重组腺相关Ⅱ型病毒介导人TIMP1基因抑制肝癌侵袭和生长的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的全球每年死于肝细胞癌(hepatocellular carcinoma,HCC)的病人超过100万人。在我国,肝癌已成为恶性肿瘤的第二大病因,每年死于HCC的病人数列全球第一位,对人类健康威胁极大。目前虽已有许多办法和措施用于HCC的治疗,包括:手术切除、放疗、化疗、介入治疗、免疫治疗、中药治疗和肝移植等,但获得根治的仅为10%左右。影响HCC疗效的最重要原因是肝癌转移。
     在恶性肿瘤侵袭转移的进程中,完善的ECM(extracellular matrix,ECM)和BM(basement membrane,BM)是一个重要的屏障,可以限制肿瘤细胞的浸润和转移,在组织学上,BM完整性的破坏被认为是恶性肿瘤侵袭开始的一个标志。有许多酶类参与降解ECM和BM中成分。肿瘤细胞或肿瘤间质组织能产生降解ECM和BM的蛋白水解酶系列,其中,基质金属蛋白酶(Matrixmetalloproteinases,MMPs)在肿瘤的转移过程中起着关键作用。
     金属蛋白酶组织抑制因子(tissue inhibitor of metalloproteinase,TIMPs)亦可为肿瘤细胞、肿瘤间质组织或正常组织产生。但却具有拮抗MMP的功效。目前已有提取的天然MMPs抑制剂(MMPI)和人工合成的MMPIs用于抗癌研究。但除从鲨鱼软骨中提取的Neovastat(癌立消)进入Ⅲ期临床试验外,其它尚皆在实验室研究阶段。以分子生物学方法促进TIMPs表达而抑制MMPs表达,重建MMPs-TIMPs平衡,达到抑制肝癌的侵袭和转移已成为目前TIMP研究的一大亮点。
     基因治疗的理想结果与载体系统的选择具有非常密切的关系,载体需兼具精确、低毒、高表达、大容量等特点,常用的病毒载体包括腺病毒、腺相关病毒、逆转录病毒、乙肝病毒、单纯疱疹病毒等。其中,腺相关病毒是目前公认的较理想载体。rAAV2是近年来出现的新型基因治疗载体,具有长时间有效表达外源性基因、转染后对机体无免疫反应以及对治疗者无致病性和基因定点整合等多项优点,已成为基因治疗研究的热点。
     因此,本研究选择腺相关病毒rAAV2为载体,重组携带全长TIMP1基因cDNA的rAAV2-TIMP1,以探讨其可能的抗癌效能及机制。
     研究目标
     1构建高滴度的携带人全长TIMP1基因的重组腺相关病毒rAAV2-TIMP1,为进一步探讨其抑制HCC生长、侵袭和转移的实验奠定基础。
     2观察重组腺病毒介导TIMP1基因对HCC细胞侵袭性的影响,探讨其抑制HCC细胞侵袭性的作用机理。
     3观察重组腺病毒介导TIMP1基因对活体HCC生长的影响,探讨rAAV2-TIMP1抑制活体HCC的效能及rAAV2-TIMP1对HCC的治疗潜力。
     研究内容
     1携带人全长TIMP1基因cDNA的重组腺相关病毒载体的构建
     1.1人TIMP1基因全长cDNA的选择与提取
     从Genbank查获人TIMP1基因全序列,进行特异性引物设计;从HCC组织中提取总mRNA,用逆转录聚合酶链反应(reverse-transcriptionpolymerase chain reaction,RT-PCR)扩增TIMP1基因全长cDNA。
     1.2携带全长TIMP1基因cDNA的重组腺相关病毒rAAV2-TIMP1的构建:
     ①TIMP-1基因cDNA片段定向克隆到pMD18-T质粒,得重组质粒命名为pMD18-T-TIMP1。将pMD18-T—TIMP1转入Top10中。筛选和鉴定重组子,用EcoRⅠ/BamHⅠ双酶切鉴定,并送上海申能博彩有限公司进行基因测序鉴定。
     ②rAAV2载体pSNAV-TIMP1质粒的构建与鉴定:将测序正确的pMD18-T-TIMP1重组子大规模扩增,提取质粒DNA,用EcoRⅠ/BamHⅠ双酶切切下TIMP-1全长510bp cDNA,正向插入pSNAV载体质粒的多克隆位点中,得到的重组质粒命名为pSNVA-TIMP1。
     ③rAAV2-TIMP1病毒细胞株的建立用脂质体转染法将pSNVA-TIMP1重组质粒转染BHK-21细胞,将细胞株命名为BHK-21/rAAV2-TIMP1。
