铝合金电阻点焊过程中铜铝合金化的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金电阻点焊广泛应用于航空航天、电子、车辆及轻工部门等领域,在现代制造业中具有重要的地位。然而,由于铝合金电阻点焊在连续点焊过程中存在焊点质量不稳定和电极使用效率低等问题,限制了电阻点焊在这些领域内的应用和推广。造成这一问题的主要原因是点焊过程中电极端面的铜铝合金化现象,而电极端面较高的温度与压力分布又对合金化反应起决定性作用。电阻点焊过程是一个高度非线性、多物理场耦合(热、电、力)作用的复杂过程。焊接时间的短暂性,熔池形成过程的不可见性,都给试验观察带来了困难,因此,本文拟采用数值模拟的方法,以ANSYS软件为工具,对铝合金点焊过程中铜铝合金化的反应机制进行模拟研究。具体研究成果如下:
     本文根据弹塑性理论和接触性理论对电阻点焊预压阶段的接触行为进行数值分析,获得了铝合金点焊接触面的初始接触区域。并在此基础上,根据点焊过程的基本方程,建立了铝合金电阻点焊过程的热、电、力耦合模型。
     利用所建立的耦合模型对铝合金点焊的温度场、应力场进行数值模拟分析,结果表明:在点焊初始阶段,由于接触电阻的分布很不均匀,造成接触面上的局部区域产生很高的温度,甚至能达到铜铝之间产生合金化反应的温度。但这种加热不均匀的现象持续时间非常短,且大部分分布在电极端面的边缘处,该处也为应力集中处。
     为了进一步研究铜铝合金化反应的机理,本文建立了一种基于铜和铝扩散反应进行的有限元模型。由于热传导方程和扩散方程在表达形式上的相似性,所以用模拟热传导的方式来模拟铝在铜电极中的单向扩散过程,以温度分布表示扩散浓度的分布情况。通过对扩散反应的分析,提出了在点焊过程中发生铜铝合金化的可靠性理论:铜和铝在电极压力的作用下形成机械混合物,并以原子扩散的形式不断进行原子级别上的混合,形成铝在铜中的固溶体α(Cu),当铝元素在铜基中的含量超过5.65%,并且达到铜铝的共晶反应温度时,便生成了铜铝金属间化合物。另外,在高温高压下电极端部会产生塑性变形,提高电极内部的位错密度,利于铝原子的扩散。
Resistance spot welding (RSW) of aluminum alloys which are widely used in aerospace, electronics, vehicles and light industry and so on, has an important status in the modern manufacturing industry. Because the aluminum alloys resistance spot welding existence of instability in weld quality and electrode with low efficiency in the continuous welding process, it has limited the applications and development of the resistance spot welding in these areas. The alloying between copper electrode tip and aluminum alloy sheet surface during the spot welding is the main reason of decreasing electrode life, which is effected by the higher electrode tip temperature and pressure distribution. The resistance spot process is a highly nonlinear, multi-physical coupling complex process. It is difficult to observe the resistance spot process, due to the weld period temporary and the unobvious molten bath forming process. Therefore, the electrode collapse is researched by means of numerical simulation with ANSYS software. Specific results from the research in this paper are as follows:
     According to the elastoplastic theory and contact theory,pre-squeeze contact analysis for RSW is developed by means of numerical simulation, and the initialized conducting region is decided by this model. According to the basic equation of depicting RSW process, an axial symmetric finite element model is developed of mechanical,thermal and electrical coupled analysis for the process of aluminum alloy RSW.
     Temperature field and stress field of RSW are analyzed by numerical simulation with couple model. The results show that contact resistance distribution is not uniform in the initial stage, which cause a high temperature in contact surface of local and even can achieve the temperature of the alloying between copper and aluminum. This kind of phenomenon is changed in a very short time, and most of the energy is engendered on the edge of the electrode tip, where is also the stress concentration.
     In order to further study the mechanism of the alloying of copper and aluminum, a finite element model based on the diffusion reaction of copper and aluminum was given. According to the similarity of diffusion equation and hears transfer equation, thermal analysis was used to simulate the diffusion process. Temperature was used to represent the concentration. Through the analysis of the diffusion reaction, some about the reliable theory of alloying of copper and aluminum is put forward: under electrode pressure, copper and aluminum form mechanical mixture, and both of them are mixed on atomic scales with the form of atomic diffusion. Finally, Al solubilizes in copper and the solid solution (α) is formed. When the content of copper element in aluminum matrix exceeds 5.65% and reaching the reaction temperature, intermetallic compound of copper and aluminum is generated. In addition, electrode tip is generated plastic deformation under high pressure and temperature, which improves internal dislocation density, and it is beneficial to the spread of aluminum atom.
