DCX和SPAPC共表达对胶质瘤细胞生长、侵袭和放射敏感性的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建DCX和SPARC双基因共表达腺病毒载体(Ad-DCX-SPARC),研究其对胶质瘤细胞生长、侵袭和放射敏感性的影响及其机制研究。
     方法
     1. PCR扩增获得DCX和SPARC目的基因,构建针对DCX和SPARC的pAdTrack-CMV-DCX-polyA+promoter-SPARC双基因共表达重组转移质粒;
     2.将构建正确的pAdTrack-CMV-DCX-polyA+promoter-SPARC重组转移质粒经PmeI酶切后与pAdEasy-1腺病毒骨架质粒在BJ5183大肠杆菌中同源重组;
     3.同源重组质粒pAdEasy-1-pAdTrack-CMV-DCX-polyA+promoter-SPARC(简称为pAd-DCX-polyA+promoter-SPARC)经PacI酶切后再用脂质体转染QBI-293A细胞,经多轮感染和扩增后获得Ad-DCX-polyA+promoter-SPARC(简称Ad-DCX-SPARC)双基因共表达重组腺病毒载体;
     4.将Ad-DCX-SPARC重组腺病毒体外感染胶质瘤细胞U251和A172,筛选出Ad-DCX-SPARC的最佳感染剂量;
     5.通过一系列检测细胞增殖、侵袭和放射敏感性的实验方法,研究增加DCX和SPARC双基因共表达对胶质瘤细胞生长、侵袭和放射敏感性的影响,并分析其可能的作用机制。
     结果
     1.成功构建了双启动子介导的DCX和SPARC双基因共表达腺病毒载体Ad-DCX-SPARC,其能高效感染胶质瘤细胞U251和A172,最佳感染剂量分别为20MOI和100MOI;2.腺病毒介导的DCX和SPARC双基因共表达能明显抑制胶质瘤细胞的生长,削弱SPARC促胶质瘤侵袭的作用;3.增加DCX-SPARC双基因共表达能使U251和A172胶质瘤细胞照射后克隆形成能力明显降低;4.单纯增加DCX和SPARC双基因共表达对胶质瘤细胞凋亡无明显影响,但联合辐照后能明显促进胶质瘤细胞的凋亡;5. DCX-SPARC双基因共表达提高了照前G2期细胞的比例,联合X射线照射后能减少照后G2期细胞的阻滞,从而减少了DNA损伤的修复,最终促进了胶质瘤细胞的死亡;6.分子机制检测结果表明Ad-DCX-SPARC联合X射线照射能明显上调U251和A172胶质瘤细胞bax,bad的表达和下调bcl-2的表达。
     结论
     1.成功获得了DCX和SPARC双基因共表达腺病毒载体Ad-DCX-SPARC,能明显抑制胶质瘤细胞的生长,削弱SPARC促胶质瘤侵袭的作用;
     2. DCX和SPARC双基因共表达联合X射线照射能通过抑制胶质瘤细胞的克隆形成、提高照射前G2期细胞阻滞、增加辐照引起的细胞凋亡、使细胞照后G2期的阻滞得到减弱从而减少照后DNA损伤的修复等机制提高脑胶质瘤细胞的放射敏感性;
     3. Ad-DCX-SPARC联合X射线照射可通过调节U251和A172细胞中bax,bad和bcl-2等细胞凋亡相关基因诱导胶质瘤细胞的凋亡。
Objective
     To construct a recombinant adenoviral vector co-expressing Doublecortin(DCX)and Secreted protein acidic and rich in cysteine(SPARC) and study its enhancedanti-tumor and radiosensitivity effects.
