胆囊收缩素对结肠平滑肌及其细胞膜通道电流和膜电位影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:胆囊收缩素(cholecystokinin, CCK)是一种双重分布在中枢神经系统和胃肠道的脑肠肽,并以神经递质的形式参与了多种生理及病理过程。硫酸化胆囊收缩素八肽(sulfated cholecystokinin octapeptide, CCK-8S)是具有CCK完全生物学功能的最小活性片段。已知CCK主要通过两种受体发挥其不同的生理及药理作用,即CCK1受体(cholecystokinin-1 receptor)和CCK2受体(cholecystokinin-2 receptor)。前期关于CCK的研究多偏重于其在胆囊、胰腺及心肺功能活动中的调节作用。近年来,随着功能性胃肠病发病率日益增高,有关CCK调节胃肠动力的作用引起人们的高度重视。多项研究显示功能性胃肠病患者血清中CCK存在异常,但有关CCK对胃肠平滑肌的具体作用机制报道较少。
     第一部分
     目的:探讨CCK-8S对豚鼠近端结肠平滑肌肌条自发性收缩频率和强度的影响及可能的作用机制。
     方法:取6 cm左右豚鼠近端结肠,在持续充以95%02和5%CO2的Ca-freePSS中去除黏膜后剪成8 mm×10 mm平滑肌肌条,并将纵行肌与环行肌分离。将肌条浸没于37℃含钙台式液中,一端固定于垂直灌流槽,另一端与张力换能器相连,并持续充以95%O2和5%C02的混合气体。待肌条出现自发节律性收缩并稳定后采用RM6240多道生理信号采集处理系统记录给药前后收缩频率和强度。
     结果:CCK-8S (10-7 mol/L)作用后,豚鼠结肠平滑肌纵行与环形肌条的收缩幅值分别为对照组的156.53%±11.92%(n=15,P=0.038)和165.93%±12.98%(n=15,P=0.019);结肠平滑肌纵行肌条的收缩频率为对照组的131.69%±13.58%(n=15,P=0.023),而环形肌条的收缩频率无明显变化,为对照组的102.19%±8.96%(n=15,P=0.087)。当预先将灌流液中分别加入CCK1受体拮抗剂devazepide、L-型钙通道阻断剂nifedipine、大电导钙依赖钾通道阻断剂iberiotoxin、钙泵抑制剂thapsigargin (TG)和钙离子螯合剂BAPTA-AM (BA)后,CCK-8S对结肠平滑肌肌条的增强效应被抑制(n=15,均P<0.05);而预先加入CCK2受体拮抗剂CI 988后,CCK-8S的增强效应仍然存在(n=15,P>0.05)。
     结论:CCK-8S通过CCK1受体能促进豚鼠近端结肠纵,环行平滑肌自发性收缩强度及纵行平滑肌收缩频率;但对环行平滑肌收缩频率无明显影响。其机制与促进平滑肌细胞内钙的释放、胞膜上大电导钙依赖钾通道及L-型钙通道的激活有关。
     第二部分
     目的:探讨CCK-8S对单个豚鼠结肠平滑肌细胞静息电位(:resting potential, RP)、动作电位(action potential, AP)、大电导钙依赖钾通道电流(large conductance potassium currents,IBKca)和L-型钙通道电流(L-type calcium currents, ICa-L)的影响及可能的作用机制。
     方法:取6 cm左右近端结肠,在持续充以95%02和5%CO2的Ca-free PSS中去除黏膜后剪成2 mm×6 mm大小,置于无钙消化液中,37℃振荡孵育20-30min,漂洗,吹打成细胞悬液。将细胞悬液接种于装有倒置显微镜的灌流槽中,贴壁后,用含钙台式液以2-3 ml/min速度持续灌流,并选取贴壁良好,折光性好,胞膜光滑清晰的杆状细胞进行高阻封接。用EPC-10膜片钳放大器记录结肠平滑肌细胞AP和RP给药前后的变化;在穿孔全细胞膜片钳模式下记录单个细胞IBKca和ICa-L给药前后的变化。
     结果:1.CCK-8S (10-7 mol/L)作用后,结肠平滑肌细胞RP、AP峰值及AP快速复极时间分别为对照组的48.6±5.3%、138.6%±3.2%和63.1±8.7%(n=8,P=0.032、0.015和0.026),该效应可被预先加入的devazepide和/或nifedipine阻断(均n=8,P<0.05),而预先向灌流液中加入CI 988后,CCK-8S对RP、AP峰值及AP快速复极时间的作用仍存在。2.从-60 mV去极化至+100 mV,CCK-8S可剂量依赖性升高IBKca(P<0.05,at 10-8,10-7和10-6mol/L;ECso=3.5×10-8mol/L)。CCK-8S(10-7mol/L)升高IBKca为对照组的118.7%±2.1%(从916±183 pA至1088±226 pA;n=8,P=0.029),该效应可被预先向灌流液中加入的devazepide抑制(908±109pA,n=8,P=0.012 vsCCK-8S组,P=0.083vs对照组),但CI 988无明显抑制作用(1052±196 pA,n=8,P=0.098 vsCCK-8S组)。当向电极内液加入IP3受体阻断剂肝素(10-5mol/L)或向细胞外液加入蛋白激酶C拮抗剂staurosporine(10-6mol/L)后,CCK-8S(10-7mol/L)对IBKca均没有影响(879±117 pA,n=8,P=0.074vs对照组,P=0.016 vsCCK-8S组;887±120 pA,n=8,P=0.069 vs对照组,P=0.041 vs CCK-8S组)。3.从-60 mV去极化至+10 mV,CCK-8S可剂量依赖性升高ICa-L(P<0.05,at 10-8,10-7和10-6mol/L;EC50=3.2×10-8mol/L)。CCK-8S(10-7mol/L)升高ICa-L为对照组的140%±5.3%(从60±8 pA至84±11 pA,n=8,P=0.012),该效应可分别被预先向灌流液中加入的devazepide(61±9 pA;at+10 mV;n=8,P=0.023 vs CCK-8S组,P=0.079 vs对照组),TG和BA抑制(7±5 pA;at+10 mV,n=8,P=0.006 vs CCK-8S组),但CI 88无明显抑制作用(84±11pA;n=8,P=0.079 vs CCK-8S组)。当向电极内液加入IP3受体阻断剂肝素(10-5mol/L)或向细胞外液加入蛋白激酶C拮抗剂staurosporine(10-6mol/L)后,CCK-8S(10-7mol/L)对ICa-L均没有影响(63±12 pA,65±10 pA;at+10 mV;n=8;P=0.183,0.215vs正常组,P=0.042,0.032·vs CCK-8S组)。结论:CCK-8S通过CCK1受体促进近端结肠平滑肌细胞内钙库释放钙及增强肌细胞膜ICa-L,促进细胞外钙内流,从而使平滑肌细胞RP下降,AP幅值增加;通过增强细胞膜IBKca使平滑肌细胞AP快速复极时间缩短,从而增加了单位时间内AP次数,促进结肠平滑肌细胞收缩。其作用机制与激活IP3介导的PKC途径有关。
     第三部分
     目的:检测胆囊收缩素受体基因在豚鼠近端结肠平滑肌的表达。方法:取新鲜的豚鼠近端结肠平滑肌组织,在装有生理盐水的烧杯中去除肠内容物,然后在持续充以95%02和5%CO2的Ca-free PSS中去除粘膜层及粘膜下层,取50-100 mg新鲜组织在冰浴中匀浆,离心后,吸取上清,应用逆转录多聚酶链反应(reverse transcription polymerase chain reaction, RT-PCR)检测CCK1受体及CCK2受体mRNA在豚鼠近端结肠平滑肌组织中的表达。结果:豚鼠近端结肠平滑肌组织中有CCK1受体mRNA表达(0.83±0.15,n=15,P=0.263vsβ-actin),扩增产物片段大小为630bp,但未见CCK2受体mRNA的表达。
     结论:豚鼠近端结肠平滑肌中分布的CCK受体主要为CCK1受体,这是CCK促进结肠平滑肌收缩的分子基础。
