1型单纯疱疹病毒间层蛋白VP22的转录调控功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1型单纯疱疹病毒(Herpes simplex virus type 1, HSV-1)是一类对人类具有很强感染性的病毒,人类是其唯一的宿主,世界各地约45%以上的人曾感染过HSV-1。HSV-1原发感染后,机体虽然能够产生特异性免疫反应,但并不能彻底消除病毒,病毒以潜伏感染的形式终生存在于宿主神经细胞内,在一定状态下可以被重新激活而启动新一轮的裂解性感染。HSV-1基因以级联反应的方式表达,根据基因表达时序的不同,病毒基因被分为立即早期基因(α基因)、早期基因(β基因)和晚期基因(γ基因)。由于HSV-1基因表达方式的特殊性,它已被作为研究真核基因表达调控的模型和工具。
     除了DNA核心、核衣壳、包膜三种结构外,HSV-1还具有一种特殊的结构,即无定形的蛋白层——间层。虽然这20余种间层蛋白约占病毒体积的50%,并且许多间层蛋白以高拷贝数存在(1000~2500个/病毒颗粒),但是人们对这类蛋白的系统认识仅处于起步阶段。其中,VP22便作为一种在HSV-1中以高拷贝数存在的间层蛋白(2400个/病毒颗粒)而受到研究者的关注。迄今为止,对VP22的研究结果表明VP22对HSV-1的装配以及病毒颗粒的形成具有重要的支持意义。本研究以间层蛋白VP22的体外转录调控功能分析为切入点,首次揭示了VP22的普遍转录抑制效应,并初步探讨了VP22普遍转录抑制效应的可能机制;此外,还首次证明了VP22能显著抑制α蛋白ICP0的转录促进活性,并深入探讨了VP22、ICP0、组蛋白乙酰化酶(histone acetyltransferases, HAT) PCAF三者间的相互作用与VP22抑制ICP0的转录促进作用之间的密切联系。实验结果显示,VP22高表达在HSV-1感染Vero细胞后的一定时间内抑制HSV-1α、β和γ基因的转录;同时,VP22高表达在HSV-1感染Vero细胞后的一定时间内也抑制HSV-1的生长增殖能力。体外转录调控功能分析显示,VP22在一定范围内呈剂量效应关系普遍抑制HSV-1α、β和γ基因启动子的转录活性;此外,VP22也可以在一定范围内呈剂量效应关系,消除ICP0利用PCAF的有关功能而针对β、γ基因的转录促进作用。而VP22羧基端(151~301aa)是VP22行使其转录抑制功能的决定性功能域。初步探讨发现,募集组蛋白去乙酰化酶(histone deacetyltransferases, HDAC)并非为VP22普遍抑制病毒启动子转录的机制。进一步研究VP22、ICP0、PCAF三者间的相互作用表明,VP22能分布于细胞核与细胞质中,VP22通过其羧基端(151~301aa)与ICP0的环指区发生相互作用,VP22与PCAF间不存在相互作用。此外,VP22能竞争性抑制PCAF与ICP0环指区的结合。利用染色质免疫沉淀技术,我们进一步发现,在HSV-1感染过程中,VP22本身不能改变病毒基因启动子区组蛋白H3第14位赖氨酸(H3K14)的乙酰化状态,但却能显著抑制ICP0通过其环指区促进病毒基因启动子区组蛋白H3K14乙酰化修饰的功能。然而ICP0与VP22对Vero细胞总组蛋白H3K14的乙酰化修饰均无影响。
     基于上述的实验结果,我们建立了一个关于调控病毒基因转录的VP22、ICP0、PCAF三种蛋白间相互作用的模型:ICP0通过其环指区与PCAF结合而增强病毒基因启动子区组蛋白的乙酰化修饰,继而引发ICP0依赖PCAF的转录促进作用;而VP22羧基端与ICP0环指区的相互作用能竞争性抑制PCAF与ICP0环指区的结合,结果导致VP22显著抑制ICP0通过其环指区与PCAF结合而增强的病毒基因启动子区组蛋白的乙酰化修饰,最终造成VP22显著抑制ICP0依赖PCAF促进病毒基因转录的生物学效应。
Herpes simplex virus type 1 is a kind of highly infectious pathogen for human which is the only host. And at least 45 percentage of the world's population are infected with HSV-1. In its primary infection, HSV-1, which is able to induce the specific immune response of individual, can keep its long time existence in neurons of host through latent state. It will be reactivated to a lytic infection again under some certain conditions. During its replication, this viral gene expression is coordinately regulated and sequentially ordered in a cascade manner. According the sequence of gene expression, HSV-1 genes are designated asagenes,βgenes andygenes. Based on this understanding, HSV-1 is an important model for expressional regulation of eukaryotic genes.