     Methods
     1. DCX and SPARC were amplified by PCR using cDNA as template.pAdTrack-CMV-DCX-polyA+promoter-SPARC double genes co-expression transfervector was constructed and identified by PCR, double endonuclease digestion, andDNA sequencing;
     2. pAdTrack-CMV-DCX-polyA+promoter-SPARC transfer vector was linearizedwith PmeI digestion and further co-transfected with pAdEasy-1backbone vector intobacteria BJ5183competent cells for homologous recombination;
     3. The production of pAdEasy-1-pAdTrack-CMV-DCX-polyA+promoter-SPARC(pAd-DCX-polyA+promoter-SPARC) homologous recombinant plasmid purified fromthe above BJ5183cells was transfected into the bacterial DH5α cells to abundantlyamplify pAd-DCX-polyA+promoter-SPARC plasmids, then they were linearized withPacI digestion and transfected into the human embryonic kidney293(QBI-293A) cellsby Lipofectamine2000, leading to packaging of the recombinant adenovirusesAd-DCX-polyA+promoter-SPARC(Ad-DCX-SPARC).First generation virus-containingsupernatants was used for obtaining large quantities of recombinant adenoviral vectorsafter several cycles of transfection and amplifying;
     4. The best MOIs of Ad-DCX-SPARC were chosen by Ad-DCX-SPARC infectingU251and A172glioma cells;
     5. A series experimental methods which tested cell proliferation、invasion andradiation sensitivity were carried out to study the effects of increased DCX and SPARCco-expression for glioma cell growth, invasion and radiosensitivity, and analyzed itspossible mechanism.
     Results
     1. The double promoters mediated DCX and SPARC gene co-expressionadenoviral vector Ad-DCX-SPARC was successfully constructed. It could infect gliomacells U251and A172with high efficiency at the best infection doses of20MOI and100MOI respectively;2. Adenovirus-mediated DCX and SPARC gene co-expressionsignificantly inhibited the growth of glioma cells, weakening the role of SPARCpromoting glioma invasion in vitro;3. DCX and SPARC double gene co-expressioncould remarkably inhibit cell colony formation of U251and A172glioma cells postirradiation;4. DCX and SPARC double gene co-expression showed little effect onapoptosis in glioma cells, but it could promote apoptosis significantly after combinationwith radiation;5. Increasement of DCX and SPARC expression could enhanceproportion of G2phase cells before radiation. When combined with X-ray radiation, itwould decrease G2phase cell cycle arrest after irradiation to reduce repairment of DNAdamage with a result of more death of cells ultimately;6. Molecular mechanismanalysis showed that Ad-DCX-SPARC and radiation combination could remarkablyup-regulated the expressions of bax and bad, and down-regulated the expression ofbcl-2.
     Conclusion:
     1. Our study successfully constructed DCX and SPARC gene co-expressionadenovirus vector Ad-DCX-SPARC, it could significantly inhibit the growth of gliomacells and weakening the role of SPARC promoting glioma invasion in vitro;
     2. Ad-DCX-SPARC combined with X-ray radiation inhibited glioma cell colony formation, increased G2phase cells arrest before irradiation and enhancedirradiation-induced apoptosis. In addition, it could also weaken the G2phase cell arrestafter glioma irradiation, so that DNA damage repair was decreased with more gliomacells death. All the above results increased cell radiosensitivity of glioma;
     3. Ad-DCX-SPARC and radiation combination induced glioma cell apoptosisthrough up-regulating bax、bad, down-regulating bcl-2and so on apoptosis relatedgenes.
引文
[1] Fuller GN, Scheithauer BW.Symposium: The2007revised world healthorganization (WHO) Classification of tumors of the central nervous system: newlycodified entities. Brain Pathol,2007,17(3):304.
    [2]M. Hingorani, C L White, V K Agrawal, et al. Combining Radiation and CancerGene Therapy: A Potential Marriage of Physical and Biological Targeting?Currentcancer drug targets.2007,7(4):389-409.
    [3]Yang J, Jin G, Liu X, et al. Therapeutic effect of pEgr-IL18-B7.2gene radiotherapyin B16melanoma-bearing mice. Hum Gene Ther,2007,18(4):323-32.
    [4]Ngoi SM, Chien AC, Lee CG. Exploiting internal ribosome entry sites in genetherapy vector design. Curr Gene Ther.2004Mar;4(1):15-31.
    [5]曹慧青,丁金凤.多基因共表达载体的构建策略.国外医学分子生物学分册,2002,24(1):1-4.