Background
     Cholecystokinin(CCK), a gut-brain peptide, plays an important role in regulating a variety of physiological functions and involving in many pathophysiological processes. It has been reported that sulfated cholecystokinin octapeptide(CCK-8S) is the predominant and major molecular form of CCK peptides for biological activity and it actions on the gastrointestinal tract through two receptor subtypes, designated as CCK1 receptor and CCK2 receptor. Previous studies investigating the targets for CCK have focused mainly on the gallbladder, pancreas, heart and lung. However, recent researches have shown that CCK and its related peptides are implicated in the pathophysiology of functional digestive diseases. Several early reports also have indicated that either an altered release of CCK or abnormal responses to this peptide could be responsible for the symptoms of functional digestive diseases. However, the direct electrophysiological effects of CCK on the contractile activity of gut remains unclear.
     PartⅠ
     Objective To investigate the effects of sulfated cholecystokinin octapeptide (CCK-8S) on the spontaneous contractile activity of guinea-pig proximal colonic smooth muscle strips.
     Methods The proximal colon (6 cm) was removed, cleaned and opened along the mesenteric border and then placed in Ca2+-free PSS bubbled with carbogen (95% O2/5% CO2). The smooth muscle strips (8×10 mm) were obtained after the mucosa and submucosa were excised and the longitudinal muscle(LM) and circular muscle(CM) strips were segregated. Each fresh smooth muscle strip was mounted in an organ bath and connected to an isometric force transducer. The organ baths contained 10 ml Tyrode's buffer and were constantly warmed by a circulating water jacketed at 37℃and bubbled with carbogen (95% O2/5% CO2). One end of the strip was fixed to a hook on the bottom of the chamber, while the other end was connected by a thread to an external isometric force transducer at the top. Each muscle strip was placed under a resting preload of 1.0g and allowed to equilibrate for 60 min with solution change every 20 min. The relative effects on the contractile amplitude and frequency of LM and CM strips were observed before and after the addition of drugs.
     Results The mean contractile amplitude of CM and LM strips stimulated by CCK-8S (10-7 mol/L) were 156.53%±11.92% and 165.93%±12.98% respectively of that of the control group(n=15, P=0.038,0.019);the mean frequency of LM stimulated by CCK-8S (10-7 mol/L) was 131.69%±13.58% of that of the control group(P=0.023), but CCK-8S had little influence on the frequency of CM(n=15, P=0.087). CCK-8S-intensified effects on proximal colonic strips were significantly attenuated when these strips were pretreated with CCK1 receptor antagonist devazepide (10-7 mol/L), L-type calcium channel inhibitor nifedipine (10-5 mol/L) or Ca2+-ATPase inhibitor TG (10-5 mol/L) and intracellular calcium chelator BA (10-5 mol/L) (n=15, P<0.05 for each group). Pretreating CM and LM strips with iberiotoxin (10-6 mol/L), a selective BKCa channel blocker, did not inhibit the CCK-8S-induced increase in the contractile amplitude of CM and LM strips (n=15, P=0.096,0.078 vs CCK-8S group), but decreased their frequencies (n=15, P= 0.036,0.041 vs CCK-8S group), whereas superfusion with the CCK2 receptor antagonist CI 988 (10-7 mol/L) did not block the CCK-8S-intensified effect on CM and LM strips (n=15, P>0.05 for each group).
