重组腺相关病毒载体介导的人类缺氧诱导因子-1α抑制Aβ神经毒性作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗是二十世纪八十年代以后发展起来的一种疾病治疗模式,其定义是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正基因的缺陷或者发挥治疗作用,从而达到治疗疾病目的的生物医学高新技术。近年来,随着基因治疗技术日趋成熟,基因治疗范围已从遗传病扩展到非遗传病领域,例如肿瘤,传染病,免疫缺陷病,神经系统疾病等,尤其阿尔茨海默病(Alzheimer’s disease, AD)的基因治疗目前倍受学者关注,并且已获得初步成效。其中选择适当的病毒载体将具有治疗价值的基因导入神经细胞并使其有效表达是AD基因治疗研究的关键所在。
     腺相关病毒(adeno-associated virus, AAV),也称腺伴随病毒,属于微小病毒科依赖病毒属,是目前发现的一类结构最简单的单链DNA缺陷型病毒。重组腺相关病毒(recombinant adeno-associated virus, rAAV)载体源于非致病的野生型腺相关病毒,安全性好,对人体无致病性,宿主范围广泛,免疫原性小,可通过将外源基因整合到宿主细胞染色体和/或转变成稳定的染色体外附加体形式介导外源基因的长期表达,是基因治疗研究中应用最为广泛的载体系统之一。
     缺氧诱导因子-1α(hypoxia inducible factor-1α, HIF-1α)是一种在缺氧应答过程中起重要作用的核转录因子,广泛参与缺氧诱导的细胞适应性反应,已成为缺氧应答时基因表达的调节中心。缺氧时HIF-1α生成增加,通过调控糖酵解酶、促红细胞生成素、血管内皮生长因子和一些涉及细胞生存蛋白质等的表达,调节能量代谢,增加毛细血管网密度,改善组织血流供应,使细胞产生适应性反应,从而恢复机体内环境稳态。最近研究证实HIF-1α能够减弱淀粉样蛋白(βamyloid peptide, Aβ)对神经细胞毒性损伤作用;防止线粒体不可逆抑制剂3-硝基丙酸诱导C6神经胶质瘤细胞损伤以及氧化应激引起的皮层神经细胞凋亡,提示HIF-1α有可能成为治疗AD等神经系统疾病的一个新靶点。
     基于以上分析,本研究选用AAV-2为基因载体,人类HIF-1αcDNA为治疗基因,构建重组人类缺氧诱导因子-1α腺相关病毒载体(rAAV-HIF- 1α),深入探讨rAAV-HIF-1α对Aβ25-35诱导原代培养海马神经细胞凋亡及AD动物模型影响的内在机制,为今后应用rAAV-HIF-1α进行AD基因治疗奠定基础。
     1 pSNAV-HIF-1α的构建及其转染对Aβ25-35诱导原代培养海马神经细胞凋亡的影响
     1.1 pSNAV-HIF-1α的构建及表达
     目的:构建携带人类HIF-1α基因腺相关病毒载体穿梭质粒pSNAV- HIF-1α,转染原代培养的海马神经细胞检测HIF-1α蛋白表达。
     方法:采用限制性内切酶KpnI、BamHI双酶切pBSKhHIF1αT7质粒获取人类HIF-1αcDNA全长,插入至pSNAV2.0质粒KpnI、BglⅡ位点,获得携带人类HIF-1α基因的腺相关病毒载体穿梭质粒pSNAV-HIF-1α。实验分为3组:normal组:原代培养的海马神经细胞未作任何特殊处理;HIF-1α组:原代培养的海马神经细胞转染pSNAV-HIF-1α(磷酸钙共沉淀法);vector组:原代培养的海马神经细胞转染pSNAV 2.0(磷酸钙共沉淀法)。转染3d后提取细胞核蛋白,Western blot检测HIF-1α蛋白表达。
     结果:①酶切、PCR技术证实成功构建了pSNAV-HIF-1α;②Western blot检测结果表明,转染3d后HIF-1α组(2176.04±110.56)细胞HIF-1α蛋白的表达量较normal组(812.96±54.27)、vector组(859.43±72.33)显著升高(P<0.05),而normal组、vector组细胞相比HIF-1α蛋白表达无显著性差异。
     结论:成功构建了携带人类HIF-1α基因腺相关病毒载体穿梭质粒pSNAV-HIF-1α,转染原代培养海马神经细胞能够高效表达HIF-1α蛋白。1.2 pSNAV-HIF-1α转染对Aβ25-35诱导原代培养海马神经细胞凋亡的影响
     目的:观察pSNAV-HIF-1α转染对Aβ25-35诱导海马神经细胞凋亡的影响
     方法:实验分为5组:normal组:原代培养的海马神经细胞未作任何特殊处理;normal+Aβ组:以终浓度为10μmol/L Aβ25-35处理原代培养海马神经细胞24h;vector组:原代培养的海马神经细胞转染pSNAV 2.0;vector+Aβ组:pSNAV 2.0转染3d后以终浓度为10μmol/L Aβ25-35处理24h;HIF-1α+Aβ组:pSNAV-HIF-1α转染3d后以终浓度为10μmol/L Aβ25-35处理24h。采用流式细胞术检测海马神经细胞凋亡百分率。
     结果:流式细胞术检测结果显示,normal+Aβ组(31.25±5.14%)、vector+Aβ组(30.48±4.39%)细胞凋亡百分率较normal组(5.27±1.06%)、vector组(6.35±1.34%)显著升高(P<0.05),而HIF-1α+Aβ组(12.39±2.56%)细胞凋亡百分率较normal+Aβ组、vector+Aβ组显著降低(P<0.05),normal+Aβ组与vector+Aβ组细胞凋亡百分率相比无显著性差异,这表明pSNAV-HIF-1α转染能够抑制Aβ25-35诱导海马神经细胞凋亡。
     结论:pSNAV-HIF-1α转染能够抑制Aβ25-35诱导海马神经细胞凋亡。
     2重组人类缺氧诱导因子-1α腺相关病毒载体的构建及表达
     目的:构建重组人类缺氧诱导因子-1α腺相关病毒载体(rAAV-HIF-1α),转染原代培养海马神经细胞检测HIF-1α蛋白表达。
     方法:采用Lipofectamine 2000将pSNAV-HIF-1α转染BHK-21细胞,再经G418筛选、挑选G418抗性细胞克隆,得到的混合细胞株命名为BHK/pSNAV-HIF-1α,即AAV载体细胞株。用具有AAV复制和包装功能的重组1型单纯疱疹病毒HSV1-rc/?UL2感染此细胞株,经氯仿处理-PEG/NaCl沉淀-氯仿抽提技术粗纯化AAV病毒,透析袋浓缩法进一步浓缩AAV病毒,即得到用于细胞实验的rAAV-HIF-1α。采用PCR技术鉴定病毒。采用地高辛标记的CMV探针点杂交方法检测病毒液中rAAV-HIF-1α的物理滴度。采用凝胶扫描图象分析系统,分析rAAV-HIF-1α样品经10%的SDS-PAGE电泳后所得蛋白条带测定病毒纯度。实验分为2组:normal组:原代培养的海马神经细胞未作任何特殊处理;rAAV-HIF-1α组:原代培养的海马神经细胞转染rAAV-HIF-1α;于转染3d后提取细胞总蛋白,Western blot检测HIF-1α蛋白表达。