     Besides core, capsid and envelope, HSV-1 has an unstructured proteinacous layer called the tegument. Although these more than 20 different kinds of tegument proteins are about 50 percentage of the viral volume and many tegument proteins have a large number of copies (1000-2500 molecules/virion), there is little systematic knowledge regarding these tegument proteins. VP22 has received notable attention for its large number of molecules in each polypeptide per virion (2400 molecules/virion). At present, VP22 is confirmed to be important for virus assembly and virus structure. Based on findings of its transcriptional regulatory functions in chloramphenicol acetyltransferase (CAT) assay, this study revealed the global transcriptional inhibitory effect of VP22 for the first time, and then analyzed the mechanisms. In addition, this study also illuminated VP22 repressing a protein ICPO transcriptional activation that attributed to the interactions of VP22, ICPO and histone acetyltransferases (HAT) PCAF. The results are shown as follow. During HSV-1 infection, overexpressed VP22 inhibited the transcriptions of HSV-1α,βand y genes during a period of time, and inhibited HSV-1 replication in Vero cells during a period of time. The CAT assay indicated that VP22 exerts a dose-dependent transcriptional inhibitory effect on HSV-1α,βand y gene promoters, and VP22 is capable of eliminating the ICPO transcriptional activation mediated by PCAF onβandγgene promoters in a dose-dependent manner. Carboxyl terminus of VP22 was absolutely required for its transcriptional inhibitory functions. And VP22 transcriptional repressive functions were not involved in recruiting histone deacetyltransferases. In analysis of interactions of VP22, ICPO, and PCAF, the results indicated that VP22 localizes in cytoplasm and nuclei, and carboxyl terminus of VP22 interacts with the RING finger domain of ICPO, but not PCAF. It was important that VP22 is able to competitively inhibit the interaction of PCAF and the ICPO RING finger domain. Chromatin Immunoprecipitation analyses revealed that VP22 do not impact the levels of acetylated histone H3K14 at virus promoters during HSV-1 infection, but VP22 can repress the enrichment of acetylated histones H3K14 at virus promoters dependent on the the ICPO RING finger domain. However, both ICPO and VP22 didn't alter global pattern of acetylated histones H3K14 in Vero cells.
     Based on our studies, we summarize a protein-protein interaction model of VP22, ICPO and PCAF. On one hand, enrichment of acetylated histones at virus promoters mediated by interaction of the ICPO RING finger domain and PCAF leads to transcriptional activation. On the other hand, VP22 competitively inhibits the interaction of PCAF and the ICPO RING finger domain, which contributes to VP22 represses ICPO and PCAF-mediated enrichment of acetylated histones at virus promoters. And as a result, VP22 eliminates the ICPO transcriptional activation dependent on PCAF.
引文
[1]李琦涵,姜莉.人类疱疹病毒的病原生物学[M].北京:化学工业出版社,2009:1.
    [2]Fields BN, Knipe DM, Howley PM. Fields Virology [M]. Philadelphia:Lippincott-Raven, 1996:2231-2295.
    [3]Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins [J]. J Virol,1974,14(1):8-19.
    [4]Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis:sequential transition of polypeptide synthesis requires functional viral polypeptides [J]. Proc Natl Acad Sci USA, 1975,72(4):1276-1280.
    [5]Mettenleiter TC. Budding events in herpesvirus morphogenesis [J]. Virus Res,2004,106(2):167-180.
    [6]Mettenleiter TC. Herpesvirus assembly and egress [J]. J Virol,2002,76(4):1537-1547.
    [7]Homa FL, Brown JC. Capsid assembly and DNA packaging in herpes simplex virus [J]. Rev Med Virol,1997,7(2):107-122.
    [8]Kristie TM, Sharp PA. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein [J]. Genes Dev,1990,4(12B):2383-2396.
    [9]Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides [J]. J Biol Chem,1995,270(9):4387-4394.
    [10]Smiley JR, Elgadi MM, Saffran HA. Herpes Simplex Virus Vhs Protein [J]. Methods Enzymol,2001,342:440-451.
