ZIC1基因在结肠癌中的表观调控及其抑癌作用的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结肠癌是一种常见的消化系统恶性肿瘤,其发生发展涉及癌基因活化和抑癌基因失活。越来越多的证据表明表观遗传学改变与抑癌基因失活密切相关。表观遗传学改变主要包括DNA甲基化、组蛋白乙酰化和染色质重塑等,其中DNA高甲基化是抑癌基因失活的最重要机制之一。对表观遗传学的研究不但可以揭示结肠癌新的发病机制,并且还有助于疾病的早期临床诊断和预后判断。
     ZIC1是我们前期通过cDNA芯片技术筛选到的,具有胃癌抑制作用的重要基因,并且发现一系列结肠癌细胞中ZIC1沉默表达或表达明显下调,这种低表达与启动子区DNA高甲基化密切相关。ZIC1编码锌指转录因子,与脊椎动物发育密切相关,尤与脑组织和神经系统发育相关。近年来发现ZIC1还参与肿瘤的发生,如ZIC1与髓母细胞瘤、纤维瘤、脂肪肉瘤和子宫内膜癌的发生密切相关。
     本课题中,我们通过检测结肠癌组织和癌旁组织中ZIC1 mRNA的差异表达,并检测ZIC1启动子甲基化情况,以期探讨ZIC1在结肠癌中表达调控的可能机制及基因启动子甲基化检测对结肠癌临床诊断的潜在价值;同时通过外源性过表达ZIC1,明确其对结肠癌细胞的增殖、凋亡和细胞周期的影响及信号通路调控机制;最后采用表达谱芯片技术筛选ZIC1基因调控的下游关键基因并进行相关验证。
     方法和材料:
     1.使用实时定量RT-PCR(qRT-PCR)检测24例结肠癌及相应癌旁相对正常组织中ZIC1基因mRNA表达水平;用甲基化特异性PCR(MSP)检测40例结肠癌及癌旁相对正常组织的ZIC1基因启动子区DNA甲基化情况。
     2.细胞转染ZIC1和筛选后,采用克隆形成实验和细胞存活实验(MTS)观察过表达ZIC1对结肠癌细胞HCT116和HT29增殖的影响,采用流式细胞仪分析ZIC1对细胞凋亡和细胞周期的影响。
     3.利用Western blot检测ZIC1对增殖PI3K,MEK/Erk通路蛋白(Akt,Erk1/2)和凋亡调控通路关键蛋白(Bad,Bcl-xl,Caspase-3)表达的影响。
     4.HCT116细胞稳定转染pCDNA3.1-ZIC1和pCDNA3.1空白载体后,利用基因表达谱芯片技术检测人类肿瘤发生相关的多功能基因的变化情况,对其中10个候选靶基因分别在稳定转染ZIC1的HCT116和HT29细胞中进行qRT-PCR验证。
     结果:
     1.qRT-PCR结果显示:结肠癌组织中ZIC1 mRNA表达水平较癌旁相对正常组织明显下调(Wilcoxon配对检验,p=0.0001)。MSP检测发现结肠癌组织发生ZIC1启动子高频率甲基化(85%,34/40),而癌旁相对正常组织没有发生甲基化。
     2.过表达ZIC1后结肠癌细胞株(HCT116和HT29)克隆形成数较空载体对照组明显减少(p<0.01)。MTS增殖检测亦发现转染ZIC1后结肠癌细胞株(HCT116和HT29)的存活细胞数较空载体对照组明显减少(p<0.01)
     3.流式细胞仪检测发现转染ZIC1后,HCTl 16和HT29细胞的凋亡水平较空载体组显著增加(p<0.05),而细胞周期无明显改变(p>0.05)。转染ZIC1后结肠癌细胞(HCT116和HT29)增殖通路相关活性蛋白p-Akt,p-Erk1/2表达水平明显下调;凋亡级联反应蛋白Bad和活化片段Caspase3(cleaved-Caspase3)表达水平明显上调,而抗凋亡蛋白p-Bad和Bcl-xl表达水平下调。
     4.通过mircoarray技术筛选ZICl可能的下游调控基因,分析得到337个下调基因,95个上调基因。基因功能归类分析结果显示,差异表达的基因主要参与细胞增殖、细胞凋亡、细胞迁移、转录调控和信号转导等重要细胞活动。并对其中10个重要的靶基因(CCNA2, IGFBP3, ANGPT2, GADD45B, LAMB2, LAMB3, MALAT1, PNMA2,RPA4和TACSTD2),分别在稳定转染的HCT116和HT29细胞中进行了qRT-PCR验证,其结果与基因表达谱芯片分析吻合。
     结论:
     1.ZIC1在结肠癌组织中表达下调,并与启动子DNA高甲基化密切相关。
     2.体外试验证明ZIC1可抑制结肠癌细胞增殖,这一效应与抑制PI3K/Akt和MEK/Erk信号通路有关。过表达ZIC1可激活Bcl-xl/Bad/Caspase3信号级联反应,促进结肠癌细胞凋亡。
     3.ZIC1可能通过调控多个细胞生命活动相关功能基因,从而影响结肠癌的发生发展。
Colon cancer (CRCs) is one of the most common malignant tumors in digestive diseases system. The development of CRCs is associated with the activation of oncogenes, as well as the inactivation of tumor suppressor genes. There were growing evidences suggested that the inactivation of tumor suppressor genes was closely related to the epigenetic changes, which including DNA methylation,, histone acetylation, and chromatin remodeling and so on. Among these, DNA methylation is considered as one of most important mechanisms. Study on these epigenetic events not only may reveal new pathogenesis of colon cancer, but also contribute to explore novel biomarkers of early detection and prognosis prediction of CRCs.