     ④rAAV2-TIMP1重组病毒的制备与纯化,先进行重组AAV2病毒rAAV2-TIMP1的包装:用具有rAAV2包装功能的1型单纯疱疹病毒(HSV1-rc/△UL2)感染BHK-TIMP1。首先大量扩增BHK-21/rAAV2-TIMP1细胞及辅助病毒rHSV1-rc/△UL2,用rHSV1-rc/△UL2(MOI为1.0)感染BHK-21/rAAV2-TIMP1细胞,待细胞完全病变后收集细胞及上清液。初步纯化,获得rAAV2-TIMP1,再用亲和层析、离子交换层析和分子筛层析进一步精纯化。
     ⑤rAAV2-TIMP1的纯度的检测:用SDS-聚丙烯酰胺电泳(SDS-PAGE)法检测rAAV2-TIMP1的纯度,rAAV2-TIMP1纯度采用凝胶扫描图像分析系统进行。再对纯化的rAAV2-TIMP1病毒样品行高压液相(HPLC)分析。
     ⑥rAAV2-TIMP1重组病毒的滴度测定:用点杂交方法检测纯化rAAV2-TIMP1的滴度。同时,构建空白腺相关病毒(rMV2-luc,无TIMP1)作为对照。
     2 rMV2-TIMP1抑制HCC细胞侵袭的细胞实验
     2.1 rAAV2-TIMP1抑制HCC细胞株侵袭的实验
     分别用感染复数(multiplicities of infection,MOI)为100的rAAV2-TIMP1和rAAV2-luc感染人肝癌细胞(Bel-7402)。用侵袭小室(Boydenchamber)检测Bel-7402细胞侵袭人工基底膜(Matrigel)的能力。
     2.2 rAAV2-TIHP1抑制HCC细胞生长曲线
     用MTT法检测HCC细胞Bel-7402细胞生长曲线,确定rAAV2-TIMP1对Bel-7402细胞生长的影响
     2.3 rAAV2-TIMP1抑制HCC细胞的生产和促进凋亡
     用流式细胞仪(FCM)检测感染rAAV2-TIMP1的Bel-7402细胞生长指数和凋亡指数
     2.4 RT-PCR检测感染rAAV2-TIHP1后Bel-7402细胞中TIHP1 mRNA的变化
     2.5 Western blot法检测感染rAAV2-TIMP1对HCC细胞分泌TIHP1蛋白表达的影响
     用Western blot检测Bel-7402细胞培养液中TIMP1蛋白的表达,以确定感染rAAV2-TIMP1的HCC细胞株(Bel-7402)分泌TIMP1蛋白的变化。
     3动物实验
     3.1成瘤实验
     用100 MOI的rAAV2-TIMP1感染Bel-7402细胞,然后注射入裸鼠皮下组织成瘤,观察rAAV2-TIMP1对HCC成瘤的影响。以rAAV2-luc为对照。
     3.2治疗实验
     用rAAV2-TIMP1对已成瘤的HCC行瘤内注射,观察rAAV2-TIMP1对HCC的治疗作用,以瘤内注射PBS为对照。
     3.3组织学检测
     所有实验HCC行病理切片,HE(hematoxylin eosin)染色,观察肿瘤组织结构;免疫组化染色检测TIMP-1基因在荷瘤鼠组织中的表达。结果
     1成功地从HCC组织中提取并扩增出全长TIMP1基因cDNA,经DNA测序证实该基因片段序列与Genbank中人类TIMP1基因序列完全一致
     2成功地构建出携带人类TIMP1基因的重组腺相关病毒rAAV2-TIMP1,病毒滴度达1×10~(12)v.g/ml
     3受rAAV2-TIMP1感染的Bel-7402细胞穿过Matrigel的细胞数下降52%
     4受rAAV2-TIMP1感染的Bel-7402细胞分泌TIMP1的能力明显增强且持续表达5受rAAV2-TIMP1感染的Bel-7402细胞的成瘤能力下降,瘤内注射rAAV2-TIMP1使瘤体生长缓慢
     结论携带人TIMP1全长cDNA的重组腺相关病毒rAAV2-TIMP1,体内、体外实验均证实能够稳定高效地表达TIMP-1。rAAV2-TIMP1重组体显示出降低HCC的侵袭力、抑制HCC生长和增殖的能力。rAAV2-TIMP1的成功构建及其稳定表达,以及对人肝癌侵袭、生长的抑制,为进一步开展HCC的基因治疗建立了实验基础和技术平台。