引文
[1]管学理.汽车节能(节油)技术发展动态[J].水利电力科技,1995,22(2):40-45
    [2] J.Matsumoto and H.Mochizuki: Spot welding of aluminum alloy electrode life for various electrodes [J]. Welding international, 1994, 8 (6): 438-444
    [3] R. M. Rivett: Spot welding electrode life tests on aluminum sheet effect of electrode design and material [R]. The welding attitude, 77-1978
    [4]李宝清,廉金瑞,单平等.不同电极条件下铝合金电阻点焊质量的研究[J].汽车技术,2001,(12),27-29
    [5]程长坤,董仕节,陈贻宏.电阻点焊电极表面处理的研究现状和展望[J].湖北汽车工业学院学报, 2004,18(1): 28-31
    [6]曾鸿志.铝合金点焊电极寿命的研究[D].天津:天津大学,2001
    [7]程方杰,单平,廉金瑞等.一种新的适合于铝合金点焊的电流控制法[J].材料工艺设备,2002,(4):25-27
    [8] Micheal A, et al. Nickel plated electrodes for spot welding aluminum. SAE. Trans. 1976, 76167: 780-794
    [9] Rinsei Ikeda, et al. Resistance spot weldability & electrode wear characteristics of aluminum alloy sheets. Welding in the world, 1998 (41): 492-498
    [10] U.D.Mallya. Effects of contact resistance in resistance welding of aluminum [J]. Welding Journal, 1984, 63(3): 41-44
    [11] R.F.Ashton, D.D.Rager. An arc-cleaning approach for resistant welding aluminum [J]. Welding Journal, 1976(9): 750-757
    [12] Ulrich Dilthey, etal. Metallographic investigations into wear processes of electrodes furring resistance spot welding of aluminum [J]. Welding & cuting, 1998(1): 34-40
    [13] U. Dilthey, S. Hicken. Schweissen and Schneiden, 1998, 50(1): 34-38
    [14] E.P. Patrick, J.R. Auhl and T.S. Sun. SAE Technical Paper No. 840291, SAE, Warrendale, PA, 1984
    [15] I. Lum, S. Fukumoto, E. Biro, D.R. Boomer, and Y. Zhou. Electrode Pitting in Resistance Spot Welding of Aluminum Alloy 5182[J]. Metallurgical and Materials Transactions, 2004, 35(1): 217-226
    [16]刘丹,王惜宝,罗震,史涛.铝合金表面氧化膜对点焊电极磨损的影响[J].焊接技术,2005,34(5):18-20
    [17]程方杰.铝合金点焊中的接触电阻与电极烧损问题的研究[D].天津大学,2002
    [18]吴志生单平胡绳荪等.铝合金点焊过程的铜铝合金化研究[J].中国机械工程,2003,14(16):1433-1435
    [19]刘翠荣,闫献国,郭建刚.深冷处理对铝合金点焊电极烧损的影响[J].焊接学报, 2004,25(3),57-60
    [20]中国机械工程学会焊接学会.焊接手册(第1卷) [M].第2版.北京:机械工业出版社,2002:318-334
    [21] American Welding Society. Welding Handbook (2): Welding Process [M]. 8th edition. Miami: American Welding Society, 1991: 224-245
    [22] J.A. Greenwood. Temperature in spot welding[J]. Britishi Welding Journal, 1961, 8(6): 316-322
    [23] K.P.Bentley&J.A. Greenwood. Temperature distribution in spot welds [J]. British Welding Journal, 1963, 10(12): 612-619
    [24] W.Rice. Analytical investigation of temperature distributions during resistance welding [J]. Welding Journal, 1967, 46(4): 175-186
    [25] A.F.Houches. Numerical modeling of manufacturing process. ASWE WAM, Atlanda, Georia, 1977: 117-129
    [26] C.L.Tsai.etal. Analysis and Development of a Real-Time Control Methodology in Resistance Spot Welding [J]. Welding Journal, 1991(12): 339-351
    [27] H.A.Nied. Finite element modeling of the resistance spot welding process[J]. Welding Journal, 1984, 63(4): 123-132