    [6]Rich JN, Hans C, Jones B,et al. Gene Expression Profiling and Genetic Markers inGlioblastoma survival. Cancer Res,2005,5:4051.
    [7]Brown JP, Couillard-Despres S, Cooper-Kuhn CM, et al. Transient expression ofdoublecortin during adult neurigenesis. J Comp Neurol,2003,467(1):1-10.
    [8]des Portes V, Pinard JM, Billuart P, et al. A novel CNS gene required for neuronalmigration and involved in X-linked subcortical laminar heterotopia andlissencephaly syndrome. Cell,1998,92(1):51-61.
    [9]Francis F, Koulakoff A, Boucher D, et al. Doublecortin is a developmentallyregulated, microtubule-associated protein expressed in migrating anddifferentiating neurons. Neuron,1999,23(2):247-56.
    [10]Gleeson JG, Lin PT, Flanaqan LA, et al. Doublecortin is a microtubule-associatedprotein and is expressed widely by migrating neurons. Neuron,1999,23(2):257-71.
    [11]Horesh D, Sapir T, Francis F, et al. Doublecortin, a stabilizer of microtubules. HumMol Genet,1999,8(9):1599-610.
    [12]Ellison J. Novel human pathological mutations. Genesymbol: DCXDisease:doublecortex syndrome. Hum Genet,2010,127(4):475.
    [13]Kerjan G, Gleeson JG, et al. Genetic mechanisms underlying abnormal neuralmigration in classical lissencephaly. Trends Genet,2007,23(12):623-30.
    [14]Gleeson JG, Walsh CA. Neuronal migration disorders: from genetic diseases todevelopmental mechanisms. Trends Neurosci,2000;238:352-9.
    [15]Gleeson JG, Allen KM, Fox JW, et al. Doublecortin, a brain-specific gene mutatedin human X-linked lissencephaly and double cortex syndrome, encodes a putativesignaling protein. Cell,1998,92(1):63-72.
    [16]Manoranjan Santra, Xuepeng Zhang, Sutapa Santra, et al. Ectopic Doublecortingene expression suppresses the malignant phenotype in glioblastoma cells. CancerResearch,2006,66:11726-11735.
    [17]Manoranjan Santra, Xuguang Zheng, Cindi Roberts, et al. Single doublecortin genetherapy significantly reduces glioma tumor volume. J Neurosci Res,2010,88(2):304-314.
    [18]Manoranjan Santra, Sutapa Santra, Cindi Roberts, et al. Doublecortin inducesmitotic microtubule catastrophe and inhibits glioma cell invasion. J Neurochem,2009,108(1):231-245.
    [19]Jean DC, Baas PW, Black MM, et al. A novel role for doublecortin anddoublecortin-like kinase in regulating growth cone microtubules. Hum Mol Genet,2012,21(26):5511-27.
    [20]Feng S, Wang J, Jiang X, et al. Microarray screening of differentially expressedgenes in DCX transfected U87cells before and after irradiation. Nuclear Scienceand Techniques,2012,23:97-102
    [21]Salonen J, Domenicucci C, Goldberg HA, et al. Immunohistochemical localizationof SPARC (osteonectin) and denatured collagen and their relationship toremodelling in rat dental tissues. Arch Oral Biol,1990,35:337.
    [22]Tremble PM, Lane TF, Sage EH, et al. SPARC, a secreted protein associated withmorphogenesis and tissue remodeling, induces expression of metalloproteinases infibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol,1993,121:1433.
    [23]Damjanovski S, Karp X, Funk S, et al. Ectopic expression of SPARC in Xenopusembryos interferes with tissue morphogenesis: identification of a bioactivesequence in the C-terminal EF hand. J Histochem Cytochem,1997,45:643.
    [24]Motamed K, Sage EH. Regulation of vascular morphogenesis by the matricellularprotein SPARC. Kidney Int,1997,51:1383.
    [25]Termine JD, Kleinman HK, Whitson SW, et al. Osteonectin, a bonespecific proteinlinking mineral to collagen. Cell,1981,26:99.