Objective This study was design to conduct (a) to construct a recombinant adeno-associated virus-2 carrying tissue inhibitor metalloproteinase-l(TIMP1) gene (rAAV2-TIMP 1): (b) to study the effects that the rAAV2-TIMP 1 inhibit the invasiveness of hepatocellular carcinoma(HCC) cells in vitro model and the mchamism of rAAV2-TIMP1 in inhibiting the invasiveness ofHCC. (c) to study the effects on the growth and angiogenesis of HCC in vivo models by treatment of rAAV2-TIMP1. So as to investigate the possible potency of rAAV2-TIMP1 in treatment ofhepatocellular carcinoma
     Methods: Total RNA was extracted from human hepatocellular carcinoma tissue, and a 510-bp of TIMP 1 cDNA was amplified by RT-PCR and extracted, the TIMP 1 gene was then cloned into the adeno-assciated virus-2 vector pSNAV to form the recombinant pSNAV-TIMP1, Which was transfected into BHK-21 cells by means of lipofectamine. Using G418 Selection from mixed cells, BHK-TIMP1 was isolated, which was capable of TIMP1 expression and was subsequently infected with recombinant herpes simplex virus 1(HSVI-rc/AUL2) that was able to package the rAAV2-TIMP1 to form a functional and infectious virus. After purification, the packaged rAAV2-TIMP 1 was obtained. The human HCC cell line (Bel-7402) were transfected in vitro and treated in vivo with rAAV2-TIMP1, and a series of experiments was performed to observe the possoble effects of rAAV2-TIMP1 on the invasion and growth of Bel-7402 cells. Compared with the conventional transfection method, our modified method using "one provirus cell line, one helper virus" has an advantage to increase the yield of rAAV2 by two orders of magnitude. (a) The mRNA expression of TIMP 1 were detected by RT-PCR. (b) The protein production of TIMP 1 in the Bel-7402 cells was detected with Western Blot analysis. (c) The invasiveness of the Bel-7402 cells was assayed in Matrigel. (d) The index of proliferation and apoptosis of Bel-7402 cells were detected with MTT and FCM respectively. (e) The in vitro experiments was done by subcutaneously inoculation with rAAV2-TIMP1 infected BHK-21 cells in nude mice, and injected intratumorally into pre-existing tumors. The tumors were removed, sectioned, stained with H&E and immunohistochemical method for inspection.