     We have previously found that ZIC1 is one of novel tumor suppressor candidates in gastric cancer through cDNA microarray. ZIC1 expression was also found to be silenced or significant downregulation in a panel of colon cancer cell lines, and DNA hypermethylation of ZIC1 promoter was related with its downregulation expression. ZIC1 gene encodes zinc finger transcription factor and plays a crucial role in development of nervous system. Recently, studies have demonstrated that ZIC1 participated in tumor progression, including medulloblastomas, desmoid tumors, liposarcomas and endometrial cancers.
     In this study, we sought to determine the possible regulation of ZIC1 exprssion and its potential utility of promoter methylation as a biomarker for differenential dignosis between colon cancer and adjacent non-tumor tissues. We evaluate the effect on proliferation, apoptosis and cell cycle of colon cancer cells by ectopic expression of ZIC1, and investigate the signaling pathways of these regulations. Finally, we testify the downstream targets of ZIC1 by cDNA microarray screening and qPCR validation.
     Materials and Methods:
     1. ZIC1 mRNA expression of 24 paired colon cancer and adjacent non tumor tissues were analyzed by quantitative RT-PCR (qRT-PCR), and ZIC1 promoter methylation status were detected by methylation specific PCR (MSP) in 40 paired colon cancer and adjacent non-tumor tissues.
     2. To determine the effect on cell proliferation, we performed colony formation and cell viability assays in HCT116 and HT29 which tranfected with ZICl or empty vector. Meanwhile, we analyzed the effect on cell apoptosis and cell cycle after ectopic exprssion of ZIC1 by flow cytometry analysis.
     3. We determined the expression of the PI3K/Akt, MEK/Erk pathway kinases (Akt, Erkl/2) and the apoptosis regulatory proteins (Bad, Bcl-xl, Caspase-3) by western blot.
     4. Microarray studies were employed to identify differential expression of those genes involving in tumorigenesis by ZIC1. We validated 10 candidate target genes in stable transfection cell lines (HCT116 and HT29) by qRT-PCR
     Result:
     1. QRT-PCR results showed that the level of ZIC1 mRNA was significantly decreased in colon cancer tissues relative to adjacent non-tumor tissues (Wilcoxon.matched paired tests, p=0.0001,n=24). Furthermore, methylation of ZIC1 gene promoter was frequently detected in primary tumor tissues (85%,34/40), but not in adjacent non-tumor tissues.