     结果:①PCR结果证实rAAV-HIF-1α内含有人类HIF-1α基因序列;②点杂交方法检测rAAV-HIF-1α的物理滴度为1×1012v.g./ml;③纯化后的rAAV-HIF-1α经10%SDS-PAGE电泳分离后,AAV病毒颗粒VP1、VP2、VP3三条特征性条带清晰,无其他杂带,大约符合1:1:10的比例,经计算机扫描分析后显示rAAV-HIF-1α纯度大于98%;④Western blot检测结果显示,转染3d后rAAV-HIF-1α组(727.57±36.08)细胞HIF-1α蛋白表达较normal组(328.69±23.71)显著升高(P<0.05)。
     结论:成功构建了高滴度、高纯度的重组人类缺氧诱导因子-1α腺相关病毒载体rAAV-HIF-1α,转染原代培养海马神经细胞能够高效表达HIF-1α蛋白,为进一步研究rAAV-HIF-1α神经保护机制奠定基础。
     3 rAAV-HIF-1α转染对Aβ25-35诱导原代培养海马神经细胞凋亡的影响及机制初探
     目的:应用rAAV-HIF-1α体外转染原代培养海马神经细胞,观察其对Aβ25-35诱导原代培养海马神经细胞凋亡的影响。
     方法:实验分为以下3组:normal组:未作任何特殊处理的原代培养海马神经细胞;normal+Aβ组:以终浓度为10μmol/L Aβ25-35处理原代培养海马神经细胞24h;rAAV-HIF-1α+Aβ组:rAAV-HIF-1α转染3d后以终浓度为10μmol/L Aβ25-35处理24h。采用透射电镜技术观察海马神经细胞凋亡形态学改变及流式细胞术检测海马神经细胞凋亡百分率。采用激光共聚焦扫描技术检测海马神经细胞钙离子浓度。
     结果:①透射电镜结果显示,normal组海马神经细胞膜边缘清晰、光滑,细胞质结构清晰,细胞染色质均匀;normal+Aβ组海马神经细胞出现皱缩变形;染色质浓缩成块、边集,电子密度升高,厚薄不均,沿核膜新月状排列,部分核周隙扩张等凋亡的特征性形态学改变。而rAAV-HIF-1α+Aβ组海马神经细胞仅出现粗面内质网脱颗粒;线粒体嵴减少、排列紊乱;部分核膜向外锐角突起等现象,这表明Aβ25-35能够引起海马神经细胞凋亡,表现为细胞超微结构发生改变,rAAV-HIF-1α预转染能够减轻这种改变;②流式细胞术结果显示,normal+Aβ组(24.26±3.99%)海马神经细胞凋亡百分率与normal组(4.99±0.83%)相比显著升高(P<0.05),而rAAV-HIF-1α+Aβ组(14.29±1.88%)海马神经细胞凋亡百分率较normal+Aβ组显著降低(P<0.05),这表明Aβ25-35能够引起海马神经细胞凋亡,预转染rAAV-HIF-1α海马神经细胞能够减弱Aβ25-35诱导凋亡的作用;③以Fluo-3/AM荧光染色,在激光共聚焦显微镜下检测显示,normal+Aβ组(197.98±27.60)海马神经细胞钙离子浓度与normal组(61.48±12.61)相比显著升高(P<0.05),而rAAV-HIF-1α+Aβ组(145.66±15.31)海马神经细胞钙离子浓度较normal+Aβ组显著降低(P<0.05),这表明Aβ25-35能够引起海马神经细胞内钙离子浓度升高,预转染rAAV-HIF-1α能够抑制Aβ25-35诱导细胞内钙离子浓度升高。
     结论:rAAV-HIF-1α转染能够抑制Aβ25-35诱导海马神经细胞凋亡,其机制可能与HIF-1α降低细胞内游离钙浓度,从而抑制凋亡级联反应有关。
     4侧脑室注射rAAV-HIF-1α基因治疗AD模型鼠的实验研究
     目的:在体观察侧脑室注射rAAV-HIF-1α对AD模型大鼠海马神经细胞凋亡的影响
     方法:健康雄性SD大鼠32只,体重250-300g,随机分为4组:normal组(n=8):未作任何特殊处理;AD组(n=8):右侧脑室(AP:-0.8mm, ML:1.5 mm, DV:4.0mm)注射2μl Aβ25-35(10mg/ml);sham组(n=8):右侧脑室注射2μl生理盐水;AD+rAAV-HIF-1α组(n=8):右侧脑室注射2μl Aβ25-35后1周右侧脑室注射10μl rAAV-HIF-1α(1×1012v.g./ml)。以上各组动物于注射Aβ25-35或生理盐水后5周取材检测海马神经细胞HIF-1α蛋白表达及凋亡百分率。
     结果:①Western blot检测结果显示,AD+rAAV-HIF-1α组(451.59±34.39)海马神经细胞HIF-1α蛋白表达较normal组(229.05±41.28)、sham组(216.29±37.08)明显增强(P<0.05),而normal组与sham组相比无显著性差异,这表明侧脑室注射rAAV-HIF-1α能够转染AD模型大鼠海马神经细胞并持续稳定表达HIF-1α蛋白;②流式细胞术结果显示,AD组(19.49±2.59%)海马神经细胞凋亡百分率较normal组(5.41±0.75%)、sham组(5.28±0.66%)显著升高(P<0.05),而normal组与sham组相比无显著性差异;而AD+rAAV-HIF-1α组(12.07±2.06%)细胞凋亡百分率较AD组显著降低(P<0.05),这表明侧脑室注射rAAV-HIF-1α能够抑制AD模型大鼠海马神经细胞发生凋亡。
     结论:侧脑室注射rAAV-HIF-1α能够抑制AD模型大鼠海马神经细胞凋亡。
     5结语
     本研究成功构建了重组人类缺氧诱导因子-1α腺相关病毒载体rAAV- HIF-1α并证实其能够减弱Aβ神经细胞毒性作用,为今后应用rAAV-HIF- 1α进行AD基因治疗奠定了基础。
Gene therapy, a kind of treatment mode for diseases developed since 1980s, is to introduce human normal genes or therapeutic genes into human target cells to remedy the defective genes or play the role in therapy. Thereby, we can achieve the goal of making use of the high technique to treat diseases. The field of gene therapy has extended from hereditary diseases to tumor, contagious diseases, immunologic deficiency diseases, nervous system diseases and so on along with the improvement of gene therapy technique in the past few years. Recently much attention has been focused on the gene therapy for Alzheimer’s disease(AD). The critical step for a successful gene therapy for AD is to select an appropriate viral vector and deliver efficacious therapeutic genes into neurons to make them expressed sufficiently.