     Results: The recombinant adeno-associated virus-2 vector carrying TIMP1 was constructed successfully, Using RT-PCR and Western Blot, the destination gene TIMP1 was detected. The recombinat viral titer was 1×10~(12)v.g/ml. Compared with PBS and rAAV2-1uc(empty control) infected cells, the invasiveness of Bel-7402 cells in Matrigel assays with transfected rAAV2-TIMP1 resulted in a significantly reduction by 52%, and the tumor mass was also obviously reduced in nude mice with subcutaneously inoculation by rAAV2-TIMP1. Direct intratumoral injection of rAAV2-TIMP 1 into pre-existing tumors significantly inhibited the further growth of the HCC tumor, the tumor cells show necrosis and shrink, and the apoptosis rate also increased in Bel-7402 cells infected with rAAV2-TIMP 1
     Conclusion: (1)The constructed recombinant adeno-associated virus-2 with TIMP 1 (rAAV2-TIMP1) can express TIMP 1 and effectively inhibit the invasiveness of Bel-7402 cells of HCC in vitro. (2) rAAV2-TIMP1 can effectively promote the apoptosis and inhibit the growth of Bel-7402 cells in vivo; (3) rAAV2-TIMP1 can effectively attenuate the growth of HCC in vivo models, and demonstrat a therapeutic potential for HCC.
引文
1 Jiang y, Goldberg ID, shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer [J]. Oncogene,2002,21:2245-2252.
    2 伍志坚,吴小兵,候云德,等.系列腺病毒伴随病毒载体构建及表达β-半乳糖苷酶的研究[J].病毒学报,2000,16(1):1—7.
    3 Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual [M]. 2nd ed,New York: CHS press, 1989.
    4 伍志坚,吴小兵,曹晖,等.一种高效的重组腺伴随病毒载体生产系统[J].中国科学, (C辑)2001,31(5):423-430.
    5 吴小兵,董小岩,伍志坚,等.一种快速高效分离和纯化腺病毒伴随病毒载体的方法[J].科学通报,2000,45(19):2071-2075.
    6 Delelak D, Fisher J, Iuliano S, et al. Cation-exchange high performance liquid chromatography of recombinant adeno-associated virus type2B[J] Chromatogr B Biomed Sci Appl, 2000,740:195-202.
    7 Matsumoto E, Nakatsukasa H, Nouso K, et al. Increased leves of tissue inhibitor of metalloproteinase-1 in human hepatocellular carcinoma [J]. Liver Int,2004,24;379-383.
    8 Monahan PE, Samulski RJ, Tazelaar J, et al. Direct in tramuscular injection with
    1. Ishii Y, Nakasato Y, Kobayashi S, et al. A study on angiogenesis-related matrix metalloproteinases networks in primary hepatocellular carcinoma. J Exp Clin Cancer Res. 2003, 22(3): 461-470.
    2. Aliciar F, Albertom P, Luism S, et al. Matrix metalloproteinases in cancer: from new function to improved inhibition strategies Int.J.Biol,2004,48:411-424.
    3. Feitelson MA, Pan J, Lian Z. Early molecular and genetic determinants of primary liver malignancy. Surg Clin North Am, 2004, 84(2):339-354.
    4. Freije JM, Balbin M, Pendas AM, et al. Matrix metalloproteinases and tumor progression. Adv Exp Med Biol, 2003, 532: 91-107.
    5. Joo YE, Seo YH, Lee WS, et al. Expression of tissue inhibitors of metalloproteinases (TIMPs) in hepatocellular carcinoma. Korean J Intern Med, 2000, 15: 171-178.
    6. Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90: 1265-1273.
    7. Lambert E, Dasse E, Haye B, et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol, 2004, 49: 187-198.
    8. Cousses LM, Finglrton B, Matrisain LM. Matrix metalloproteinases inhibitors and cancer: trials and tribulations. Science, 2002, 295: 2387-2392.
    9. Thiennu H. Vu, Zena Werb. Matrix metalloproteinases: effectors of development and normal physiology. Genes & Development, 2000, 14: 2123-2133.
    10. Ennis BW, Matrisian LM. Matrix degrading metalloproteinases. J Neurooncol, 1994, 18(2): 105-109.
    11. Lu Y, Zhou R. Mechanism of enhanced invasiveness of human hepatocellular carcinoma by integrin alpha 6 beta 1. Zhonghua Zhong Liu Za Zhi, 2000;22(4):287-9.
    12. Deryugina EI, Luo GX, Reisfeld RA, et al. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res, 1997; 17(5A):3201-10
    13. Takahia T , Hirosky S , Motoharm S , et al . Molecular biology of matrixmetallopoteinase (MMPs) and tissue inhibitor of metalloproteinase(TIMPs) . and the regulations of these genes in tumor tissues. Jap J Clin Med , 1995 ,53(16) : 1791 -1797.