     2. The number of surviving colonies formed was significantly reduced by overexpression ZIC1 in colon cancer cells (HCT116 and HT29) when compared with the control vector transfectants (p<0.01). Moreover, MTS assay showed that the survival cells were markedly decreased in cells (HCT116 and HT29) transfected with ZIC1 when compared with vector (p<0.01). Ectopic expression of ZIC1 could induce cell apoptosis, while not affect on cell cycle.
     3. Ectopic expression of ZIC1 could suppress the expression of phosphorylation of Erk1/2 and Akt, as well as phosphorylation of Bad and Bcl-xl, while activate the Bad and cleaved-Caspase-3.
     4. Results revealed that 337 genes were downregulated and 95 genes were upregulated by ZIC1 in colon cancer cells. Many of these genes have been reported to play important roles in cell proliferation, cell apoptosis, cell migration, transcriptional regulation and signal transduction. We validated the expression pattern in 10 selected genes (CCNA2, IGFBP3, ANGPT2, GADD45B, LAMB2, LAMB3, MALAT1, PNMA2, RPA4, TACSTD2) in colon cancer cells HCT116 and HT29 transfected with ZIC1 by qRT-PCR. These datas were concordant with that obtained from the microarray analysis.
     Conclusion:
     1. Downregulation of ZIC1 is associated with promoter DNA hypermethylation in colon cancer tissues.
     2. ZIC1 could inhibit cell proliferation by inactiviation of PI3K/AKT and MEK/Erk pathways, and induced cell apoptosis by regulating Bcl-xl/Bad/Caspase-3 cascades.
     3. ZIC1 may participate in the progression of colon cancer by modulating those functional genes involved in cellular activities.
引文
[1]. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009 [J]. CA Cancer J Clin,2009, 59(4):225-49.
    [2]. Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer [J]. Cancer Metastasis Rev,2010,29(1):181-206.
    [3].潘志忠.结直肠癌流行病学研究及治疗新进展.会议论文,2007,《全国胃肠道癌术后腹腔淋巴化疗联合静脉化疗的临床推广学习班暨专题研讨会》
    [4]. Smith RA, Cokkinides V, Brawley OW. Cancer Sereeing in the United States,2008:a review of Current American Cancer Society guidelines and cancer screening [J]. CA Cancer J Clin,2008,58(3):161-79.
    [5].郑树.结直肠癌早期诊断筛查的转化性研究[J].中华胃肠外科杂志,2010,13(1):4-6.
    [6]..Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis [J]. Gastroenterology,2008,135(4):1079-1099.
    [7]. Esteller M. Epigenetics in cancer [J]. N Engl J Med,2008,358(11):1148-1159.
    [8]. Plass-C. Cancer epigenomics [J]. Hum Mol Genet,2002,11(20):2479-2488..
    [9]. Sugimura T, Ushijma T. Genetic and epigenetic alterations in carcinogenesis [J]. Mutat Res,2000,462(23):235-246.
    [10]. Fakai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22 [J]. Proc Nail Acad Sci USA,2002,99(6):3740-3745.
    [11]. Wang Y, Leung F C. An evaluation of new criteria for CpG islands in the human genome as gene markers [J]. Bioinformatics,2004,20(7):1170-1177.
    [12]. Larsen F, Gundersen G, Lopez R, et al. CpG islands as gene markers in the human genome [J].Genomics,1992,13(4):1095-1107.
    [13]. Richard L. Momparler* and Veronica B. DNA methylation and cancer [J]. Journal of cellular physiology,2000,183:145-154.
    [14]. Esteller M, Fraga MF, Guo M, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis [J]. Hum Mol Genet,2001,10(26):3001-3007.
    [15]. Qureshi Sa, Bashir Mu, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer [J]. Int J Surg,2010,8(3):194-198.
    [16]. Wang LJ, Jin HC, Wang X, et al. ZIC1 is downregulated through promoter hypermethylation in gastric cancer [J]. Biochem Biophys Res Commun,2009, 379(4):959-963.
    [17]. Lihong Gan, Shujie Chen, Jing Zhong, et al. ZIC1 is downregulated through promoter hypermethylation, and functions as a tumor suppressor gene in colorectal cancer [J]. PLoS One,2011,6:e16916.