     Conclusion CCK-8S promotes the contraction of the longitudinal muscle and circular muscle of guinea-pig proximal colon by CCK1 receptor mostly owing to increasing the release of intracellular Ca2+, large conductance potassium currents and L-type calcium currents, but CCK-8S has little effect on the frequency of the circular muscle.
     PartⅡ
     Objective To examine the effect and its mechanism of CCK-8S on resting potential(RP), action potential(AP), large conductance potassium currents(IBKCa) and L-type calcium currents(ICa-L).
     Methods The proximal colon (about 6 cm long) was removed, cleaned and opened along the mesenteric border and then placed in Ca2+-free PSS bubbled with carbogen (95% O2/5% CO2). The strips of proximal colon were pinned to the base of the sylgard surface of a Petri dish and the mucosa together with submucosa was carefully dissected away. The tissue was cut into small strips (about 2 mm wide and 6 mm long) and placed in Ca2+-free PSS solution and incubated for 25 min at 37℃. After completion of digestion, the segments were washed and then triturated gently to create a cell suspension. Several drops of cell suspensions were placed in a recording chamber that was mounted with an inverted microscope. Cells were superfused with CaPSS (3 ml/min) after adhering to the coverslip. RP and AP were recorded by EPC-10 amplifier. Whole-cell currents were recorded by using a nystatin-perforated whole-cell patch-clamp configuration with an EPC-10 amplifier. Drugs were added subsequently to the cell suspension to observe relative effects on AP, RP, IBKCa and ICa-L when their values were stable.
     Results 1.The amplitude of RP and AP and fast repolarization time (repolarizing to 90% of the peak value of AP, T90) induced by CCK-8S (10-7 mol/L) were 48.6%±5.3%,138.6%±3.2% and 63.1%±8.7% respectively of that of the control group (n=8,P=0.032,0.015 and 0.026), which were significantly inhibited when these cells were pretreated with devazepide (10-7 mol/L) and/or nifedipine (10-5 mol/L)(n=8, P<0.05 for each group), whereas CCK-8S had little influence.2. IBKCa was evoked by using a depolarizing step pulse from a holding potential of -60 mV to+100 mV. CCK-8S increased IBKCa in a concentration-dependent manner (P< 0.05,at 10-8,10-7 and 10-6 mol/L;EC50=3.5×10-8mol/L).The peak amplitude of IBKCa was enhanced to 118.7%±2.1%(from 916±183 pAto 1088±226 pA,n=8, P=0.029)of that of the control group,which was blocked by pretreatment with 10-7 mol/L devazepide(908±109 pA,n=8,P=0.012 vs CCK-8S group,P=0.083 vs control group).However,the CCK2 receptor antagonist CI 988 exerted little effect (1052±196 pA,n=8,P=0.098 vs CCK-8S group).When heparin(10-6 mol/L),an inhibitor of IP3 receptors,was added to the pipette solution,CCK-8S(10-7 mol/L)did not enhance IBKCa(879±117 pA;n=8,P=0.074 vs control group,P=0.016 vs CCK-8S group).Pretreating cells with the PKC inhibitor staurosporine(10-6 mol/L) also attenuated the CCK-8S-induced effect on IBKCa(887±120 pA;n=8,P=0.069 vs control group,P=0.041 vs CCK-8S group).3.ICa-L was evoked by using a depolarizing step pulse from a holding potential of -40 mV to +30 mV.CCK-8S enhanced ICa-L in a concentration.dependent manner(P<0.05,at 10-8,10-7 and 10-6 mol/L;EC50=3.2×10-8 mol/L).The peak amplitude of ICa-L was increased to 140%±5.3%(from 60±8 pA to 84±11 pA;n=8,P=0.012)of that of the control group which was blocked by pretreatment with 10-7 mol/L devazepide(61±9 pA;at+10 mV;n=8,P=0.023 vs CCK-8S group,P=0.079 vs control group)or 10-5 mol/L TG and BA(7±5 pA;at+10 mV,n=8,P=0.006 vs CCK-8S group),but CI 988 had little effect(84±11 pA;n=8,P=0.079 vs CCK-8S group).When 10-6 mol/L heparin was added to the pipette solution,CCK-8S(10-7 mol/L)had no effect on ICa-L (63±12 pA;at+10 mV,n=8,P=0.183 vs control group,P=0.042 vs CCK-8S group).When cells were pretreated with 10-6 mol/L staurosporine,CCK-8S(10-7 mol/L)did not increase ICa-L(65±10 pA;n=8,P=0.215 vs control group;P= 0.032 vs CCK-8S group).
     Conclusion CCK-8S promotes Ca2+ release from sarcoplasmic reticulum and increases Ca2+ influx through L-type calcium channels,via the IP3-PKC signal transduction pathway by activation of CCK1 receptor.In addition,the decrease in AP duration is caused by the acceleration of fast repolarization of AP through increased IBKCa, and the increase in AP amplitude results from the enhancement of ICa-L, which both ultimately contribute to the contraction induced by CCK-8S.
     PartⅢ
     Objective To detect the expression of cholecystokinin receptors mRNA in guinea-pig colonic smooth muscle cells
     Methods The fresh proximal colon was taken from the guinea pigs and intestinal contents were removed in the beaker with physiological saline and then the colon was placed in Ca2+-free PSS bubbled with carbogen (95% O2/5% CO2). The colonic smooth muscle tissue weighing 50-100 mg was obtained after the mucosa and submucosa were excised and then the supernatant was taken out after homogenate in ice bath and following centrifugalization. Then the expression of CCK1 receptor and CCK2 receptor mRNA was detected by reverse transcription polymerase chain reaction.
     Results CCK1 receptor mRNA was positively expressed in guinea-pig colonic smooth muscle cells (0.83±0.15, n=15, P=0.263 vsβ-actin), whereas the expression of CCK2 receptor mRNA was not detected.