     Adeno-associated virus(AAV), which belongs to the dependovirus of parvoviridae, is a species of nonpathogenic defective single strand DNA virus. At present recombinant adeno-associated virus(rAAV), reconstructed from nonpathogenic wild type AAV, is one of the most widely applicable carrier systems with the features of safety, wide host range, weak immunogenicity. And it can persistently express exogenous gene by means of integration into host cells chromosome or/and changing into stable extrachromosome episome.
     Hypoxia inducible factor-1α(HIF-1α) is a kind of important nuclear transcription factor during the process of hypoxia, which participate widely in the hypoxia-induced cellular adaptation reaction to recover cells homeostasis. HIF-1αcould regulate energy metabolism, increase the density of capillary network, and improve the blood circulation of living tissue by means of regulating the expression of glycolytic enzyme, erythropoietin, vascular endothelial growth factor and so on, which make cells be capable of resisting the hypoxia-induced injury. Recent studies confirmed that HIF-1αcould attenuate the neurotoxicity ofβamyloid peptide(Aβ), inhibit the insult of C6 glioma cells induced by 3-nitropropionic acid and the apoptosis of cortical neurons induced by oxidative stress, which indicated that HIF-1αmight be used to treat nervous system disease such as AD.
     Based on the above analysis, we constructed the recombinant AAV vector containing human HIF-1αgene(rAAV-HIF-1α), and observed the effect of rAAV-HIF-1αon the apoptosis of primary cultural hippocampal neurons and AD animal model, which made it possible to apply rAAV-HIF-1αinto gene therapy for AD in the future.
     1 The construction of pSNAV-HIF-1αand the effect of its transfection on the apoptosis of primary cultural hippocampal neurons induced by Aβ25-35
     1.1 The construction and expression of pSNAV-HIF-1α
     Objective: To construct the AAV vector shuttle plasmid containing human HIF-1αgene(pSNAV-HIF-1α), and to detect the expression of HIF-1αprotein in pSNAV-HIF-1αtransfected primary cultural hippocampal neurons.
     Methods: The HIF-1αgene, acquired from pBSKhHIF1αT7 digested by restricted endonuclease enzyme KpnI and BamHI, was inserted into pSNAV2.0 digested by restricted endonuclease enzyme KpnI、BglⅡto obtain the AAV vector shuttle plasmid containing human HIF-1αgene(pSNAV-HIF -1α). The constructed vector was transfected into primary cultural hippocampal neurons using calcium phosphate precipitation. There were three groups in this experiment: normal group: primary cultural hippocampal neurons without any special treatment; HIF-1αgroup: pSNAV-HIF-1αtransfected primary cultural hippocampal neurons; vector group: pSNAV2.0 transfected primary cultural hippocampal neurons. Nuclear protein was extracted from hippocampal neurons three days posttransfection to detect the expression of HIF-1αby western blot.
     Results:①Restricted endonuclease enzyme digestion and PCR confirmed that pSNAV-HIF-1αwas successfully constructed;②Western blot showed that the expression of HIF-1αin HIF-1αgroup(2176.04±110.56) was significantly higher than that in normal group(812.96±54.27) and vector group(859.43±72.33)(P<0.05), and the expression of HIF-1αbetween normal group and vector group was not significantly different.
     Conclusions: pSNAV-HIF-1αwas successfully constructed and it could express HIF-1αprotein efficiently in primary cultural hippocampal neurons.
     1.2 The effect of transfection of pSNAV-HIF-1αon the apoptosis of primary cultural hippocampal neurons induced by Aβ25-35
     Objective: To observe the effect of transfection of pSNAV-HIF-1αon the apoptosis of primary cultural hippocampal neurons induced by Aβ25-35.
     Methods: There were five groups in this experiment: normal group: primary cultural hippocampal neurons without any special treatment; normal+Aβgroup: primary cultural hippocampal neurons were interfered with 10μmol/L Aβ25-35 for 24h; vector group: pSNAV2.0 transfected primary cultural hippocampal neurons; vector+Aβgroup: three days posttransfection, the pSNAV2.0 transfected primary cultural hippocampal neurons were interfered with 10μmol/L Aβ25-35 for 24h; HIF-1α+Aβgroup: three days posttransfection, the pSNAV-HIF-1αtransfected primary cultural hippocampal neurons were interfered with 10μmol/L Aβ25-35 for 24h. Apoptosis was detected by flow cytometry analysis.