    [11]Blaho JA, Mitchell C, Roizman B. An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0,4,22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products [J]. J Biol Chem,1994,269(26):17401-17410.
    [12]Elliott G, O'Reilly D, O'Hare P. Phosphorylation of the herpes simplex virus type 1 tegument protein VP22 [J]. Virology,1996,226(l):140-145.
    [13]Morrison EE, Wang YF, Meredith DM. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument [J]. J Virol,1998,72(9):7108-7114.
    [14]Yedowitz JC, Kotsakis A, Schlegel EF, Blaho JA. Nuclear localizations of the herpes simplex virus type 1 tegument proteins VP13/14, vhs, and VP16 precede VP22-dependent microtubule reorganization and VP22 nuclear import [J]. J Virol,2005,79(8):4730-4743.
    [15]Elliott G, Mouzakitis G, O'Hare P. VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells [J]. J Virol,1995,69(12):7932-7941.
    [16]Taddeo B, Sciortino MT, Zhang W, Roizman B. Interaction of herpes simplex virus RNase with VP16 and VP22 is required for the accumulation of the protein but not for accumulation of mRNA [J]. Proc Natl Acad Sci USA,2007,104(29):12163-12168.
    [17]Chi JH, Harley CA, Mukhopadhyay A, Wilson DW. The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids [J]. J Gen Virol,2005,86(Pt 2):253-261.
    [18]O'Regan KJ, Bucks MA, Murphy MA, Wills JW, Courtney RJ. A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE) [J]. Virology,2007,358(1):192-200.
    [19]van Leeuwen H, Okuwaki M, Hong R, Chakravarti D, Nagata K, O'Hare P. Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT [J]. J Gen Virol,2003,84(Pt 9):2501-2510.
    [20]Elliott G, O'Hare P. Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules [J]. J Virol,1998,72(8):6448-6455.
    [21]van Leeuwen H, Elliott G, O'Hare P. Evidence of a role for nonmuscle myosin Ⅱ in herpes simplex virus type 1 egress [J]. J Virol,2002,76(7):3471-3481.
    [22]Schwarze SR, Hruska KA, Dowdy SF. Protein transduction:unrestricted delivery into all cells? [J]. Trends Cell Biol,2000,10(7):290-295.
    [23]Sciortino MT, Taddeo B, Poon AP, Mastino A, Roizman B. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection [J]. Proc Natl Acad Sci U S A,2002,99(12):8318-8323.
    [24]Martin A, O'Hare P, McLauchlan J, Elliott G. Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding [J]. J Virol,2002,76(10):4961-4970.
    [25]Hafezi W, Bernard E, Cook R, Elliott G. Herpes simplex virus tegument protein VP22 contains an internal VP16 interaction domain and a C-terminal domain that are both required for VP22 assembly into the virus particle [J]. J Virol,2005,79(20):13082-13093.
    [26]Aints A, Guven H, Gahrton G, Smith CI, Dilber MS. Mapping of herpes simplex virus-1 VP22 functional domains for inter-and subcellular protein targeting [J]. Gene Ther,2001,8(14):1051-1056.
    [27]Elliott G, Hafezi W, Whiteley A, Bernard E. Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICPO [J]. J Virol,2005,79(15):9735-9745.
    [28]Watson RJ, Clements JB. A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis [J]. Nature,1980,285(5763):329-330.
    [29]O'Hare P, Hayward GS. Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation [J]. J Virol,1985,56(3):723-733.
    [30]Gu B, Kuddus R, DeLuca NA. Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB [J]. Mol Cell Biol,1995,15(7):3618-3626.
    [31]Kuddus R, Gu B, DeLuca NA. Relationship between TATA-binding protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex formation and repression of transcription [J]. J Virol,1995,69(9):5568-5575.
    [32]Carrozza MJ, DeLuca NA. Interaction of the viral activator protein ICP4 with TFIID through TAF250 [J]. Mol Cell Biol,1996,16(6):3085-3093.
    [33]Grondin B, DeLuca N. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA [J]. J Virol,2000,74(24):11504-11510.
    [34]Sandri-Goldin RM. Interactions between a herpes simplex virus regulatory protein and cellular mRNA processing pathways [J]. Methods,1998,16(1):95-104.
    [35]Mears WE, Rice SA. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation [J]. J Virol,1996,70(11):7445-7453.
    [36]Bryant HE, Matthews DA, Wadd S, Scott JE, Kean J, Graham S, et al. Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32 [J]. J Virol,2000,74(23):11322-11328.