    [18]. Aruga, J, Yokota, N, Hashimoto, M, et al. A novel zinc finger protein zic is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells [J]. J.Neurochem,1994,63(5):1880-1890.
    [19]. Aruga J, Nozaki Y, Hatayama M, et al. Expression of ZIC family genes in meningiomas and other brain tumors [J]. BMC Cancer,2010,10:79.
    [20]. Grinberg I, Millen KJ. The ZIC gene family in development and disease [J]. Clin Genet,2005,67(4):290-296.
    [21]. Michiels EM, Oussoren E, Van Groenigen M, et al. Genes differentially expressed in medulloblastoma and fetal brain [J]. Physiol Genomics,1999,1(2):83-91.
    [22]. Wong YF, Cheung TH, Lo KW, et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling [J]. Oncogene,2007,26(13),1971-1982.
    [23]. Pourebrahim R, Van Dam K, Bauters M, et al. ZIC1 gene expression is controlled by DNA and histone methylation in mesenchymal proliferations [J]. FEBS Letters,2007, 581(26),5122-5126.
    [24]. Brill E, Gobble R, Angeles C, et al.ZIC1 overexpression is oncogenic in liposarcoma [J]. Cancer Res,2010,70(17):6891-901.
    [25]. Yokota N, Aruga J, Takai S, et al.Predominant Expression of Human Zic in Cerebellar Granule Cell Lineage and Medulloblastoma [J]. Cancer Res,1996,56(2):377-383.
    [26]. Nagai T, Aruga J, Takada S, Gunther T, et al. The expression of the mouse Zicl, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation [J]. Dev Biol,1997,182(2):299-313.
    [27]. Esteller M. Epigenetics in Cancer [J]. N Engl J Med,2008,358(11):1148-59.
    [28]. Taberlay PC, Jones PA. DNA methylation and cancer [J]. Prog Drug Res,2011, 67:1-23.
    [29]. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J]. Cell,2006,125(2),315-326.
    [30]. Tohyama J, Kato M, Kawasaki S, et al. Dandy-Walker malformation associated with heterozygous ZIC1 and ZIC4 deletion:Report of a new patient [J]. Am J Med Genet A, 2011,155(1):130-133.
    [31]. Merzdorf CS. Emerging roles for zic genes in early development [J]. Development Dynamics,2007,236(4):922-940.
    [32]. Aruga J, Minowa O, Yaginuma H, et al. Mouse ZIC1 is involved in cerebellar development [J]. J. Neurosci,1998,18(1):284-293.
    [33]. Liao Y, Hung MC. Physiological regulation of Akt activity and stability [J]. Am J Transl Res,2010,2(1):19-42.
    [34]. Tokunaga E, Oki E, Egashira A, et al. Deregulation of the Akt Pathway in Human Cancer [J]. Current Cancer Drug Targets,2008,8(1):27-36.
    [35]. Mebratu Y, Tesfaigzi Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer [J]? Cell Cycle,2009,8(8):1168-1175.
    [36]. Aruga J. The role of Zic genes in neural development [J]. Mol Cell Neurosci,2004, 26(2):205-221.
    [37]. Koyabu Y, Nakata K, Mizugishi K, et al. Physical and functional interactions between Zic and Gli proteins [J]. J Biol Chem,2001,276(10):6889-6892.
    [38]. Ruizi Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, sternness and cancer [J]. Trends Cell Biol,2007,17(9):438-447.
    [39]. Ebert PJ, Timmer JR, Nakada Y, et al. Zicl represses Mathl expression via interactions with the Mathl enhancer and modulation of Mathl autoregulation [J]. Development,2003,130(9):1949-1959.
    [40]. Aruga J, Inoue T, Hoshino J, et al. Zic2 Controls Cerebellar Development in Cooperation with Zicl [J]. J Neurosc,2002,22(1):218-225.
    [41]. Yuan J, Horvitz HR. A first insight into the molecular mechanisms of apoptosis [J]. Cell,2004,116(2S):S53-S56.