    [28] H.S.Cho, Y.J.Cho. Study of the thermal behavior in resistance spot welds[J]. Welding Journal, 1989, 68(6): 236-244
    [29] C.L.Tsai etal. Modeling of resistance spot weld nugget growth [J]. Welding Journal 1990(2): 47-54
    [30] D.J.Browne, et al. Computer simulation of resistance spot welding in aluminum: partⅡ. Welding Journal, 1995(12): 417-422
    [31] H.Huh, W.J.Kang. Electro-thermal of electric resistance spot welding processes by 3-D finite element method[J]. Journal of material processing technology, 1997 (63): 672-677
    [32] Jamil.A.Khan, et al. Numerical thermal model of resistance spot welding in Aliminum[J]. Journal of thermo physics and heat transfer, 2000, 14(1): 88-85
    [33]曹彪.点焊熔核形核过程的有限元模拟及热膨胀法实时控制[D].哈尔滨:哈尔滨工业大学,1991,9-13
    [34]王春生,赵熹华等.异质金属Fe-Ni电阻点焊熔核过程三维数值模拟分析[J].中国机械工程,2000,11(4):449-451
    [35]林忠钦,胡敏等.轿车白车身点焊装配过程有限元分析[J].焊接学报,2001,2(1):36-40
    [36]单平,程方杰,廉金瑞.考虑表面接触问题的点焊过程有限元建模[C].第十届全国焊接学术会议论文集(2),哈尔滨,2001.9,532-535
    [37]吴志生,杨新华.铝合金点焊电极端面温度数值模拟[J].焊接学报,2004,25(6):15-18
    [38]常保华,都东,Y.Zhou,I.Lum.铝合金电阻点焊中电极点蚀的形成机制[J].中国有色金属学报,2004,14(15):735-740
    [39]邹帆,罗震,单平.电阻点焊熔核设计的数值模拟[J].焊接技术, 2006,35(6):14-16
    [40]耿相英,何艳玲,李世春.固相扩散Cu/Al界面研究[J].中国石油大学学报(自然科学版),2006,30(2):78-84
    [41]杨睿,李世春,宋玉强. Al/Cu扩散偶相界面的试验研究[J].中国石油大学学报(自然科学版),2007,31(2):110-113
    [42]李亚江,吴会强,陈茂爱等. Cu/Al真空扩散焊接头显微组织分析[J].中国有色金属学报,2001,11(3):424-427
    [43]谢军,吴卫东,杜凯等. Al/Cu微米级厚度薄膜扩散连接工艺及显微组织分析[J].原子能科学技术,2004,38(Z1):120-124
    [44]董占贵,钱乙余,石素琴,吴培莲. Al/Cu/Al接触反应液相行为及其连接[J].焊接学报,2001,22(6):45-47
    [45]孟胶东,曲文清,庄鸿寿. Al-Cu双金属复合结构的扩散连接试验研究[J].材料工程,2003,(1):34-37
    [46]杨敏,邹增大,刘秀忠等.陶瓷与金属连接的研究进展[J]. 2004. 26(1):37-40
    [47]张贵锋,张建勋,包亚峰,日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接,2001,(10):14-18
    [48]张鹏程,白彬,邹觉生.压力对铍HR-1不锈钢扩散焊的影响,稀有金属,2003,27(3):233-237
    [49]张鹏程,孔纪兰,周上祺等. Be/00Cr17Ni14Mo2不锈钢扩散焊界面区成分的计算机模拟[J].核动力工程,2003,24(4):145-148
    [50]何鹏,冯吉才,钱乙余等.扩散连接接头区域元素浓度分布的数值分析[J].焊接学报,2002,23(4):80-82
    [51]赖宏,刘天模.不同形状钢件表面渗碳扩散过程数值模拟[J].重庆大学学报,2002,25(12):46-48
    [52]何鹏,冯吉才,钱乙余.扩散连接界面物理接触行为的动态模型[J].焊接学报,2001,22(5):60-64
    [53]汪建华等.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003
    [54]王勖成,劭敏.有限单元法基本原理与数值方法(第2版)[M].北京:清华大学出版社,1987
    [55]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988
    [56]吴志生.铝合金电极端面温度数值模拟与电极寿命的研究[D].天津:天津大学,2002
    [57]李宝清.铝合金点焊过程数值模拟与能量分析研究[D].天津大学,2002.03: 50-58
    [58]龚曙光,谢桂兰,黄云清编。ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009.8
    [59]黄伯云李成功等主编.中国材料工程大典(第四卷)[M].北京:化学工业出版社,2005.8
    [60]成方杰.接触电阻与电极烧损问题的研究:[D].天津:天津大学,2002
    [61]党沙沙等编著. ANSYS12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社,2010.2
    [62]董仕节,Zhou Norman.点焊镀锌钢板时电极头部形状对电极失效的影响[J].中国机械工程,2008,19(18):2236-2240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700