     Conclusion CCK1 receptor is the main type of cholecystokinin receptors in smooth muscle cells of guinea-pig proximal colon, which is the molecular identity of CCK-induced contraction in colon.
引文
[1]Koloski NA, Talley NJ, Boyce PM. Epidemiology and health care seeking in the functional GI disorders:a population-based study. Am J Gastroenterol.2002; 97: 2290-2299.
    [2]张声生,杨静.中医药治疗功能性胃肠病大有可为.世界华人消化杂志.2007;15(33):3457-3461.
    [3]平丽,李瑜元,聂玉强,贾林.功能性胃肠病患病情况调查.实用医学杂志.2003:19:424-426.
    [4]柯美云,方秀才.功能性胃肠病研究进展与罗马Ⅲ.胃肠病学.2006;11:709-712.
    [5]Parsons SP, Bolton TB. Localised calcium release events in cells from the muscle of guinea- pig gastric fundus. J Physiol.2003; 554(pt3):687.
    [6]曾煜,郭忻.胃肠离子通道及其影响因素与平滑肌运动的研究进展.中国药.2007;18:1268-1269.
    [7]Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides.1994; 15:731-755.
    [8]Miyasaka K, Funakoshi A. Cholecystokinin and cholecystokinin receptors. J Gastroenterol.2003; 38:1-13.
    [9]Fornai M, Colucci R, Antonioli L, et al. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway. Br J Pharmacol.2007; 151:1246-1253.
    [10]杨云生,张万岱,周殿元,等.血浆及乙状结肠粘膜中CCK、MOT的含量与肠易激综合征的关系.胃肠病学和肝病学杂志.1996;5(4):287-289.
    [11]Sjolund K, Erman R, Lindgren S, et al. Disturbed motilinand cholecystokinin release in the irritable bowel syndrome. Scand J Gastroenterol,1996; 31(11):1110-1114.
    [12]Sternini C, Wong H, Pham T, et al. Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterology.1999; 117: 1136-1146.
    [13]Noble F, Wank SA, Crawley JN, et al. International Union of Pharmacology. ⅩⅪ. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev.1999; 51:745-781.
    [14]Varga G, Balint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK-1 receptors in colonic motor function. Br J Pharmacol.2004; 141: 1275-1284.
    [15]Kulaksiz H, Arnold R, Goke B, et al. Expression and cell-specific localization of the cholecystokinin B/gastrin receptor in the human stomach. Cell Tissue Res. 2000; 299:289-298.
    [16]Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin-2 receptors on parietal cells in isolated mouse stomach. Life Sci. 2005; 77:2040-2050.
    [17]Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol.2002; 136:873-882.
    [18]Fornai M; Colucci R, Antonioli L, Baschiera F, Ghisu N, Tuccori M, Gori G, Blandizzi C, Del Tacca M. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol. 2007; 557:212-220.
    [19]Si XM, Huang L, Paul SC, An P, Luo HS. Signal transduction pathways mediating CCK-8S-induced gastric antral smooth muscle contraction. Digestion. 2006; 73:249-258.
    [20]Montero M, Lobaton CD, Gutierrez-Fernandez S, Moreno A, Alvarez J. Modulation of histamine-induced Ca2+ release by protein kinase C. Effects on cytosolic and mitochondrial [Ca2+] peaks. J Biol Chem.2003; 278: 49972-49979.
    [1]杨云生,张万岱,周殿元,等.血浆及乙状结肠粘膜中CCK、 MOT的含量与肠易激综合征的关系.胃肠病学和肝病学杂志.1996;5(4):287-289.
    [2]Sjolund K, Erman R, Lindgren S, et al. Disturbed motilinand cholecystokinin release in the irritable bowel syndrome. Scand J Gastroenterol,1996; 31(11):1110-1114.
    [3]Sjolund K, Ekman R, Lindgren S, Rehfeld JF. Disturbed motilin and cholecystokinin release in irritable bowel syndrome. Scand J Gastroenterol.1996; 31:1110-1114.
    [4]Chey WY, Jin HO, Lee MH, Sun SW, Lee KY. Colonic motility abnormalities in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol.2001; 96:1499-1506.
    [5]杨云生,张万岱,周殿元,等.血浆及乙状结肠粘膜中CCK、 SS的含量与肠易激综合征的关系.中国现代医学杂志.1997;7(5):12-14.
    [6]Wu T, Wang HL. The excitatory effect of cholecystokinin on rat neostriatal neurons:ionic and molecular mechanisms. Eur J Pharmacol.1996; 307:125-132.
    [7]Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides.1994; 15:731-755.
    [8]Miyasaka K, Funakoshi A. Cholecystokinin and cholecystokinin receptors. J Gastroenterol.2003; 38:1-13.
    [9]Fornai M, Colucci R, Antonioli L, et al. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway. Br J Pharmacol.2007; 151:1246-1253.
    [10]Si XM, Huang L, Paul SC, An P, Luo HS. Signal transduction pathways mediating CCK-8S-induced gastric antral smooth muscle contraction. Digestion. 2006; 73:249-258.
    [1]莫剑忠消化系功能性和动力障碍性疾M.第1版.上海:上海科学技术出版社,2005:3391.
    [2]Bielefeldt K, Ozaki N, Gebhart GF. Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology.2002; 122(3):752-761.
    [3]Si XM, Huang L, Paul SC, An P, Luo HS. Signal transduction pathways mediating CCK-8S-induced gastric antral smooth muscle contraction. Digestion. 2006; 73:249-258.
    [4]Xu L, Yu BP, Chen JG, et al. Mechanisms mediating serotonin-induced contraction of colonic myocytes. Clin Exp Pharmacol Physiol.2007; 34:120-128.
    [5]Noble F,Wank SA,Crawley JN, et al.International Union of Pharmacology ⅩⅩⅠ Structure, distribution, and functions of cholecystokinin receptors.Pharmacol Rev. 1999;51(4):745-778.