     Results: Flow cytometry analysis showed that the apoptosis ratio of hippocampal neurons in normal+Aβgroup(31.25±5.14%) and vector+Aβgroup(30.48±4.39%) were significantly higher than that in normal group (5.27±1.06%) and vector group(6.35±1.34 %)(P<0.05), however the apoptosis ratio of hippocampal neurons in HIF-1α+Aβgroup(12.39±2.56%) was significantly lower than that of normal+Aβgroup and vector+Aβgroup(P<0.05), and the apoptosis ratio of hippocampal neurons between normal+Aβgroup and vector+Aβgroup was not significantly different, which indicated that the transfection of pSNAV-HIF-1could inhibit the apoptosis of hippocampal neurons induced by Aβ25-35.
     Conclusions: The transfection of pSNAV-HIF-1αcould inhibit the apoptosis of hippocampal neurons induced by Aβ25-35.
     2 Construction and expression of recombinant adeno-associated virus vector containing human hypoxia inducible factor-1αgene
     Objective: To Construct recombinant adeno-associated virus vector containing human hypoxia inducible factor-1αgene(rAAV-HIF-1α), and to detect the expression of HIF-1αprotein in rAAV-HIF-1αtransfected primary cultural hippocampal neurons.
     Methods: pSNAV-HIF-1αwas transfected into BHK-21 cells using Lipofectamine 2000 and selected by G418. The G418 resistant BHK-21 cells, BHK/pSNAV-HIF-1α, were obtained. The BHK/pSNAV-HIF-1αcells were infected with HSV1-rc/?UL2, which could express rep and cap genes of wild-type AAV. After chloroform treatment, PEG/NaCl precipitation, chloroform extraction and bag filter concentration, the rAAV-HIF-1αwith high titer and purity was achieved. The authenticity of the rAAV-HIF-1αwas confirmed by polymerase chain reaction. The titer of rAAV-HIF-1αwas detected by dot-blot with digoxin labelled cytomegalovirus probe.The purity of rAAV-HIF-1αwas detected by 10%SDS-PAGE. There were two groups in this experiment: normal group: primary cultural hippocampal neurons without any special treatment; rAAV-HIF-1αgroup: rAAV-HIF-1αtransfected primary cultural hippocampal neurons; Total protein was extracted from hippocampal neurons three days posttransfection to detect the expression of HIF-1αby western blot.
     Results:①PCR demonstrated that human HIF-1αgene was included in rAAV-HIF-1α;②The titer of rAAV-HIF-1αdetected by dot-blot with digoxin labelled cytomegalovirus probe was 1×1012v.g./ml;③The purity of rAAV-HIF-1αdetected by 10%SDS-PAGE exceeded 98%;④Western blot showed that the expression of HIF-1αin rAAV-HIF-1αgroup(727.57±36.08) was significantly higher than that in normal group(328.69±23.71)(P<0.05).
     Conclusions: rAAV-HIF-1αwith high titer and purity was successfully constructed and it could express HIF-1αprotein efficiently in primary cultural hippocampal neurons.
     3 The effect of the transfection of rAAV-HIF-1αon the apoptosis of primary cultural hippocampal neurons induced by Aβ25-35
     Objective: To observe the effect of the transfection of rAAV-HIF-1αon the apoptosis of primary cultural hippocampal neurons induced by Aβ25-35.
     Methods: There were three groups in this experiment: normal group: primary cultural hippocampal neurons without any special treatment; normal+Aβgroup: primary cultural hippocampal neurons were interfered with 10μmol/L Aβ25-35 for 24h; rAAV-HIF-1α+Aβgroup: primary cultural hippocampal neurons transfected with rAAV-HIF-1αfor three days were interfered with 10μmol/L Aβ25-35 for 24h. Apoptosis was detected by transmission electron microscope and flow cytometry analysis. The intracellular calcium concentration of hippocampal neurons was determined by laser scanning confocal microscopy with Fluo-3/AM as the fluorescent dye.
     Results:①Transmission electron microscope showed that normal group hippocampal neuronal membrane was smooth and glossy, cytoplasmic structure was clear, chromatin was well-distribute; normal+Aβgroup hippocampal neurons shrinkaged due to the breakdown of the proteinaceous cytoskeleton by caspases, chromatin underwent condensation into compact patches against the nuclear envelope in a process known as pyknosis; however rAAV-HIF-1α+Aβgroup hippocampal neurons only showed light morphology changes of apoptosis, such as nuclear envelope sprouted irregular buds known as blebs and so on, which indicated that the morphology change of hippocampal neuronal apoptosis induced by Aβ25-35 could be lessened by the transfection of rAAV-HIF-1αin advance;②Flow cytometry analysis showed that the apoptosis ratio of hippocampal neurons in normal+Aβgroup(24.26±3.99%) was significantly higher than that in normal group(4.99±0.83%)(P<0.05), however the apoptosis ratio of hippocampal neurons in rAAV-HIF-1α+Aβgroup(14.29±1.88%) was significantly lower than that in normal + Aβgroup(P<0.05), which indicated that rAAV-HIF-1αtransfected hippocampal neurons could inhibit the apoptosis induced by Aβ25-35;③Laser scanning confocal microscopy showed that the calcium concentration of hippocampal neurons in normal+Aβgroup(197.98±27.60) was significantly higher than that in normal group(61.48±12.61)(P<0.05), however the calcium concentration of hippocampal neurons in rAAV-HIF-1α+Aβgroup(145.66±15.31) was significantly lower than that in normal+Aβgroup(P<0.05), which indicated that the up-regulation of calcium concentration of hippocampal neurons induced by Aβ25-35 could be suppressed by the transfection of rAAV-HIF-1αin advance.
     Conclusions: rAAV-HIF-1αtransfection could inhibit Aβ25-35 induced apoptosis of primary cultural hippocampal neurons by suppressing the up-regulation of intracellular calcium concentration.
     4 The effect of intracerebroventricular(i.c.v) injection of rAAV-HIF-1αon the hippocampal neuronal apoptosis of AD animal model Objective: To observe the effect of i.c.v injection of rAAV-HIF-1αon hippocampal neuronal apoptosis of AD animal model.