    [26]Lien HC, Hsiao YH, Lin YS, et al. Molecular signatures of metaplastic carcinomaof the breast by large-scale transcriptional profiling: identification of genespotentially related to epithelial-mesenchymal transition. Oncogene,2007,26:7859.
    [27]Watkins G, Douglas-Jones A, Bryce R, et al. Increased levels of SPARC(osteonectin) in human breast cancer tissues and its association with clinicaloutcomes. Prostaglandins Leukot Essent Fatty Acids,2005,72:267.
    [28]Koukourakis MI, Giatromanolaki A, Brekken RA, et al. Enhanced expression ofSPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer iscorrelated with markers of hypoxia/acidity and with poor prognosis ofpatients.Cancer Res,2003,63:5376.
    [29]Infante JR, Matsubayashi H, Sato N, et al. Peritumoral fibroblast SPARCexpression and patient outcome with resectable pancreatic adenocarcinoma. J ClinOncol,2007,25:319.
    [30]Cheetham S, Tang MJ, Mesak F, et al. SPARC promoter hypermethylation incolorectal cancers can be reversed by5-Aza-2-deoxycytidine to increase SPARCexpression and improve therapy response. Br J Cancer,2008,98:1810.
    [31]Wiese AH, Auer J, Lassmann S, et al. Identification of gene signatures for invasivecolorectal tumor cells. Cancer Detect Prev,2007,31:282.
    [32]Yang E, Kang HJ, Koh KH, et al. Frequent inactivation of SPARC by promoterhypermethylation in colon cancers. Int J Cancer,2007,121:567.
    [33]Wong SY, Crowley D, Bronson RT, et al. Analyses of the role of endogenousSPARC in mouse models of prostate and breast cancer. Clin Exp Metastasis,2008,25:109.
    [34]Seol MA, Chu IS, Lee MJ, et al. Genome-wide expression patterns associated withoncogenesis and sarcomatous transdifferentation of cholangiocarcinoma. BMCCancer,2011,11:78.
    [35]Menon PM, Gutierrez JA, Rempel SA. A study of SPARC and vitronectinlocalization and expression in pediatric and adult gliomas: high SPARC secretioncorrelates with decreased migration on vitronectin. Int J Oncol,2000,17:683.
    [36]Vajkoczy P, Menger MD, Goldbrunner R, et al. Targeting angiogenesis inhibitstumor infiltration and expression of the pro-invasive protein SPARC. Int JCancer,2000,87:261.
    [37] Rempel SA, Golembieski WA, Fisher JL, et al. SPARC modulates cell growth,attachment and migration of U87Glioma cells on brain extracellular matrixproteins. J Neurooncol,2001,53:149.
    [38]Schultz C, Lemke N, Ge S, et al. Secreted Protein Acidic and Rich in CysteinePromotes Glioma Invasion and Delays Tumor Growth in Vivo. Cancer Res,2002,62:6270.
    [39]McClung HM, Thomas SL, Osenkowski P, et al. SPARC upregulates MT1-MMPexpression, MMP-2activation, and the secretion and cleavage of galectin-3inU87MG glioma cells. Neurosci Lett,2007,419:172.
    [40]Kunigal S, Gondi CS, Gujrati M, et al. SPARC-induced migration of glioblastomacell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int JOncol,2006,29:1349.
    [41]Golembieski WA, Thomas SL, Schultz CR, et al.HSP27mediates SPARC-inducedchanges in glioma morphology, migration and invasion. Glia,2008,56:1061.
    [42]Lee HK, Bier A, Cazacu S, et al.MicroRNA-145Is Downregulated in Glal Tumorsand Regulates Glioma Cell Migration by Targeting Connective Tissue GrowthFactor. PLoS One,2013;8(2): e54652.
    [43]Thomas SL, Alam R, Lemke N, et al. PTEN augments SPARC suppression ofproliferation and inhibits SPARC-induced migration by suppressingSHC-RAF-ERK and AKT signaling.