    [37]Hardy WR, Sandri-Goldin RM. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect [J]. J Virol,1994,68(12):7790-7799.
    [38]Soliman TM, Sandri-Goldin RM, Silverstein SJ. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins [J]. J Virol,1997,71(12):9188-9197.
    [39]Sears AE, Halliburton IW, Meignier B, Silver S, Roizman B. Herpes simplex virus 1 mutant deleted in the alpha 22 gene:growth and gene expression in permissive and restrictive cells and establishment of latency in mice [J]. J Virol,1985,55(2):338-346.
    [40]Rice SA, Long MC, Lam V, Schaffer PA, Spencer CA. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program [J]. J Virol,1995,69(9):5550-5559.
    [41]Cun W, Hong M, Liu LD, Dong CH, Luo J, Li QH. Structural and functional characterization of herpes simplex virus 1 immediate-early protein infected-cell protein 22 [J]. J Biochem,2006,140(1):67-73.
    [42]Everett RD, Barlow P, Milner A, Luisi B, Orr A, Hope G, et al. A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family [J]. J Mol Biol,1993,234(4):1038-1047.
    [43]Freemont PS. The Ring Finger. A Novel Protein Sequence Motif Related to the Zinc Finger [J]. Ann N YAcadSci,1993,684:174-192.
    [44]Freemont PS, Hanson IM, Trowsdale J. A novel cysteine-rich sequence motif [J]. Cell,1991,64(3):483-484.
    [45]Everett RD. Analysis of the functional domains of herpes simplex virus type 1 immediate-early polypeptide Vmw110[J]. J Mol Biol,1988,202(1):87-96.
    [46]Ciufo DM, Mullen MA, Hayward GS. Identification of a dimerization domain in the C-terminal segment of the IE110 transactivator protein from herpes simplex virus [J]. J Virol,1994,68(5):3267-3282.
    [47]Everett RD, Orr A, Elliott M. High level expression and purification of herpes simplex virus type 1 immediate early polypeptide Vmw 110 [J]. Nucleic Acids Res,1991,19(22):6155-6161.
    [48]Meredith M, Orr A, Everett R. Herpes simplex virus type 1 immediate-early protein Vmw110 binds strongly and specifically to a 135-kDa cellular protein [J]. Virology,1994,200(2):457-469.
    [49]Meredith M, Orr A, Elliott M, Everett R. Separation of sequence requirements for HSV-1 Vmw110 multimerisation and interaction with a 135-kDa cellular protein [J]. Virology,1995,209(1):174-187.
    [50]Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein [J]. Embo J,1997,16(7):1519-1530.
    [51]Perry LJ, Rixon FJ, Everett RD, Frame MC, McGeoch DJ. Characterization of the Ie110 Gene of Herpes Simplex Virus Type 1 [J]. J Gen Virol,1986,67 (Pt 11):2365-2380.
    [52]Ackermann M, Braun DK, Pereira L, Roizman B. Characterization of herpes simplex virus 1 alpha proteins 0,4, and 27 with monoclonal antibodies [J]. J Virol,1984,52(1):108-118.
    [53]Marsden HS, Stow ND, Preston VG, Timbury MC, Wilkie NM. Physical mapping of herpes simplex virus-induced polypeptides [J]. J Virol,1978,28(2):624-642.
    [54]Cai W, Schaffer PA. Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells [J]. J Virol,1992,66(5):2904-2915.
    [55]Chen J, Silverstein S. Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression [J]. J Virol,1992,66(5):2916-2927.
    [56]Gelman IH, Silverstein S. Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene [J]. Proc Natl Acad Sci U S A,1985,82(16):5265-5269.
    [57]Nabel GJ, Rice SA, Knipe DM, Baltimore D. Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells [J]. Science,1988,239(4845):1299-1302.
    [58]Quinlan MP, Knipe DM. Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions [J]. Mol Cell Biol,1985,5(5):957-963.
    [59]Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, et al. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency [J]. J Virol,1989,63(2):759-768.
    [60]Harris RA, Everett RD, Zhu XX, Silverstein S, Preston CM. Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system [J]. J Virol,1989,63(8):3513-3515.
    [61]Coleman HM, Connor V, Cheng ZS, Grey F, Preston CM, Efstathiou S. Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICPO-mediated de-repression [J]. J Gen Virol,2008,89(Pt 1):68-77.