    [6]郑秀海,王曙光,喻智勇,韩本立.整合素αvβ3单克隆抗体对人胆管癌肿瘤血管生成的抑制作用.中华实验外科杂志.2002;19(5):396-397.
    [7]Sternini C, Wong H, Pham T, et al. Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterology.1999; 117: 1136-1146.
    [8]Varga G, Balint A, Burghardt B, D'Amato M. Involvement of endogenous CCK and CCK-1 receptors in colonic motor function. Br J Pharmacol.2004; 141: 1275-1284.
    [9]Wank SA.Cholecystokinin receptors. Am J Physiol.1995; 269(5):G628-646.
    [10]Reubi JC, Waser B, Laderach U, et al. Localization of cholecystokinin A andcholecystokinin B-gastrin receptors in the human stomach. Gastroenterology, 1997; 112(4):1197-1205.
    [11]Helander HF, Wong H, Poorkhalkali N, et al. Immunohistochemical localization of gastrin/CCK-B receptors in the dog and guinea pig stomach. Acta Physiol Scand.1997; 159(4):313-320.
    [12]Cla pham DE. Calcium signaling J. Cell.1995; 80:259-268.
    [13]Waldum HL, Kleveland PM, Sandvik AK, et al. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. Pharmacol Toxicol.2002; 91: 359-362.
    [14]Kulaksiz H, Arnold R, Goke B, et al. Expression and cells peciic localization of the cholecystokinin B/gastrin receptor in the human stomach. Cell Tissue Res. 2000; 299:289-298.
    [15]Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin2 receptors on parietal cells in isolated mouse stomach. Life Sci. 2005; 77(16):2040-2050.
    [16]Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol 2002; 136:873-882.
    [17]Fornai M, Colucci R, Antonioli L, et al. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol 2007; 557:212-220.
    [18]Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin-2 receptors on parietal cells in isolated mouse stomach. Life Sci. 2005; 77:2040-2050.
    [19]Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol.2002; 136:873-882.
    [20]杨云生,张万岱,周殿元,等.血浆及乙状结肠粘膜中CCK、 MOT的含量与肠易激综合征的关系.胃肠病学和肝病学杂志.1996;5(4):287-289.
    [21]Sjolund K, Erman R, Lindgren S, et al. Disturbed motilinand cholecystokinin release in the irritable bowel syndrome. Scand J Gastroenterol,1996; 31(11):1110-1114.
    [22]Kulaksiz H, Arnold R, Goke B, et al. Expression and cells peciic localization of the cholecystokinin B/gastrin receptor in the human stomach. Cell Tissue Res. 2000; 299:289-298.
    [23]Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin2 receptors on parietal cells in isolated mouse stomach. Life Sci. 2005; 77(16):2040-2050.
    [24]Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol 2002; 136:873-882.
    [25]Rogers TB, Inesi G, Wade R, Lederer WJ. Use of thapsigargin to study Ca2+ homeostasis in cardiac cells. Biosci Rep.1995; 15:341-349.
    [26]Billman GE. Intracellular calcium chelator, BAPTA-AM, prevents cocaine-induced ventricular ibrillation. Am J Physiol 1993; 265:H1529-H1535
    [27]Wu ZX, Yu BP, Xia H, Xu L. Emodin increases Ca(2+) inlux through L-type Ca(2+) channel in guinea pig gallbladder smooth muscle. Eur J Pharmacol 2008; 595:95-99.
    [28]Xu L, Yu BP, Chen JG, Luo HS. Mechanisms mediating serotonin-induced contraction of colonic myocytes. Clin Exp Pharmacol Physiol 2007; 34:120-128
    [29]Xu L, Chen J, Yu B, Dong W, Chen K, Luo H, Zhu Y. Effect of progesterone on calcium activated potassium currents and intracellular calcium in guinea pig colon myocytes. Methods Find Exp Clin Pharmacol 2005; 27:475-482
    [30]Montero M, Lobaton CD, Gutierrez-Fernandez S, Moreno A, Alvarez J. Modulation of histamine-induced Ca2+ release by protein kinase C. Effects on cytosolic and mitochondrial [Ca2+] peaks. J Biol Chem.2003; 278:49972-49979.
    [31]Zhu Y, Golden CM, Ye J, Wang XY, Akbarali HI, Huizinga JD. ERG K+ currents regulate pacemaker activity in ICC. Am J Physiol Gastrointest Liver Physiol. 2003; 285:G1249-1258.
    [32]Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev.2005; 85:201-279.
    [33]Sawisky GR, Chang JP. Intracellular calcium involvement in pituitary adenylate cyclase-activating polypeptide stimulation of growth hormone and gonadotrophin secretion in goldish pituitary cells. J Neuroendocrinol.2005; 17:353-371.
    [34]Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev.1995; 47:387-573.
    [35]Burdyga T, Wray S. Sarcoplasmic reticulum function and contractile consequences in ureteric smooth muscles. Novartis Found Symp.2002; 246: 208-217.
    [36]Haddock RE, Hill CE. Differential activation of ion channels by inositol 1,4,5-trisphosphate (IP3)-and ryanodine-sensitive calcium stores in rat basilar artery vasomotion. J Physiol 2002; 545:615-627.
    [37]Ogura T, Kinnamon SC. IP(3)-Independent release of Ca(2+) from intracellular stores:A novel mechanism for transduction of bitter stimuli. J Neurophysiol. 1999; 82:2657-2666.
    [38]Yu P, Chen Q, Xiao Z, Harnett K, Biancani P, Behar J. Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am J Physiol. 1998; 275:G203-211.