     Methods: Thirty-two male SD rats(250-300g) were divided randomly into four groups: normal group(n=8): healthy male animal without any special treatment; AD group(n=8): right i.c.v injection of 2μl Aβ25-35(10mg/ml); sham group(n=8): right i.c.v injection of 2μl NS; AD+rAAV-HIF-1αgroup(n=8): right i.c.v injection of 10μl rAAV-HIF-1α(1×10~(12)v.g./ml) one week after i.c.v injection of 2μl Aβ25-35(10mg/ml). The rats were sacrificed to detect the expression of HIF-1αand apoptosis of hippocampal neurons five weeks after i.c.v injection of Aβ25-35 or NS.
     Results:①Western blot showed that the expression of HIF-1αin AD+rAAV-HIF-1αgroup(451.59±34.39) was significantly higher than that in normal group(229.05±41.28) and sham group(216.29±37.08)(P<0.05), and the expression of HIF-1αbetween normal group and sham group was not significantly different.②Flow cytometry analysis showed that the apoptosis ratio of hippocampal neurons in AD group(19.49±2.59%) was significantly higher than that in normal group(5.41±0.75%) and sham group(5.28±0.66%)(P<0.05), and the apoptosis ratio of hippocampal neurons between normal group and sham group was not significantly different; however the apoptosis ratio of hippocampal neurons in AD+rAAV-HIF-1αgroup(12.07±2.06%) was significantly lower than that in AD group(P<0.05), which indicated that the hippocampal neuronal apoptosis of AD animal model could be attenuated by i.c.v injection of rAAV-HIF-1α.
     Conclusions: The i.c.v injection of rAAV-HIF-1αcould inhibit the hippocampal neuronal apoptosis of AD animal model.
     5 Conclusions
     Recombinant AAV vector containing human HIF-1αgene(rAAV-HIF-1α) was successfully constructed and it could inhibit the neurotoxicity of Aβ25-35, which laid a foundation for further application of rAAV-HIF-1αinto gene therapy for AD in the future.
引文
1 Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic- helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995, 92(12): 5510~5514
    2 Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol,2006, 70(5):1469~1480
    3 Kiang JG, Tsen KT. Biology of hypoxia. Chin J Physiol, 2006, 49(5): 223~333
    4 Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 2006, 70(5):1469~1480
    5 Pereira T, Zheng X, Poellinger L. Degradation of the hypoxia-inducible factor 1alpha: where does it happen? Cell Cycle, 2006, 5(23): 2720~2722
    6 Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med, 2004, 36(1): 1~12
    7 Kanaya K, Kamitani T. pVHL-independent ubiquitination of HIF1alpha and its stabilization by cobalt ion. Biochem Biophys Res Commun, 2003, 306(3): 750~755
    8 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447~5454
    9 Semenza GL. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol, 2006, 91(5): 803~806
    10 Fulda S, Debatin KM. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle, 2007, 6(7): 790~792
    11 Zhang W, Zhang H. Hypoxia-inducible factor-1alpha suppressing apoptosis and increasing tolerance of lung cancer cells to chemotherapy. J Huazhong Univ Sci Technolog Med Sci, 2006, 26(5): 520~523
    12 Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006, 3(3): 177~185
    13 Lee DW, Andersen JK. Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders. Curr Mol Med, 2006, 6(8): 883~893
    14 Okuda T, Azuma T, Ohtani M, et al. Hypoxia-inducible factor-1 alpha and vascular endothelial growth factor expression in ischaemic colitis and ulcerative colitis. Aliment Pharmacol Ther, 2006, 24 Suppl 4: 182~188
    15 Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12): 3387~3394
    16 Ma C, Zhou GY, Xiao Y, et al. Reversion the multidrug resistance of human breast carcinoma cells by RNA interference targeting HIF-1 alpha gene. Zhonghua Bing Li Xue Za Zhi, 2006, 35(6): 357~360
    17 Ohyagi Y. Molecular pathology and therapeutics in Alzheimer's disease:amyloid beta-protein as a therapeutic target. Fukuoka Igaku Zasshi, 2006, 97(9): 261~268
    18 Hartmann T. Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance. Neurodegener Dis, 2006, 3(4-5): 305~311
    19 Weiss JH, Pike CJ, Cotman CW. Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J Neurochem, 1994, 62(1): 372~375
    20 Janciauskiene S, Wright HT, Lindgren S. Fibrillar Alzheimer's amyloid peptide Abeta (1-42) stimulates low density lipoprotein binding and cell association, free radical production and cell cytotoxicity in PC12 cells. Neuropeptides, 1999, 33(6): 510~516
    21 Ishii K, Muelhauser F, Liebl U, et al. Subacute NO generation induced by Alzheimer's beta-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J, 2000, 14(11): 1485~1489
    22 Soucek T, Cumming R, Dargusch R, et al. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron, 2003, 39(1): 43~56
    23 伍志坚,吴小兵,曹晖,等. 一种高效的重组腺伴随病毒载体生产系统. 中国科学(C辑),2001,31(5):423-430
    24 Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res, 2001, 61(17): 6548~6554
    25 Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene, 2003, 22(21): 3213~3220
    26 Kilic M, Kasperczyk H, Fulda S, et al. Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene, 2007, 26(14): 2027~2038
    27 Erler JT,Cawthome CJ,WiHiams KJ,et a1. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia indueible factor 1-dependent and -independent mechanisms and contribute to drug resistance. Mol Cell Biol, 2004, 24(7): 2875~2889
    
    1 Tuszynski MH, Thal L, Pay M, et al.A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med, 2005, 11(5): 551~555
    2 Blesch A, Tuszynski MH.Gene Therapy and Cell Transplantation for Alzheimer's Disease and Spinal Cord Injury. Yonsei Med J, 2004, 45 Suppl:28~31
    3 Dodart JC, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 2005, 102(4):1211~1216
    4 Wu K, Meyers CA, Guerra NK, et al. The effects of rAAV2-mediated NGFgene delivery in adult and aged rats. Mol Ther, 2004, 9(2):262~269
    5 Wong LF, Goodhead L, Prat C,et al. Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther, 2006, 17(1): 1~9