    [44]Alam R,Schultz CR,Golembieski WA,et al. PTEN suppresses SPARC-inducedpMAPKAPK2and inhibits SPARC-induced Ser78HSP27phosphorylation inglioma. Neuro Oncol,2013.
    [45]Liu H,Zhang H,Jiang X, et al. Knockdown of secreted protein acidic and rich incysteine(SPARC) expression diminishes radiosensitivity of glioma cells. CancerBiother Radiopharm,2011,26(6):705-15.
    [46]Kurozumi K, Tamiya T, Ono Y, et al. Apoptosis induction with5-fluorocytosine/cytosine deaminase gene therapy for human malignant gliomacells medlared by adenovirus[J]. J Neurooncol,2004,66(1-2):117-127.
    [47]Lu SQ, Liu YS, Yang H, et al. Effects of CD/5-FC suicide gene therapy system onhuman malignant glioma cells in vitro[J]. Zhong Nan Da Xue Xue Bao Yi XueBan,2004,29(2):174,176,180.
    [48]Okada T, Caplen NJ, Ramsey WJ, et al. In situ generation of pseudo-typedretroviral progeny by adenovirus-mediated transduction of tumor cells enhancesthe killing effect of HSV-TK suicide gene therapy in vitro and in vivo[J]. J GeneMed,2004,6(3):288-299.
    [40]NakabaraN, Polack IF, Storkus WJ, et al. Effective induction of antigliomacytotoxic T cells by coadministration of interferon-beta gene vector and dendriticcells[J]. Cancer Gene Ther,2003,10(7):549-558.
    [50]Zhu X, Lu C, Xiao B, et al. An experimental study of dendritic cells mediatedimmunotherapy against intracranial glioma sin rats[J]. J Neuro oncol,2005,74(1):9-17.
    [51]Senatus PB, Li Y, Mandigo C, et al. Restoration of P53function for selectiveFas-mediated apoptosis in human and rat glioma, a cells in vitro and in vivo by aP53COOH-terminal peptide[J]. Mol Cancer Ther,2006,5(1):20-28.
    [52]Nashlmoto T, Komata T, Kanzatwa T, et al. Mild hyperthermia plus adenoviral P53over-expression additively inhibits the viability of human malignant glioma cells[J].Int J Hyperthermia,2005,21(7):615-629.
    [53]Mitlianga PC, Sioka C, Vartholonmtos G, et al. P53enhances the Delta-24conditionally replicative adenovirus anti-glioma effect[J]. Oncol Rep,2006,15(1):149-153.
    [54]Plate KH, Scholz A, Dumont DJ, et al. Tumor angiogenesis and anti-angiogenictherapy in malignant gliomas revisited. Acta Neuropathol,2012,124(6):763-75.
    [55]Dieterich LC, Mellberq S, Lanqenkamp E, et al. Transcriptional profiling of humanglioblastoma vessels indicates a key role of VEGF-A and TGFβ2in vascularabnormalization. J Pathol,2012,228(3):378-90.
    [56]Navis AC, Hamans BC, Claes A, et al. Effects of targeting the VEGF and PDGFpathways in diffuse orthotopic glioma models. J Pathol,2011,223(5):626-34.
    [57] Shi Q, Bao S, Maxwell JA, et al. Secreted protein acidic, rich in cysteine (SPARC),mediates cellular survival of gliomas through AKT activation. J BiolChem,2004,279:52200.
    [58]Zhivotovsky B, Joseph B, Orrenius S. Tumor Radiosensitivity and Apoptosis. ExpCell Res,1999,248:10.
    [59]Dote H, Burgan WE, Camphausen K. Inhibition of Hsp90compromises the DNAdamage response to radiation.Cancer Res,2006,66:9211.
    [60]Santra M, Santra S, Buller B, et al. Effect of doublecortin on self-renewal anddifferentiation in brain tumor stem cells. Cancer Sci,2011,102(7):1350-7.
    [61]Liu H, Xu Y, Chen Y, et al. RNA interference against SPARC promotes the growthof U-87MG human malignant glioma cells. Oncol Lett,2011,2(5):985-990.