    [42]. Li X, Zhang Q, Cai L, Wang Y, et al. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria apoptosis pathway [J]. J Cancer Res Clin Oncol,2009,135(6):829-835.
    [43]. Soriano ME, Scorrano L.The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis [J]. Adv Exp Med Biol,2010, 687:97-114.
    [44]. Moffitt KL, Martin SL, Walker B. From sentencing to execution--the processes of apoptosis [J]. J Pharm Pharmacol,2010,62(5):547-562.
    [45]. Yeatman TJ. The future of clinical cancer management one tumor, one chip [J]. Am Surg,2003,69(1) 41-44.
    [46]. Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK [J]. Cell,1998, 95(4):521-530.
    [47]. Papa S, Zazzeroni F, Bubici C, et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2 [J]. Nat Cell Biol,2004, 6(2):146-153.
    [48]. Qiu W, Zhou B, Chu PG, et al. The Induction of Growth Arrest DNA Damage-Inducible Gene 45_in Human Hepatoma Cell Lines by S-Adenosylmethionine [J]. The American Journal of Pathology,2007,171(1): 287-296.
    [49]. Vasaturo F, Dougherty GW, Cutler ML. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells [J]. Breast Cancer Res Treat,2000,61(1):69-78.
    [50]. Wang J, Day R, Dong Y, et al. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers [J]. Mol Cancer Ther,2008,7(2): 280-285.
    [51]. Muhlmann G, Spizzo G, Gostner J, et al. TROP2 expression as prognostic marker for gastric carcinoma [J]. J Clin Pathol,2009,62(2):152-158.
    [52]. Etoh T, Inoue H, Tanaka S, et al. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma:possible in vivo regulation via induction of proteases [J]. Cancer Res,2001,61(5):2145-2153.
    [53]. Helfrich I, Edler L, Sucker A, et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma [J]. Clin Cancer Res,2009,15(4): 1384-1392.
    [54]. Merzdorf CS, Sive HL. The zicl gene is an activator of Wnt signaling [J]. Int J Dev Biol,2006,50(7):611-617.
    [55]. Phelps RA, Broadbent TJ, Stafforini DM, et al. New perspectives on APC control of cell fate and proliferation in colorectal cancer [J]. Cell Cycle,2009,8(16):2549-56.
    [1]Aruga, J, Yokota, N, Hashimoto, M, et al. A novel zinc finger protein zic is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells [J]. J.Neurochem,1994,63(5):1880-1890.
    [2]Yokota N, Aruga J, Takai S, et al.Predominant Expression of Human Zic in Cerebellar Granule Cell Lineage and Medulloblastoma [J]. Cancer Res,1996, 56(2):377-383.
    [3]Jun Arugal*, Yayoi Nozakil, Minoru Hatayamal,et al. Expression of ZIC family genes in meningiomas and other brain tumors [J].BMC Cancer,2010,10:79.
    [4]Grinberg I, Millen KJ. The ZIC gene family in development and disease [J]. Clin Genet,2005,67(4),67:290-296.
    [5]周畅,李麓芸.C2H2型锌指蛋白的研究进展[J].生命科学研究,2004,8(3),67:215-220.
    [6]McMahon AR, Merzdorf CS. Expression of the zicl, zic2, zic3, and zic4 genes in early chick embryos [J]. BMC Res Notes,2010,3:167.
    [7]Tohyama J, Kato M, Kawasaki S, et al. Dandy-Walker malformation associated with heterozygous ZIC1 and ZIC4 deletion:Report of a new patient [J]. Am J Med Genet A,2011,155(1):130-133.
    [8]Michiels EM, Oussoren E, Van Groenigen M, et al. Genes differentially expressed in medulloblastoma and fetal brain [J]. Physiol Genomics,1999, 1(2):83-91.
    [9]Pourebrahim R, Van Dam K, Bauters M, et al. ZIC1 gene expression is controlled by DNA and histone methylation in mesenchymal proliferations [J]. FEBS Letters,2007,581(26),5122-5126.
