出版社,2005:362~367
    [58]邹茉莲,邹一心,杜诚修等编著.焊接理论及工艺基础[M].北京:北京航空航天大学出版社, 1994
    [59]许泽建,李玉龙,李朋洲. 0Crl8Nil0Ti不锈钢焊接接头的显微硬度研究[J].金属学报, 2008, 44(5):636~640
    [60]张贵峰,张建勋,包亚峰.日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接,2001,(10):14~18
    [61]黄继华.金属及合金的扩散[M].机械工业出版社,1996
    [62]程晓农,戴起勋,邵红红编著.材料固态相变与扩散[M].化学工业出版社, 2006
    [63]徐前刚,张海峰,胡壮麒.Fe78813Si9熔体与铁的润湿行为[M].中国有色金属学报,2006,16(10):1660~1664
    [64]张鹏程,白彬,邹觉生.压力对铍/HR-1不锈钢扩散焊的影响[J].稀有金属,2003,27(2):233~237
    [65]张贵锋,张建勋,王士元等.瞬间液相扩散焊与钎焊主要特点之异同[ J].焊接学报,2002,23 ( 6 ):92 ~96
    [66]美国焊接学会.焊接手册(第三卷) [M].清华大学焊接教研室,译.北京:机械工业出版社, 1986:55~59
    [67]吴言高,李午申,邹宏军等.焊接数值模拟技术发展现状[J] .焊接学报, 2002, 23(3):89~92
    [68]武传松编著.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990
    [69] C.L.Tsai and Z.L Feng,A Computational Analysis of Thermal and Mechanical Conditions For Weld Metal Solidification Cracking, Welding Research Abroad, 1996, 42(1): 34~41
    [70]陈丙森,计算机辅助焊接技术[M].北京:机械工业出版社, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700