    [62]Shu HK, Kim MM, Chen P, et al. The instrinsic radioresistance ofglioblastoma-derived cell lines is associated with a failure of P53to induceP21(bax) expression. Proc Natl Acad Sci USA,1998,95:14453-14458.
    [63]Bassi C, Mello SS, Cardoso RS, et al. Transcriptional changes in U343MG-aglioblastoma cell line exposed to ionizing radiation,. Hum Exp Toxicol,2008,27(12):919-929.
    [64]Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity toradiotherapy. Int J Radiat Oncol Biol Phys,2004,59:928.
    [65]Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms ofmammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem,2004,73:39.
    [66]Chetty C, Dontula R, Gujrati M, et al. Blockade of SOX4mediated DNA repair bySPARC enhances radioresponse in medulloblastoma. Cancer Lett,2012,323(2):188-98.
    [67]Cosulich SC, Savory PJ, Clarke PR, et al. Bcl-2regulates amplification of caspaseactivation by cytochrome c. Curr Biol,1999,9(3):147-50.
    [68]Tsujimoto Y. Role of Bcl-2family proteins in apoptosis: apoptosomes ormitochondria? Genes Cells,1998,3(11):697-707.
    [69]Varela M, Ranuncolo SM, Morand A, et al. EGF-R and PDGF-R, but not Bcl-2,overexpression predict overall survival in patients with low-grade astrocytomas. JSurg Oncol,2004,86(1):34.
    [70]Yu S, Pu P, Jiang D, et al. Relationship of Bcl-2gene expression with cellproliferation and apoptosis in human gliomas. Zhonghua Bing Li Xue Za Zhi,2000,29(1):12.
    [71]Harms-Ringdahl M, Nicotera P, Radford IR. Radiation induced apoptosis. MutatRes,1996,366(2):171-9.
    [72]Peltenburg LT. Radiosensitivity of tumor cells. Oncogenes and apoptosis. Q J NuclMed,2000,44(4):355-64.
    [73]Liu HT, Lu CL. Effect of silencing Bcl-2expression by small interfering RNA onradiosensitivity of gastric cancer BGC823cells. Asian Pac J Trop Med,2013,6(1):49-52.
    [74]Li JY, Li YY, Jin W, et al. ABT-737reverses the acquired radioresistance of breastcancer cells by targeting Bcl-2and Bcl-XL. J Exp Clin Cancer Res,2012,31:102.
    [75]Kim KW, Moretti L, Mitchell LR, et al. Combined Bcl-2/mammalian target ofrapamycin inhibition leads to enhanced radiosensitization via induction ofapoptosis and autophagy in non-small cell lung tumor xenograft model. ClinCancer Res,2009,15(19):6096-105.
    [76]Ezekwudo D, Shashidharamurthy R, Devineni D, et al. Inhibiton of expression ofanti-apoptotic protein Bcl-2and induction of cell death in radioresistant humanprostate adenocarcinoma cell line(PC-3) by methyljasmonate, Cancer Lett,2008,270(2):277-85.
    [77]Anai S, Goodison S, Shiverick K, et al. Knock-down of Bcl-2by antisenseoligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis inhuman PC-3prostate tumor xenografts. Mol Cancer Ther,2007,6(1):101-11.
    [78]An J, Chervin AS, Nie A, et al. Overcoming the radioresistance of prostate cancercells with a novel Bcl-2inhibitor. Oncogene,2007,26(5):652-61.
    [79]Kim R, Inoue H, Toge T. Bax is an important determinant for radiation sensitivityin esophageal carcinoma cells. Int J Mol Med,2004,14(4):697-706.
    [80]Arafat WO, Buchsbaum DJ, Gomez-Navarro J, et al. An adenovirus encodingproapoptotic Bax synergistically radiosensitizes malignant glioma. Int J RadiatOncol Biol Phys,2003,55(4):1037-50.
    [81]Sakakura C, Sweeney EA, Shirahama T, et al. Overexpression of bax sensitizeshuman breast cancer MCF-7cells to radiation-induced apoptosis. Int J Cancer,1996,67(1):101-5.