    6 Hurtado-Lorenzo A, David A, Thomas C, et al. Use of recombinant adenovirus for gene transfer into the rat brain. Evaluation of gene transfer efficiency, toxicity, and inflammatory and immune reactions.Methods Mol Med, 2003, 76: 113~133
    7 Feng X, Eide FF, Jiang H, et al. Adeno-associated viral vector-mediated ApoE expression in Alzheimer's disease mice: low CNS immune response, long-term expression, and astrocyte specificity. Front Biosci, 2004, 9:1540~1546
    8 Tenenbaum L, Peschanski M, Melas C, et al. Efficient early and sustained transduction of human fetal mesencephalon using adeno-associated virus type 2 vectors. Cell Transplant, 2004, 13(5): 565~571
    9 Mochizuki H, Miura M, Shimada T, et al. Adeno-associated virus- mediated antiapoptotic gene delivery: in vivo gene therapy for neurological disorders. Methods, 2002, 28(2): 248~252
    10 Ozawa K, Fan DS, Shen Y, et al. Gene therapy of Parkinson's disease using adeno-associated virus (AAV) vectors. J Neural Transm Suppl, 2000; (58): 181~191
    11 Bazan NG, Palacios-Pelaez R, Lukiw WJ. Hypoxia signaling to genes: significance in Alzheimer's disease. Mol Neurobiol, 2002, 26(2-3): 283~ 298
    12 Swaminath PV, Ragothaman M, Muthane UB, et al. Parkinsonism and personality changes following an acute hypoxic insult during mountaineering. Mov Disord, 2006, 21(8): 1296-1297
    13 Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol, 2001, 91(1): 173~182
    14 Scharte M, Han X, Bertges DJ, et al. Cytokines induce HIF-1 DNAbinding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol. 2003, 284(3):G373~ 384
    15 Soucek T, Cumming R, Dargusch R, et al. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron, 2003, 39(1): 43~56
    16 Liu J, Narasimhan P, Yu F, et al. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia- inducible factor and erythropoietin. Stroke, 2005, 36(6): 1264~1269
    17 Yang YT, Ju TC, Yang DI. Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells. J Neurochem, 2005, 93(3): 513~525
    18 Grimm C, Hermann DM, Bogdanova A, et al. Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol, 2005, 16(4-5): 531~538.
    19 Verdile G, Fuller S, Atwood CS, et al. The role of beta amyloid in Alzheimer's disease: still a cause of everything or the only one who got caught? Pharmacol Res, 2004, 50(4): 397~409
    20 Selkoe DJ. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci. 2000, 924: 17~25
    21 Wu Z, Wu X, Hou Y. Generation of a series of recombinant herpes simplex viruses which can provide replicating and packaging functions for recombinant adeno-associated virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2002, 16(1): 74~78
    22 伍志坚,吴小兵,曹晖等. 一种高效的重组腺伴随病毒载体生产系统。 中国科学 C 辑,2001,31(5):423~430
    23 吴小兵,董小岩,伍志坚等. 一种快速高效分离和纯化重组腺病毒伴随病毒载体的方法。 科学通报,2000,45(19):2071~2075
    24 彭建强,彭文心,谭淑萍等. 一种高效快速浓缩腺相关病毒载体的方 法。 病毒学报,2005,21(1) :11~14
    
    1 Blank M, Shiloh Y. Programs for cell death: apoptosis is only one way to go. Cell Cycle, 2007, 6(6): 686~695
    2 Blagosklonny MV. Cell death beyond apoptosis. Leukemia, 2000, 14(8): 1502~1508
    3 Schuchmann M, Galle PR, Kanzler S. Apoptosis in disease.Med Klin(Munich), 2002, 97(12): 738~746
    4 Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med, 2005, 258(6): 479~517
    5 Pirat B, Muderrisoglu H, Unal MT,et al. Recombinant human-activated protein C inhibits cardiomyocyte apoptosis in a rat model of myocardial ischemia-reperfusion. Coron Artery Dis, 2007, 18(1): 61~66
    6 Chiang-Ting C, Tzu-Ching C, Ching-Yi T, et al. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant, 2005, 5(6): 1194~1203
    7 Suhara T, Kim HS, Kirshenbaum LA,et al. Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. Mol Cell Biol, 2002, 22(2): 680~691
    8 Choi C, Kutsch O, Park J, et al.Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol, 2002, 22(3): 724~736
    9 Kim KM, Lee K, Hong YS, et al. Fas-mediated apoptosis and expression of related genes in human malignant hematopoietic cells. Exp Mol Med, 2000, 32(4): 246~254
    10 Pallas M, Camins A.Molecular and biochemical features in Alzheimer's disease. Curr Pharm Des, 2006, 12(33):4389~4408
    11 Takuma K, Yan SS, Stern DM, et al. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci, 2005, 97(3): 312~316
    12 Raynaud F, Marcilhac A. Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J, 2006, 273(15): 3437~3443
    13 Jin KL, Mao XO, Nagayama T, et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia inrat brain. Neuroscience, 2000, 99(3): 577~585
    14 Zhang B, Tanaka J, Yang L, et al. Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience, 2004, 126(2): 433~440
    15 Yang YT, Ju TC, Yang DI. Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells. J Neurochem, 2005, 93(3): 513~525
    16 Zaman K, Ryu H, Hall D, et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosc, 1999, 19(22): 9821~9830
    17 Grimm C, Hermann DM, Bogdanova A, et al. Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol, 2005, 16(4-5): 531~538
    18 Neumann AK, Yang J, Biju MP, et al. Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci U S A, 2005, 102(47): 17071~17076
    19 Felix R. Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res, 2005, 25(2): 57~71
    20 Eguiagaray JG, Egea J, Bravo-Cordero JJ, et al. Neurotransmitters, calcium signalling and neuronal communication. Neurocirugia (Astur), 2004, 15(2): 109~118
    21 Eisman JA. Vitamin D polymorphisms and calcium homeostasis: a new concept of normal gene variants and physiologic variation. Nutr Rev, 1998, 56(2 Pt 2): s22-9, discussion s54~75
    22 Choi HJ, Kim SW, Lee SY, et al. Involvement of apoptosis and calcium mobilization in tetrahydrobiopterin-induced dopaminergic cell death. Exp Neurol, 2003, 181(2): 281~290
    23 Nicole O, Ali C, Docagne F, et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction ofNMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci, 2001, 21(9): 3024~3033