    [62]Preston CM. Repression of viral transcription during herpes simplex virus latency [J]. J Gen Virol,2000,81(Pt1):1-19.
    [63]Everett RD, Maul GG. HSV-1 IE protein Vmw110 causes redistribution of PML [J]. Embo J,1994,13(21):5062-5069.
    [64]Negorev D, Maul GG. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot [J]. Oncogene,2001,20(49):7234-7242.
    [65]Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICPO [J]. J Virol,2006,80(16):7995-8005.
    [66]Tavalai N, Papior P, Rechter S, Leis M, Stamminger T. Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections [J]. J Virol,2006,80(16):8006-8018.
    [67]Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections [J]. Oncogene,2001,20(49):7274-7286.
    [68]Muller S, Dejean A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption [J]. J Virol,1999,73(6):5137-5143.
    [69]Hagglund R, Van Sant C, Lopez P, Roizman B. Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites specific for different E2 ubiquitin-conjugating enzymes [J]. Proc Natl Acad Sci U SA,2002,99(2):631-636.
    [70]Everett RD, Meredith M, Orr A. The ability of herpes simplex virus type 1 immediate-early protein Vmwl 10 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication [J]. J Virol,1999,73(1):417-426.
    [71]Canning M, Boutell C, Parkinson J, Everett RD. A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7 [J]. J Biol Chem,2004,279(37):38160-38168.
    [72]Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL. Functional interaction between class II histone deacetylases and ICPO of herpes simplex virus type 1 [J]. J Virol,2004,78(13):6744-6757.
    [73]Gu H, Roizman B. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex [J]. Proc Natl Acad Sci U S A,2007,104(43):17134-17139.
    [74]Kawaguchi Y, Tanaka M, Yokoymama A, Matsuda G, Kato K, Kagawa H, et al. Herpes simplex virus 1 alpha regulatory protein ICPO functionally interacts with cellular transcription factor BMAL1 [J]. Proc Natl Acad Sci U S A,2001,98(4):1877-1882.
    [75]Kawaguchi Y, Van Sant C, Roizman B. Herpes simplex virus 1 alpha regulatory protein ICPO interacts with and stabilizes the cell cycle regulator cyclin D3 [J]. J Virol,1997,71(10):7328-7336.
    [76]Kawaguchi Y, Bruni R, Roizman B. Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1 delta:ICPO affects translational machinery [J]. J Virol,1997,71(2):1019-1024.
    [77]Grunstein M. Nucleosomes:regulators of transcription [J]. Trends Genet,1990,6(12):395-400.
    [78]Owen-Hughes T, Workman JL. Experimental analysis of chromatin function in transcription control [J]. Crit Rev Eukaryot Gene Expr,1994,4(4):403-441.
    [79]Turner BM. Decoding the nucleosome [J]. Cell,1993,75(1):5-8.
    [80]Wolffe AP. Transcription:in tune with the histones [J]. Cell,1994,77(1):13-16.
    [81]Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution [J]. Nature,1997,389(6648):251-260.
    [82]Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome [J]. Cell,1999,98(3):285-294.
    [83]Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression [J]. Proc Natl Acad Sci U S A,2003,100(23):13225-13230.
    [84]Bradbury EM. Reversible histone modifications and the chromosome cell cycle [J]. Bioessays,1992,14(1):9-16.
    [85]Svejstrup JQ. Transcription. Histones face the FACT [J]. Science,2003,301(5636):1053-1055.
    [86]Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A [J]. Nature,1996,382(6589):319-324.
    [87]Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates [J]. J Biol Chem,1999,274(3):1189-1192.
    [88]Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH, et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation [J]. Mol Cell,1997,1(1):35-45.
    [89]Krumm A, Madisen L, Yang XJ, Goodman R, Nakatani Y, Groudine M. Long-distance transcriptional enhancement by the histone acetyltransferase PCAF [J]. Proc Natl Acad Sci U S A,1998,95(23):13501-13506.
    [90]Zhou J, Chau C, Deng Z, Stedman W, Lieberman PM. Epigenetic control of replication origins [J]. Cell Cycle,2005,4(7):889-892.
    [91]Deshmane SL, Fraser NW. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure [J]. J Virol,1989,63(2):943-947.
    [92]Kubat NJ, Tran RK, McAnany P, Bloom DC. Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression [J]. J Virol,2004,78(3):1139-1149.
    [93]Leinbach SS, Summers WC. The structure of herpes simplex virus type 1 DNA as probed by micrococcal nuclease digestion [J]. J Gen Virol,1980,51(Pt 1):45-59.