    [82]Maki Y, Asano H, Toyooka S, et al. MicroRNA miR-34b/c enhances cellularradiosensitivity of malignant pleural mesothelioma cells. Anticancer Res,2012,32(11):4871-5.
    [83]Ling C, Xie Y, Zhao D, et al. Enhanced radiosensitivity of non-small-cell lungcancer(NSCLC) by adenovirus-mediated ING4gene therapy. Cancer Gene Ther,2012,19(10):697-706.
    [84]Liu ZG, Liu L, Xu LH, et al. Bim-1induces radioresistance in MCF-7mammarycarcinoma cells. Oncol Rep,2012,27(4):1116-22.
    [85]Huang JH, Ling CH, Yang JC, et al. The in vitro and vivo effects ofadenovirus-mediated inhibitor of growth4and interleukin-24co-expression on theradiosensitivity of human lung adenocarcinoma. Zhonghua Jie He He Hu Xi ZaZhi,2011,34(6):413-8.
    [86]Eliseev RA, Zuscik MJ, Schwarz EM, et al. Saos2cells via inhibiton of NFkappaB:a role for c-Jun N-terminal kinase. J Cell Biochem,2005,96(6):1262-73.
    [87]Ryu S, Stein JP, Chung CT, et al. Enhanced apoptosis and radiosensitization bycombined13-cis-retinoic-retinoic acid and interferon-alpha2a; role of RAR-betagene. Int J Radiat Oncol Biol Phys,2001,1(3):785-90.
    [88]Zhang M, Siedow M, Saia G, et al. Inhibition of p21-activated kinase6(PAK6)increases radiosensitivity of prostate cancer cells. Prostate,2010,70(8):807-16.
    [1]Deorah S, Lynch CF, Sibenaller ZA, et al. Trends in brain cancer incidence andsurvival in the United States: Surceillance, Epidemiology, and End ResultsProgram,1973to2001[J]. Neurosurg Focus,2006,20(4): E1.
    [2]徐昊,王占祥等.脑胶质瘤的被动免疫治疗.中国肿瘤临床,2011,38(20):1295-1298.XU Hao, WANG Zhanxiang, et al. Passive Immunotherapy for Gliomas.Chinese Journal of Clinical Oncology,2011,38(20):1295-1298.
    [3]Zhang Y, Chao T, Li R, et al. MicroRNA-128inhibits glioma cells Proliferation bytargeting transcription factor E2F3a[J]. J Mol Med,2009,87(1):43-51.
    [4]Fan QW, Cheng C, Knight ZA, et al. EGFR signals to mTOR through PKC andindependently of Akt in glioma[J]. Sci Signal,2009,55(1):4.
    [5]Aguado T, Carracedo A, Julien B, et al. Cannabinoids induce glioma stem-like celldifferentiation and inhibit gliomagenesis[J]. J Biol Chem,2007,282(9):6854-6862.
    [6]秦丽娟,谷艳婷,王银环等.热疗上调细胞间隙连接通讯对胶质瘤侵袭性的影响及其机制. Chinese Pharmacological Bulletin,2011,27(12):1692~5.QIN Lijuan, ZHANG Zhiyong, WANG Yinhuan, et al.Influence of hyperther-miaup-regualated gap junctional intercellular communication on tumor invasivenessand its mechanism. Chinese Pharmacological Bulletin,2011,27(12):1692~5.
    [7]Kortmann RD.Radiotherapy in low-grade gliomas:pros[J]. Semin Oncol,2003,30(6Suppl19):29-33.
    [8]M Hingorani, C L White, V K Agrawal, et al. Combining Radiation and Cancer GeneTherapy: A Potential Marriage of Physical and Biological Targeting? Currentcancer drug targets.2007,7(4):389-409.
    [9]李伟,江其生等.细胞放射敏感性相关基因的研究进展.放射免疫学杂志,2009,22(2).LI Wei, JIANG Qisheng, et al. The research progress of cell radiosensitivityrelated genes. Journal of Radioimmunology,2009,22(2).