    24 Sasabe E, Tatemoto Y, Li D, et al. Mechanism of HIF-1alpha- dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci, 2005, 96(7): 394~402
    1 Kaneda Y. Strategies for gene therapy. Nippon Rinsho, 2005, 63 Suppl 12: 486~490
    2 Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol, 2003,43: 413~439
    3 Anderson WF, Blaese RM, Culver K, et a1. The ADA human gene therapy clinical protocol: points to consider response with clinical protocol. Hum Gene Ther, 1990, 1(3): 331~362
    4 Noonan NA, Senner AM. Gene therapy techniques in the treatment ofadenosine deaminase--deficiency severe combined immune deficiency syndrome. J Perinat Neonatal Nurs, 1994, 7(4): 65~78
    5 Anderson WF. Gene therapy for genetic diseases. Hum Gene Ther, 1994, 5(3): 281~2822
    6 Evans ME, Lesnaw JA. Infection control for gene therapy: a busy physician's primer. Clin Infect Dis, 2002, 35(5): 597~605
    7 Huang CL, Yokomise H, Miyatake A. Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol, 2007, 3(1): 83~93
    8 Lu LL, Su Y, Duan CL, et al. Gene therapy of tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and GTP cyclohydrolase genes in rat model of Parkinson's disease. Zhonghua Yi Xue Za Zhi, 2004, 84(18): 1528~1532
    9 Brown M. Gene therapy success for Alzheimer's? Drug Discov Today, 2003, 8(11): 474~475
    10 Tuszynski MH, Smith DE, Roberts J, et al. Targeted intraparenchymal delivery of human NGF by gene transfer to the primate basal forebrain for 3 months does not accelerate beta-amyloid plaque deposition. Exp Neurol, 1998, 154(2): 573~582
    11 Wu K, Meyers CA, Guerra NK, et al. The effects of rAAV2-mediated NGF gene delivery in adult and aged rats. Mol Ther, 2004, 9(2): 262~269
    12 Alisky JM. Neurotransmitter depletion may be a cause of dementia pathology rather than an effect. Med Hypotheses, 2006, 67(3): 556~560
    13 Fisher LJ, Raymon HK, Gage FH. Cells engineered to produce acetylcholine: therapeutic potential for Alzheimer's disease. Ann N Y Acad Sci, 1993, 695: 278~284
    14 Weis C, Kaufmann WA, Humpel C. Lipid-mediated in vivo gene transfer replaces the loss of choline acetyltransferase activity after unilateral fimbria-fornix aspiration. Cell Transplant, 2001, 10(8): 681~688
    15 Saille C, Marin P, Martinou JC, et a1. Transgenic murine cortical neurons expressing human Bcl-2 exhibit increased resistance to amyloidbeta-peptide neurotoxicity. Neuroscience, 1999, 92(4): 1455~1463
    16 Song YS, Park HJ, Kim SY, et al. Protective role of Bcl-2 on beta-amyloid-induced cell death of differentiated PC12 cells: reduction of NF-kappaB and p38 MAP kinase activation. Neurosci Res, 2004, 49(1): 69~80
    17 Yamaguchi Y, Kawashima S. Effects of amyloid-beta-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol, 2001, 412(3):265~272
    18 Hughes BW, Wells AH, Bebok Z, et al. Bystander killing of melanoma cells using the human tyrosinase promoter to express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res, 1995, 55(15): 3339~3345
    19 Bartlett JS, Kleinschmidt J, Boucher RC, et al. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody. Nat Biotechnol, 1999, 17(2): 181~186
    20 Bian H, Fournier P, Moormann R, et al. Selective gene transfer to tumor cells by recombinant Newcastle Disease Virus via a bispecific fusion protein. Int J Oncol, 2005, 26(2): 431~439
    21 Consalvo M, Mullen CA, Modesti A, et al. 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J Immunol, 1995,154: 5302~5312
    22 Rogulski KR, Zhang K, Kolozsvary A, Kim JH, Freytag SO. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy. Clin Cancer Res,1997,3: 2081~2088
    23 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A, 1992, 89(12): 5547~5551
    24 Bohl D, Salvetti A, Moullier P, et al. Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood,1998, 92: 1512~1517
    25 Haberman RP, McCown TJ, Samulski RJ. Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther, 1998, 5: 1604~1611
    1 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447~5454
    2 Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A, 1993, 90(9): 4304~4308
    3 Chun YS, Kim MS, Park JW. Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci, 2002, 17(5): 581~588
    4 Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J, 2002, 16(10): 1151~1162
    5 Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A, 1997, 94(15): 8104~8109
    6 Karhausen J, Kong T, Narravula S, et al. Induction of the von Hippel-Lindau tumor suppressor gene by late hypoxia limits HIF-1 expression. J Cell Biochem, 2005, 95(6): 1264~1275
    7 Kim WJ, Cho H, Lee SW, et al. Antisense-thioredoxin inhibits angiogenesis via pVHL-mediated hypoxia-inducible factor-1alphadegradation. Int J Oncol, 2005, 26(4): 1049~1052
    8 Xue Y, Bi F, Zhang X, et al. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer, 2006, 118(12): 2965~2972
    9 Zhou J, Kohl R, Herr B, et al. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell, 2006, 17(4): 1549~1558
    10 Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999, 399(6733): 271~275
    11 Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001, 107(1): 43~54
    12 Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science, 2002, 295(5556): 858~861
    13 Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev, 2002, 16(12): 1466~1471
    14 Lando D, Gorman JJ, Whitelaw ML, et al. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem, 2003, 270(5):781~790
    15 Fedele A O, Whitelaw M L, Peet D J. Regulation of gene expression by the hypoxia-inducible factors. Mol Interv, 2002, 2(4): 229~243
    16 Jeong J W, Bae M K, Ahn M Y, et al. Regulation anddestabilization of HIF-1α by ARD1-mediated acetylation. Cell, 2002, 111(5): 709~720
    17 Bilton R, Mazure N, Trottier E, et al. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1α and is not induced by hypoxia or HIF. J Biol Chem, 2005, 280(35): 31132~31140
    18 Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu RevBiochem, 2004, 73: 417~435
    19 Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev, 2001, 15(20): 2675~2686