    [94]Muggeridge MI, Fraser NW. Chromosomal organization of the herpes simplex virus genome during acute infection of the mouse central nervous system [J]. J Virol,1986,59(3):764-767.
    [95]Kent JR, Zeng PY, Atanasiu D, Gardner J, Fraser NW, Berger SL. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription [J]. J Virol,2004,78(18):10178-10186.
    [96]Arthur JL, Scarpini CG, Connor V, Lachmann RH, Tolkovsky AM, Efstathiou S. Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro [J]. J Virol,2001,75(8):3885-3895.
    [97]Hobbs WE,2nd, DeLuca NA. Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICPO [J]. J Virol,1999,73(10):8245-8255.
    [98]Cilloniz C, Jackson W, Grose C, Czechowski D, Hay J, Ruyechan WT. The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator [J]. J Virol,2007,81(2):761-774.
    [99]Greaves RF, O'Hare P. Structural requirements in the herpes simplex virus type 1 transactivator Vmw65 for interaction with the cellular octamer-binding protein and target TAATGARAT sequences [J]. J Virol,1990,64(6):2716-2724.
    [100]O'Hare P, Hayward GS. Evidence for a direct role for both the 175,000-and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters [J]. J Virol,1985,53(3):751-760.
    [101]Everett RD. ICP0, a regulator of herpes simplex virus during lytic and latent infection [J]. Bioessays,2000,22(8):761-770.
    [102]Sterner DE, Berger SL. Acetylation of histones and transcription-related factors [J]. Microbiol Mol Biol Rev,2000,64(2):435-459.
    [103]Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells [J]. Proc Natl Acad Sci U S A,2005,102(21):7571-7576.
    [104]Cliffe AR, Knipe DM. Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection [J]. J Virol,2008,82(24):12030-12038.
    [105]Heine JW, Honess RW, Cassai E, Roizman B. Proteins specified by herpes simplex virus. Ⅻ. The virion polypeptides of type 1 strains [J]. J Virol,1974,14(3):640-651.
    [106]Kwong AD, Frenkel N. The herpes simplex virus virion host shutoff function [J]. J Virol,1989,63(11):4834-4839.
    [107]Smibert CA, Johnson DC, Smiley JR. Identification and Characterization of the Virion-Induced Host Shutoff Product of Herpes Simplex Virus Gene U141 [J]. J Gen Virol,1992,73 (Pt 2):467-470.
    [108]Yao F, Courtney RJ. Association of ICP0 but not ICP27 with purified virions of herpes simplex virus type 1 [J]. JVirol,1992,66(5):2709-2716.
    [109]Yao F, Courtney RJ. A major transcriptional regulatory protein (ICP4) of herpes simplex virus type 1 is associated with purified virions [J]. J Virol,1989,63(8):3338-3344.
    [110]Ren X, Harms JS, Splitter GA. Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization [J]. J Virol,2001,75(17):8251-8258.
    [111]Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R. Molecular Biology of the Gene [M]. San Francisco:Pearson Benjamin Cummings,2004:531-573.
    [112]Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation [J]. J Biol Chem,1995,270(30):17923-17928.
    [113]Herrera FJ, Triezenberg SJ. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection [J]. J Virol,2004,78(18):9689-9696.
    [114]Hutchinson I, Whiteley A, Browne H, Elliott G. Sequential localization of two herpes simplex virus tegument proteins to punctate nuclear dots adjacent to ICP0 domains [J]. J Virol,2002,76(20):10365-10373.
    [115]Jordan R, Schaffer PA. Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis [J]. J Virol,1997,71(9):6850-6862.
    [116]Samaniego LA, Wu N, DeLuca NA. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27 [J]. J Virol,1997,71(6):4614-4625.
    [117]Everett RD. The Products of Herpes Simplex Virus Type 1 (Hsv-1) Immediate Early Genes 1,2 and 3 Can Activate Hsv-1 Gene Expression in Trans [J]. J Gen Virol,1986,67(Pt 11):2507-2513.
    [118]Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, et al. Activation of human immunodeficiency virus by herpesvirus infection:identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1 [J]. Proc Natl Acad Sci U S A,1987,84(21):7408-7412.
    [119]Everett RD. A detailed mutational analysis of Vmw110, a trans-acting transcriptional activator encoded by herpes simplex virus type] [J]. Embo J,1987,6(7):2069-2076.