    [10]Brill E, Gobble R, Angeles C, et al.ZIC1 overexpression is oncogenic in liposarcoma [J]. Cancer Res,2010,70(17):6891-6901
    [11]Wong YF, Cheung TH, Lo KW, et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling [J]. Oncogene,2007,26(13),1971-1982.
    [12]Wang LJ, Jin HC, Wang X, et al. ZIC1 is downregulated through promoter hypermethylation in gastric cancer [J]. Biochem Biophys Res Commun,2009, 379(4):959-963.
    [13]Nagai T, Aruga J, Takada S, et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation [J]. Dev Biol,1997,182(2):299-313.
    [14]Aruga J, Minowa O, Yaginuma H, et al. Mouse ZIC1 is involved in cerebellar development [J]. J. Neurosci,1998,18(1):284-293.
    [15]Ogura H, Aruga J, and Mikoshiba K. Behavioral Abnormalities of ZIC1 and Zic2 Mutant Mice:Implications as Models for Human Neurological Disorders [J]. Behav Genet,2001,31(3):317-324.
    [16]Aruga J, Tohmonda T, Homma S, et al. Zicl promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation [J]. Dev Biol,2002,244(2):329-341.
    [17]Maurus D, Harris WA. Zic-associated holoprosencephaly:zebrafish Zic1 controls midline formation and forebrain patterning by regulating Nodal, Hedgehog, and retinoic acid signaling [J]. Genes Dev,2009,23(12):1461-1473.
    [18]Kalogeropoulos M, Varanasi SS, Olstad OK, et al. Zic1 transcription factor in bone:neural developmental protein regulates mechanotransduction in osteocytes [J]. FASEB J,2010; 24(8):2893-2903.
    [19]Denys H, Jadidizadeh A, Amini Nik S, et al. Identification of IGFBP-6 as a significantly downregulated gene by bate-catenin in desmoid tumors [J]. Oncogene,2004,23(3),654-664.
    [20]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer [J]. Nat Rev Genet,2002,3(6):415-28.
    [21]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation [J]. N Engl J Med,2003,349(21):2042-54.
    [22]M. Esteller. Epigenetics in cancer [J]. N Engl J Med,2008,358(11):1148-1159.
    [23]Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J]. Cell,2006,125(2), 315-326.
    [24]Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells [J]. Nature,2007,448(7153):553-560.
    [25]Aruga J. The role of Zic genes in neural development [J]. Mol Cell Neurosci, 2004,26(2):205-21.
    [26]Koyabu Y, Nakata K, Mizugishi K, et al. Physical and functional interactions between Zic and Gli proteins [J]. J Biol Chem,2001,276(10):6889-6892.
    [27]Ruiz i Altaba A, Mas C, Stecca B. The Gli code:an information nexus regulating cell fate, stemness and cancer [J]. Trends Cell Biol,2007,17(9):438-447.
    [28]Merzdorf CS, Sive HL. The ZIC1 gene is an activator of Wnt signaling [J]. Int J Dev Biol,2006,50(7):611-617.
    [29]Degreef I, De Smet L, Sciot R, et al.Immunohistochemical evidence for Zicl coexpression with beta-catenin in the myofibroblast of Dupuytren disease [J]. Scand J Plast Reconstr Surg Hand Surg,2009,43(1):36-40.
    [30]Ebert PJ, Timmer JR, Nakada Y, et al. Zicl represses Mathl expression via interactions with the Mathl enhancer and modulation of Mathl autoregulation [J]. Development,2003,130(9):1949-1959.
    [31]Aruga J, Inoue T, Hoshino J, et al. Zic2 Controls Cerebellar Development in Cooperation with Zicl [J]. J Neurosc,2002,22(1):218-225.
    [32]Malumbres M, Barbacid M. To cycle or not to cycle:a critical decision in cancer [J]. Nature Rev,2001,1(3):223-231.
    [33]Cornish EJ, Hassan SM, Martin JD, et al. A microarray screen for direct targets of Zicl.Identifies an aquaporin gene, aqp-3b, expressed in the neural folds [J]. Dev Dyn,2009,238(5):1179-1194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700