    20 Semenza GL.HIF-1, O2 and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 2001, 107: 1~3
    21 Semenza GL. Physiology meets biophysics: visualizing the interaction of hypoxia-inducible factor 1 alpha with p300 and CBP. Proc Natl Acad Sci U S A, 2002, 99(18): 11570~11572
    22 Semanza GL. HIF-1 and mechanism of hypoxia sensing. Curr Opin Cell Biol, 2001, 13: 167~171
    23 Xi L, Taher M, Yin C, et al. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol, 2004, 287(6): H2369~2375
    24 Vengellur A, LaPres JJ. The role of hypoxia inducible factor 1alpha in cobalt chloride induced cell death in mouse embryonic fibroblasts. Toxicol Sci, 2004, 82(2): 638~646
    25 Treins C, Giorgetti-Peraldi S, Murdaca J, et al. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/ target of rapamycin-dependent signaling pathway. J Biol Chem, 2002, 277(31): 27975~27981
    26 Minet E, Michel G, Mottet D, et al. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med, 2001, 31(7): 847~855
    27 Berra E, Milanini J, Richard DE,et al. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol, 2000, 60(8): 1171~1178
    28 Minet E, Arnould T, Michel G, et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett, 2000, 468(1): 53~58
    29 Richard DE, Berra E, Gothie E, et al. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) andenhance the transcriptional activity of HIF-1. J Biol Chem,1999, 274(46): 32631~32637
    30 Yu G, Peng T, Feng Q, et al. Abrupt reoxygenation of microvascular endothelial cells after hypoxia activates ERK1/2 and JNK1, leading to NADPH oxidase-dependent oxidant production. Microcirculation, 2007, 14(2): 125~136
    31 Mottet D, Michel G, Renard P, et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol, 2003, 194(1): 30-44
    32 Brune B, Zhou J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem, 2003, 10(10): 845~855
    33 Huang LE, Willmore WG, Gu J, et al. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem, 1999, 274(13): 9038~9044
    34 Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol, 2002, 64(5-6): 993~998
    35 Templeton DM, LiuY. Genetic regulation of cell function in response to iron overload or chelation. Biochim Biophys Acta, 2003,161(2): 113~124
    36 Minchenko A, Leshchinsky I, Opentanova I, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem, 2002, 277(8): 6183~6187
    37 Zudaire E, Martinez A, Cuttitta F. Adrenomedullin and cancer. Regul Pept, 2003, 112(1-3):175~183
    38 Zotota V, Gerokosta A, Melachrinou M, et al. Microvessel density proliferating activity, p53 and Bcl-2 expression in situ ductal carcinoma of the breast. Anticancer Res, 1999, 19(4B): 3269~3274
    39 Birner P, Schindl M, Obermair A, et al. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res, 2001, 7(6): 1661~1668
    40 Zhong H, De Marzo AM, Laughner E, et al. Overexpression ofhypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999, 59(22): 5830~5835
    41 Birner P, Schindl M, Obermair A, et al. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res, 2000, 60(17): 4693~4696
    42 Workman P, Kaye SB. Translating basic cancer research into new cancer therapeutics. Trends Mol Med, 2002, 8(4 Suppl): S1~9
    43 Sun X, Kanwar JR, Leung E,et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther, 2001, 8(8):638~645
    44 Sun X, Kanwar JR, Leung E, et al. Regression of solid tumors by engineered overexpression of von Hippel-Lindau tumor suppressor protein and antisense hypoxia-inducible factor-1alpha. Gene Ther, 2003, 10(25): 2081~2089
    45 Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 2003, 112(5): 645~657
    46 Cramer T, Johnson RS. A novel role for the hypoxia inducible transcription factor HIF-1alpha: critical regulation of inflammatory cell function. Cell Cycle, 2003, 2(3): 192~193
    47 Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 1998, 12(2): 149~162
    48 Lee SH, Wolf PL, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction.N Engl J Med, 2000, 342(9): 626~633
    49 Blanco Pampin J, Garcia Rivero SA, Otero Cepeda XL, et al. Immunohistochemical expression of HIF-1alpha in response to early myocardial ischemia. J Forensic Sci, 2006, 51(1):120~124
    50 Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in anacute myocardial infarction model in the rat. Cardiovasc Res, 2002, 54(3): 576~583
    51 Yin Z, Haynie J, Yang X, et al. The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci U S A, 2002, 99(16): 10488~10493
    52 Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest, 1999, 103(5): 691~696
    53 Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol, 2000, 156(3): 965~976
    54 Soucek T, Cumming R, Dargusch R, et al. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron, 2003, 39(1): 43~56
    55 Fulda S, Debatin KM. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle, 2007, 6(7): 790~792
    56 Kim JW, Tchernyshyov I, Semenza GL,et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006, 3(3): 177~185
    57 Liu R, Suzuki A, Guo Z, et al. Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro. J Neurochem, 2006, 96(4): 1101~1110
    58 Prass K, Scharff A, Ruscher K,et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke, 2003, 34(8): 1981~1986
    59 Ruscher K, Freyer D, Karsch M, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci, 2002, 22(23): 10291~10301
    60 Bernaudin M, Tang Y, Reilly M, et al. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem, 2002, 277(42): 39728~39738
    61 Althaus J, Bernaudin M, Petit E, et al. Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein following focal cerebral ischemia in rats. Neurochem Int, 2006, 48(8): 687~695
    62 Chavez JC, Baranova O, Lin J, et al. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci, 2006, 26 (37): 9471~9481
    63 Zhu Y, Zhang Y, Ojwang BA, et al. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci, 2007, 48(4):1735~1743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700