    [120]Everett R, O'Hare P, O'Rourke D, Barlow P, Orr A. Point mutations in the herpes simplex virus type 1 Vmw110 RING finger helix affect activation of gene expression, viral growth, and interaction with PML-containing nuclear structures [J]. J Virol,1995,69(11):7339-7344.
    [121]Lium EK, Silverstein S. Mutational analysis of the herpes simplex virus type 1 ICP0 C3HC4 zinc ring finger reveals a requirement for ICPO in the expression of the essential alpha27 gene [J]. J Virol,1997,71(11):8602-8614.
    [122]Homa FL, Glorioso JC, Levine M. A specific 15-bp TATA box promoter element is required for expression of a herpes simplex virus type 1 late gene [J]. Genes Dev,1988,2(1):40-53.
    [123]Homa FL, Otal TM, Glorioso JC, Levine M. Transcriptional control signals of a herpes simplex virus type 1 late (gamma 2) gene lie within bases-34 to+124 relative to the 5'terminus of the mRNA [J]. Mol Cell Biol,1986,6(11):3652-3666.
    [124]Johnson PA, Everett RD. The control of herpes simplex virus type-1 late gene transcription:a 'TATA-box'/cap site region is sufficient for fully efficient regulated activity [J]. Nucleic Acids Res,1986,14(21):8247-8264.
    [125]Panning B, Smiley JR. Regulation of cellular genes transduced by herpes simplex virus [J]. J Virol,1989,63(5):1929-1937.
    [126]Smiley JR, Smibert C, Everett RD. Expression of a cellular gene cloned in herpes simplex virus: rabbit beta-globin is regulated as an early viral gene in infected fibroblasts [J]. J Virol,1987,61(8):2368-2377.
    [127]Poon AP, Liang Y, Roizman B. Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a cDNA copy of the infected-cell protein no.0 [J]. J Virol,2003,77(23):12671-12678.
    [128]Oh J, Fraser NW. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection [J]. J Virol,2008,82(7):3530-3537.
    [129]Preston CM, Nicholl MJ. Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis [J]. J Virol,1997,71(10):7807-7813.
    [130]Samaniego LA, Neiderhiser L, DeLuca NA. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins [J]. J Virol,1998,72(4):3307-3320.
    [131]Stow EC, Stow ND. Complementation of a herpes simplex virus type 1 Vmw110 deletion mutant by human cytomegalovirus [J]. J Gen Virol,1989,70 (Pt 3)(695-704.
    [132]Yoshida M, Beppu T. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A [J]. Exp Cell Res,1988,177(1):122-131.
    [I]Muller S, Dejean A. Viral Immediate-Early Proteins Abrogate the Modification by SUMO-1 of PML and Sp100 Proteins, Correlating with Nuclear Body Disruption [J]. J Virol.1999,73(6):5137-5143
    [2]Stanton R, Fox JD, Caswell R, et al. Analysis of the human herpesvirus-6 immediate-early 1 Protein [J]. J Gen Virol,2002,83:2811-2820
    [3]Adamson AL, Kenney S. Epstein-Barr Virus Immediate-Early Protein BZLF1 Is SUMO-1 Modified and Disrupts Promyelocytic Leukemia Bodies [J]. J Virol.2001,75(5):2388-2399
    [4]Liu ST. Wang WH, Hong YR, et al. Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxβ[J]. Virus Res.2006,119:163-170
    [5]Hofmann H, Floss S, Stamminger T. Covalent Modification of the Transactivator Protein IE2-p86 of Human Cytomegalovirus by Conjugation to the Ubiquitin-Homologous Proteins SUMO-1 and hSMT3b [J]. J Virol.2000, 74(6):2510-2524
    [6]Seeler J S, Dejean A. SUMO:of branched proteins and nuclear bodies. Oncogene [J].2001,20(49),7243-7249
    [7]Saitoh H, Hinchey J. Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3 [J]. J Biol Chem.2000,275(9):6252-6258
    [8]Bohren KM, Nadkarni V, Song JH, et al. A M55V Polymorphism in a Novel SUMO Gene (SUMO-4) Differentially Activates Heat Shock Transcription Factors and Is Associated with Susceptibility to Type I Diabetes Mellitus [J]. J Biol Chem.2004,279(26):27233-27238
    [9]Johnson E S. Protein modification by SUMO [J]. Annu Rev Biochem.2004,73:355-382