    [1]Xu D, Yu BP, Luo HS, Chen LD. Control of gallbladder contractions by cholecystokinin through cholecystokinin-A receptors on gallbladder interstitial cells of Cajal. World J Gastroenterol.2008; 14;14(18):2882-2887.
    [2]Si XM, Huang L, Paul SC, An P, Luo HS. Signal transduction pathways mediating CCK-8S-induced gastric antral smooth muscle contraction. Digestion. 2006; 73:249-258.
    [3]Fornai M, Colucci R, Antonioli L, et al. Cholecystokinin CCK2 receptors mediate the peptide's inhibitory actions on the contractile activity of human distal colon via the nitric oxide pathway. Br J Pharmacol.2007;151(8):1246-1253.
    [4]Monstein HJ, Nylander AG, Salehi A, Chen D, Lundquist I, Hakanson R. Cholecystokinin-A and Cholecystokinin-B/Gastrin Recptor mRNA Expression in the Gastrointestinal Tract and Pancreas of the Rat and Man. Scand J Gastroenterol.1996; 31:383-390.
    [5]Murata T, Takizawa T, Funaba M, Fujimura H, Murata E, Torii K. Quantitation of Mouse and Rat β-actin mRNA by Competitive Polymerase Chain Reaction Using Capillary Electrophoresis. Analytical Biochemistry.1997; 244:172-174.
    [6]Sato N, Miyasaka K, Suzuki S, et al.Lack of cholecystokinin-A receptor enhanced gallstone formation:a study in CCK-A receptor gene knockout mice. Dig Dis Sci.2003 Oct;48(10):1944-7.
    [7]Rettenbacher M, Reubi, JC. Localization and characterization of neuropeptide receptors in human colon. Naunyn-Schmiedeberg's Arch. Pharmacol.2001;364, 291-304.
    [8]Wank SA.Cholecystokinin receptors. Am J Physiol.1995; 269(5):G628-646.
    [9]Reubi JC, Waser B, Laderach U, et al. Localization of cholecystokinin A andcholecystokinin B-gastrin receptors in the human stomach. Gastroenterology, 1997; 112(4):1197-1205.
    [10]Helander HF, Wong H, Poorkhalkali N, et al. Immunohistochemical localization of gastrin/CCK-B receptors in the dog and guinea pig stomach. Acta Physiol Scand.1997; 159(4):313-320.
    [11]Clapham DE. Calcium signaling J. Cell.1995; 80:259-268.
    [12]Waldum HL, Kleveland PM, Sandvik AK, et al. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. Pharmacol Toxicol.2002; 91: 359-362.
    [13]Kulaksiz H, Arnold R, Goke B, et al. Expression and cells peciic localization of the cholecystokinin B/gastrin receptor in the human stomach. Cell Tissue Res. 2000; 299:289-298.
    [14]Ochi Y, Horie S, Maruyama T, Watanabe K, Yano S. Necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and cholecystokinin2 receptors on parietal cells in isolated mouse stomach. Life Sci. 2005; 77(16):2040-2050.
    [15]Morton MF, Harper EA, Tavares IA, Shankley NP. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle. Br J Pharmacol 2002; 136:873-882.
    [16]Fornai M, Colucci R, Antonioli L, et al. CCK2 receptors mediate inhibitory effects of cholecystokinin on the motor activity of guinea-pig distal colon. Eur J Pharmacol 2007; 557:212-220.
    [17]Feifel D, Shilling PD, Kuczenski R, Segal DS. Altered extracellular dopamine concentration in the brains of cholecystokinin-A receptor deficient rats. Neurosci Lett.2003; 18;348(3):147-150.
    [18]Wiesenfeld-Hallin Z, Xu XJ, Hokfelt T. The role of spinal cholecystokinin in chronic pain states. Pharmacol Toxicol.2002;91(6):398-403.
    [19]Ghilardi JR, Allen CJ, Vigna SR, McVey DC, Mantyh PW.Trigeminal and dorsal root ganglion neurons express CCK receptor binding sites in the rat, rabbit, and monkey:possible site of opiate-CCK analgesic interactions. J Neurosci.1992; 12(12):4854-4866.
    [20]Zhou Y, Sun YH, Shen JM, et al. Increased release of immunoreactive CCK- 8 by electroacupuncture and enhancement of electroacupuncture analgesia by CCK- B antagonist in rat spinal cord. Neuropeptides,1993; 24:139-144.
    [1]Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides. 1994;15:731-755.
    [2]Eysselein VE, Reeve JR, Eberlein G. Cholecystokinin-gene structure,and molecular forms in tissueand blood. Z Gastroenterol,1986; 24(10):645-659.
    [3]Keire DA, Soomon TE, Reeve JR. Evidence for different conformations of the bioactive region of rat CCK-8 and CCK-58. Biochem Biophys Res Commun. 2002; 293(3):14-20.
    [4]Fioramonti J, D'amato M, Rovati LC, Bueno L. Effects of dexloxiglumide on gastric emptying delayed by colonic distension in dogs. Neurogastro enterol. Motil,1996; 8:172.
    [5]Ise K, Akiyoshi J, Horinouchi Y, Tsutsumi T, Isogawa K, Nagayama H. Association between the CCK-A receptor gene and panic disorder. Am.J.Med. Genet,2003; 118B:29-31.
    [6]Gully D, Frehel C, Marcy A, Spinazze L, Lespy G, Neliat JP, et al. Peripheral biological activity of SR 27897:a new potent nonpeptide antagonist of CCKA receptors. Eur. J. Pharmacol,1993; 232:13-19.
    [7]Hoshi H, Logsdon CD. Both low- and high-affinity CCK receptor states mediate trophic effects on rat pancreatic acinar cells. Am. J. Physiol,1993; 265: G1177-G1181.
    [8]Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE. (1984). Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl. Acad. Sci.U.S.A.,1984; 81:726-730.