    [10]Henneuin C, Quero L, Favaudon V, et al. DNA repair and tumour radiosensitivity:focus on ATM gene. Bull Cancer,2011,98(3):239-46.
    [11]Cui BB, Liu M, Zhao P, et al. Radiosensitivity on colorectal neoplasmsbyrecombinant adenoviral-mediated wild-type p53gene. Zhonghua Waike Za Zhi(in Chinese),2005,43(15):1002-5.
    [12]Mariqnol L, Foley R, Southqate TD, et al. Hypoxia responseelement-drivencytosine deaminase/5-fluorocytosine gene therapy system: a highlyeffective approach to overcome the dynamics of tumor hypoxia and enhance theradiosensitivity of prostate cancer cells in vitro. J Gene Med,2009,11(2):169-79.
    [13]Yang J, Jin G, Liu X, et al. Therapeutic effect of pEgr-IL18-B7.2generadiotherapy in B16melanoma-bearing mice. Hum Gene Ther,2007,18(4),323-32.
    [14]张春丽,王荣福等.电离辐射诱导启动子Egr-1调控的基因放射治疗.肿瘤学杂志,2010,16(3)ZHANG Chunli, WANG Rongfu, et al. Genetic Radiotherapy Regulated by IonizingRadiation via Egr-1Promoter. Journal of Oncology,2010,16(3).
    [15]Xu XJ, Ding LH, Wang LX, et al. Construction of human of human Egr-1promoterand its response to ionizing radiation in tumor cells. Xi Bao Yu FenZi Mian Yi XueZa Zhi(in Chinese),200925(11):973-5.
    [16]Zaqurovskaya M, Shareef MM, Das A, et al. EGR-1forms a complex withYAP-1and upregulates Bax expression in irradiated prostate carcinoma cells. Oncogene,200928(8):1121-31.
    [17]郭睿,李彪等.早期生长反应基因1启动子介导肿瘤基因-放疗的研究进展.国家放射医学核医学杂志,2010,34(4).GUO Rui, LI Biao et al. The progress of tumor gene-radiotherapy induced by Egr-1promoter. International Journal Of Radiation Medicine and NuclearMedicine,2010,34(4).
    [18]Timiryasova TM, Gridley DS, Chen B, et al. Radiation enhances the antitumoreffects of vaccinia-P53gene therapy in glioma.Technol Cancer Res Treat,2003,2(3):223-35.
    [19]Hama S, Matsuura S, Tauchi H, et al. P16gene transfer increases cell killing withabnormal nucleation after ionising radiation in glioma cells. Br J Can-cer,2003,89(9):1802-11.
    [20]Okada H, Lieberman FS, Walter KA, et al. Autologous glioma cell vaccine admixedwith interleukin-4gene transfected fibroblasts in the treatment of patients withmalignant gliomas. J Transl Med,2007,5:67.
    [21]McBride WH, et al. Integration of adenovirus thymidine kinase suicide-genetherapywith surgery and radiation therapy for malignant glioma. Future Oncol.2012,8(1):17-20.
    [22]Pei Z, Chu L, Zou W, Zhang Z, et al. An oncolytic adenoviral vector of Smacincreases antitumor activity of TRAIL against HCC in human cells and in mice.Hepatology.2004May;39(5):1371-81.
    [23]Ngoi SM, Chien AC, Lee CG. Exploiting internal ribosome entry sites in genetherapy vector design. Curr Gene Ther.2004Mar;4(1):15-31.
    [24]He J, Shan Z, Li L, et al. Expression of glioma stem cell marker CD133andO6-methylguanine-DNA-methytransferase is associated with resistancetoradiotherapy in gliomas. Oncol Rep,2011,26(5):1305-13.
    [25]Gao L, Li F, Dong B, et al. Inhibition of STAT3and ErbB2supressestumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosisin glioma cells. Int J Radiat Oncol Biol Phys,2010,77(4):1223-31.
    [26]Gridley DS, Timiryasova TM, Miller GM, et al. Evaluation of TNF-alpha/Bax genetherapy and radiation against C6glioma xenografts. Technol Cancer Res Treat,2003,2(1):41-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700