    [10]Schwartz DC, Hochstrasser M. A superfamily of protein tags:ubiquitin, SUMO and related modifiers [J]. Trends Biochem Sci.2003,28(6):321-328
    [11]Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3 [J]. Cell.2003,113(1):127-137
    [12]Sternsdorf T, Jensen K, Will H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1 [J]. J Cell Biol.1997,139(7):1621—1634
    [13]Negorev D, Maul GG. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot [J]. Oncogene,2001,20(49):7234-7242
    [14]Everett RD, Rechter S, Papior P, et al. PML Contributes to a Cellular Mechanism of Repression of Herpes Simplex Virus Type 1 Infection That Is Inactivated by ICPO [J]. J Virol.2006,80(16):7995-8005
    [15]Tavalai N, Papior P, Rechter S, et al. Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections [J]. J Virol.2006,80:8006-8018
    [16]Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections [J]. Oncogene.2001,20:7274-7286
    [17]Parkinson J, Everett RD. Alphaherpesvirus Proteins Related to Herpes Simplex Virus Type 1 ICPO Affect Cellular Structures and Proteins [J]. J Virol.2000,74(21):10006-10017
    [18]Bailey D, O'Hare P. Herpes simplex virus 1 ICPO co-localizes with a SUMO-specific protease [J]. J Gen Virol. 2002,83:2951-2964
    [19]Nevels M, Brune W, Shenk T. SUMOylation of the Human Cytomegalovirus 72-Kilodalton IE1 Protein Facilitates Expression of the 86-Kilodalton IE2 Protein and Promotes Viral Replication [J]. J Virol.2004,78(14):7803-7812
    [20]Lee HR, Kim DJ, Lee JM, et al. Ability of the Human Cytomegalovirus IE1 Protein To Modulate Sumoylation of PML Correlates with Its Functional Activities in Transcriptional Regulation and Infectivity in Cultured Fibroblast Cells [J]. J Virol.2004,78(12):6527-6542
    [21]Kang H, Kim ET, Lee HR, et al. Inhibition of SUMO-independent PML oligomerization by the human cytomegalovirus IE1 protein [J]. J Gen Virol.2006,87:2181-2190
    [22]Ahn JH, XU Y, Jang WJ, et al. Evaluation of Interactions of Human Cytomegalovirus Immediate-Early IE2 Regulatory Protein with Small Ubiquitin-Like Modifiers and Their Conjugation Enzyme Ubc9 [J]. J Virol.2001, 75(8):3859-3872
    [23]Lee HR, Ahn JH. Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts [J]. J Gen Virol.2004,85:2149-2154
    [24]Minty A, Dumont X, Kaghad M, et al. Covalent modification of p73alpha by SUMO-1.Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif [J]. J Biol Chem.2000, 275(46):36316-36323
    [25]Gravel A, Dion V, Cloutier N, et al. Characterization of human herpesvirus 6 variant B immediate-early 1 protein modifications by small ubiquitin-related modifiers [J]. J Gen Virol.2004,85:1319-1328
    [26]Tomoiu A, Gravel A, Tanguay RM, et al. Functional Interaction between Human Herpesvirus 6 Immediate-Early 2 Protein and Ubiquitin-Conjugating Enzyme 9 in the Absence of Sumoylation [J]. J Virol.2006,80(20):10218-10228
    [27]Cox M, Leahy J, Hardwick JM. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivors [J]. J Virol.1990,64(1):313-321
    [28]Adamson AL. Effects of SUMO-1 upon Epstein-Barr virus BZLF1 function and BMRF1 expression [J]. Biochem Bioph Res Co.2005,336:22-28
    [29]Lin J, Johannsen E, Robertson E, et al.Epstein-Barr Virus Nuclear Antigen 3C Putative Repression Domain Mediates Coactivation of the LMP1 Promoter with EBNA-2 [J]. J Virol.2002,76(1):232-242
    [30]Rosendorff A, Illanes D, David G, et al. EBNA3C Coactivation with EBNA2 Requires a SUMO Homology Domain [J]. J Virol.2004,78(1):367-377
    [31]laumiya Y, Ellison T, Yeh ET, et al. Kaposi's Sarcoma-Associated Herpesvirus K-bZIP Represses Gene Transcription via SUMO Modification [J]. J Virol.2005,79(15):9912-9925
    [32]Shiio Y, Eisenman RN. Histone sumoylation is associated with transcriptional repression [J]. PNAS.2003, 100(23):13225-13230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700