    [9]Harvey RF, Read AE. Effects of cholecystokinin on colonic motility and symptoms in patients with the irritable bowel syndrome. Gut,1972; 13:837-838.
    [10]Permutt, MA. Human cholecystokinin type A receptor gene:cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). Genomics,1997; 42:331-335.
    [11]Inoue H, Iannotti CA, Welling CM, Veile R, Donis-Keller H, Permutt MA. Human cholecystokinin type A receptor gene:cytogenetic localization, physical mapping, and identification of two missense variants in patients with obesity and non-insulin-dependent diabetes mellitus (NIDDM). Genomics,1997; 42: 331-335.
    [12]Dowling RH. Review:pathogenesis of gallstones. Aliment Pharmacol. Ther., 2000; 14 (Suppl 2):39-47.
    [13]Herranz, R. Cholecystokinin antagonists:pharmacological and therapeutic potential. Med. Res. Rev.,2003; 23:559-605.
    [14]Feinle C, Meier O, D'Amato M, Fried M. CCK-A receptor blockade improves dyspeptic symptoms due to duodenal lipid and gastric distension in functional dyspepsia. Gastroenterology,1999; 116:A992.
    [15]Detjen K, Fenrich MC, Logsdon CD. Transfected cholecystokinin receptors mediate growth inhibitory effects on human pancreatic cancer cell lines. Gastroenterology,1997; 112:952-959.
    [16]Inoue H, Iannotti CA, Welling CM, Veile R, Donis-Keller H, Feifel D, et al. (2003). Altered extracellular dopamine concentration in the brains of cholecystokinin-A receptor deficient rats. Neurosci. Lett.,2003; 348:147-150.
    [17]Kellow JE, Miller LJ, Phillips SF, Zinsmeister AR, Charboneau JW. Altered sensitivity of the gallbladder to cholecystokinin octapeptide in irritable bowel syndrome. Am J Physiol,1987; 253:G650-G655.
    [18]Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut,1999; 45 (Suppl 2):Ⅱ43-Ⅱ47.
    [19]Sjolund K, Ekman R, Lindgren S, Rehfeld JF. Disturbed motilin and cholecystokinin release in the irritable bowel syndrome. Scand. J. Gastroenterol., 1996; 31:1110-1114.
    [20]Fosatti-Marchal S, Coffin B, Flourie B, Lemann MCF, Jian R, Rambaud JC. Effects of cholecystokinin octapeptide (CCK-OP) on the tonic and phasic motor activity of the human colon. Gastroenterology,1994; 106:A499.
    [21]De Weerth A; Pisegna J R; Wank S A. Guinea pig gallbladder and pancreas possess identical CCK-A receptor subtypes:receptor cloning and expression. Am. J. Physiol.,1993; 265:G1116-G1121.
    [22]Maselli MA, Piepoli AL, Pezzolla F, Guerra V, Caruso ML, Mennuni L, et al. Effect of three nonpeptide cholecystokinin antagonists on human isolated gallbladder. Dig. Dis. Sci.,2001; 46:2773-2778.
    [23]Thomas LA,Veysey MJ,Bathgate T,King A,French G,Smeeton NC, et al. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology,2000; 119:806-815.
    [24]Fried M, Feinle C. The role of fat and cholecystokinin in functional dyspepsia. Gut,2002; 51 (Suppl Ⅰ):i54-i57.
    [25]Ghilardi JR, Allen CJ, Vigna SR, Maubach K, Patel M, Spraggs CF. Interaction of gastrin/cholecystokinin agonists and antagonists on guinea pig gallbladder. Br. J.Pharmacol.,1991; 104 (Suppl.):142.
    [26]Taniguchi H, Nagasaki M, Tamaki, H. Effects of cholecystokinin (CCK)-JMV-180 on the CCK receptors of rabbit pancreatic acini and gallbladder smooth muscle. Jpn. J. Pharmacol.,1995; 67:219-224.
    [27]Bianchi BR, Miller TR, Witte DG, Lin CW. Novel CCK analogues and bombesin: a detailed analysis between phosphoinositide breakdown and high-dose inhibition of pancreatic enzyme secretion in three rodent species. J. Pharmacol. Exp. Ther., 1994; 268; 996-1002.
    [28]Meier R, Beglinger C, Giacovelli G, D'Amato M. Effect of the CCK-A receptor antagonist dexloxiglumide on post-prandial gallbladder emptying and colonic transit time in healthy volunteers. Gastroenterology,1997; 112:A788.
    [29]Szalmay G, Varga G, Kajiyama F, Yang XS, Lang TF, Case RM, et al. Bicarbonate and fluid secretion evoked by cholecystokinin, bombesin and acetylcholine in isolated guinea-pig pancreatic ducts. J. Physiol,2001; 535: 795-807.
    [30]Bonnafous C, Bueno L, Griffin PH, Schneier H, Rovati LC, D'Amato M. Influence of dexloxiglumide on visceromotor and pain response induced by rectal distension in rats. Gastroenterology,2002; 122 (no.4, Suppl.1):A527.
    [31]Meier, R., Beglinger, C., Giacovelli, G., D'Amato, M. Effect of the CCK-A receptor antagonist dexloxiglumide on post-prandial gallbladder emptying and colonic transit time in healthy volunteers. Gut,1997; 41 (Suppl3):A193.
    [32]D'Amato M, Rovati LC. Cholecystokinin-A receptor antagonists:therapies for gastrointestinal disorders. Exp. Opin. Invest. Drugs,1997; 6:819-836.
    [33]Chey WY, Jin HO, Lee MH, Sun SW Lee KY. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am.J.Gastroenterol.,2001; 96,1499-1506.
    [34]D'Amato M, Stamford IF,Bennett A. The effects of cholecystokinin octapeptide on human isolated alimentary muscle. Br. J. Pharmacol.,1990; 100:126-130.
    [35]Chang RS, Lotti VJ. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc. Natl. Acad. Sci. U.S.A.,1986; 83:4923-4926.
    [36]McVey DC, Mantyh PW. Trigeminal and dorsal root ganglion neurons express CCK receptor binding sites in the rat, rabbit,and monkey:possible site of opiate-CCK analgesic interactions.J. Neurosci.,1992; 12:4854-4866.
    [37]Gully D, Frehel D, Marcy C, Spinazze A, Lespy L, Neliat G, et al. Peripheral biological activity of SR 27897:a new potent nonpeptide antagonist of CCKA receptors. Eur. J. Pharmacol.,1993; 232:13-19.
    [38]Simren M, Abrahamsson H, Bjornsson ES. An exaggerated sensory component of the gastrocolonic response in patients with irritable bowel syndrome. Gut,2001; 48:20-27.
    [39]Lucaites VL, Mendelsohn LG, Mason NR, Cohen ML. CCK-8, CCK-4 and gastrin-induced contractions in guinea pig ileum:evidence for differential release of acetylcholine and substance P by CCK-A and CCK-B receptors. J Pharmacol Exp Ther,1991; 256:695-703.
    [40]Varga G. Dexloxiglumide Rotta Research Lab. Curr. Opin.Investig. Drugs,2002; 3:621-626.
    [41]Revel L, Makovec F, Castaner J. Dexloxiglumide. CCK1 (CCK(A)) receptor antagonist, treatment of irritable bowel syndrome. Drugs Future,1999; 24: 725-728.
    [1]Zhu Y, Golden CM, Ye J, et al. ERG K currents regulate pacenmker activity in ICC Am J physiol Gastrointest Liver Physiol.2003;285(6):G 1249-1258
    [2]陈明错,罗和生,余保平.黄连素对结肠平滑肌细胞膜钙激活钾通道和延迟整流钾通道的影响.中国药理学通报.2004;20(6):632.
    [3]Xu L, Yu BP, Chen JG, Luo HS. Mechanisms mediating serotonin-induced contraction of colonic myocytes. Clin Exp Pharmacol Physiol.2007; 34:120-128.
    [4]Xu L, Chen J, Yu B, Dong W, Chen K, Luo H, Zhu Y. Effect of progesterone on calcium activated potassium currents and intracellular calcium in guinea pig colon myocytes. Methods Find Exp Clin Pharmacol.2005; 27:475-482.
    [5]Gregory R. Lisanne G. Harold G. Delayed rectifier and Ca2+-activated K+currents in human esophagus:roles in regulating muscle contraction.1999;277:G885-895.
    [6]黎俊,罗和生,何小谷.维生素K3通过钙依赖钾通道影响豚鼠结肠平滑肌收缩.中华医学杂志.2006;86(28):1981-1984.
    [7]何小谷,罗和生,黎俊.维生素K3通过延迟整流钾通道影响豚鼠结肠平滑肌收缩.胃肠病学和肝病学杂志.2007;1(3):241.
    [8]Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. Science.1995; 268:1045-1049.
    [9]Imredy JP, Yue DT. Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron 1994; 12:1301-1318.
    [10]Kraichely RE, Farrugia G. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil. 2007; 19(4):245-252.
    [11]Parsons SP, Bolton TB. Localised calcium release events in cells from the muscle of guinea-pig gastricfundus. J Physiol,2003; 554(pt3):687.
    [12]曾煜,郭忻.胃肠离子通道及其影响因素与平滑肌运动的研究进展.中国药.2007;18:1268-1269.
    [13]Xu L, Yu BP, Chen JG, et al. Mechanisms mediating serotonin-induced contraction of colonic myocytes. Clin Exp Pharmacol Physiol.2007,34:120-128。
    [14]Si XM, Huang L, Paul SC, An P, Luo HS. Signal transduction pathways mediating CCK-8S-induced gastric antral smooth muscle contraction. Digestion. 2006; 73:249-258.
    [15]马涛,齐清会,简序,费乃昕.大黄素对大鼠结肠环行平滑肌细胞[Ca2+]i的影响.世界华人消化杂志.2003,11(11):1699-1702.
    [16]Malysz J, Farraway LA, Christen MO, Huizinga JD. Pinaverium acts as L-type calcium channel blocker on smooth muscle of colon. Can J Physiol Pharmacol. 1997,75(8):969-975.
    [17]戴芸.钙离子在胃肠平滑肌收缩机制中的作用.国外医学·消化系疾病分册2002;22:17-20.
    [18]Bielefeldt K, Ozaki N, Gebhart GF. Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology.2002; 122(3): 752-761.
    [19]Bielefeldt K, Ozaki N, Gebhart GF. Experimental ulcers alter voltage-sensitive sodium currents in rat gastric sensory neurons. Gastroenterology.2002; 122(2): 394-405.
    [20]Gold MS. Tetrodotoxin-resistant Na+ currents and inflammatory hyperalgesia. Proc Natl Acad Sci U S A.1999.;6;96(14):7645-7649.
    [21]刘雁冰,袁耀宗,陶然君,等.大鼠肠道高敏性模型的建立及其内脏敏感性评估.中华消化杂志.2003;23(1):34.
    [22]Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R.X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature.2002; 415(6869):287-294.
    [23]Zhang Y, Miller DV, Paterson WG. Opposing roles of K(+)and Cl(-) channels in maintenance of opossum lower esophageal sphincter tone. Am J Physiol Gastrointest Liver Physiol.2000; 279:G1226-1234.
    [24]Xu L, Ting-Lou, Lv N, Zhu X, Chen Y, Yang J.Emodin augments calcium activated chloride channel in colonic smooth muscle cells by Gi/Go protein. Eur J Pharmacol.2009; 615 (1-3):171-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700