    14. Kleinman HK, Martin GR, Laurie GW. Biological activity of Collagen fibrils with basement membrane complexes. Biochemistry, 21:6188-6193 . 1982.
    15. Kubota, Y., Kleinman, H. K., Martin, G. R. et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol .1988,107: 1589-1598.
    16. Hendrix MJ, Seftor EA, Seftor RE, et al. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett, 1987,38(1-2):137-47.
    17. Terranova VP, Hujanen ES, Loeb DM, et al. Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci US A, 1986,83(2):465-9
    18. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells.Cancer Research, 1987,47(12): 3239-32457.
    19. Taniguchi S, Tatsuka M, Nakamatsu K, et al. High invasiveness associated with augmentation of motility in a fos-transferred highly metastatic rat 3Y1 cell line. Cancer Res, 1989,49(23):6738-44.
    20. Skiles JW, Gonnella NC, Jeng AY. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem, 2001, 8: 425-474.
    21. Baker AH, Edwards DR, Murphy G Metalloproteinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science, 2002,115: 3719-3727.
    22. Tran PL, Vigneron JP, Pericat D, et al. Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren -cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP-2 and TIMP-3. Cancer Gene Ther, 2003, 10: 435-444.
    23. Kirkpatrick DL, Duke M, Goh TS. Chemosensitivity testing of fresh human leukemia cells using both a dye exclusion assay and a tetrazolium dye (MTT) assay. Leuk Res, 1990,14(5):459-66.
    24. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods, 1989,12; 119(2):203-10.
    25. Alvarez-Barrientos A, Arroyo J ,Canton R Applications of Flow Cytometry to Clinical Microbiology. Clin Microbiol Rev, 2000,13(2): 167-195.
    26. Maria A Suni, Holli S Dunn, Patricia L Orr, et al. Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunol, 2003,4: 9.
    27. Ghanekar SA, Maecker H. Cytokine flow cytometry: multiparameter approach to immune function analysis. Cytotherapy,2003,5:1-6.
    1. Ishikawa H, Nakao K, Matsumoto K, et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene.Hepatology,2003;37(3):696-704.
    2. Boros P, Tarcsafalvi A, Wang L, et al. Intrahepatic expression and release of vascular endothelial growth factor following orthotopic liver transplantation in the rat. Transplantation. 2001;72(5):805-11.
    3. Liu Z, Yan L, Xiang T, Jiang L, et al. Expression of vascular endothelial growth factor and matrix metalloproteinase-2 correlates with the invasion and metastasis of hepatocellular carcinoma. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003;20(2):249-50, 254.
    4. Feitelson MA, Pan J, Lian Z. Early molecular and genetic determinants of primary liver malignancy. Surg Clin North Am, 2004, 84(2):339-354.
    5. Freije JM, Balbin M, Pendas AM, et al. Matrix metalloproteinases and tumor progression. Adv Exp Med Biol, 2003, 532: 91-107.
    6. Joo YE, Seo YH, Lee WS, et al. Expression of tissue inhibitors of metalloproteinases (TIMPs) in hepatocellular carcinoma. Korean J Intern Med, 2000, 15: 171-178.
    7. Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90: 1265-1273.
    8. Lambert E, Dasse E, Haye B, et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol, 2004, 49: 187-198.
    9. Cousses LM, Finglrton B, Matrisain LM. Matrix metalloproteinases inhibitors and cancer: trials and tribulations. Science, 2002,295: 2387-2392.
    10. Thiennu H. Vu, Zena Werb. Matrix metalloproteinases: effectors of development and normal physiology. Genes & Development, 2000, 14: 2123-2133.
    11. Ennis BW, Matrisian LM. Matrix degrading metalloproteinases. J Neurooncol, 1994, 18(2): 105-109.
    12. Lambert E, Dasse E, Haye B, et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol, 2004,49: 187-198.
    13. Zacchigna S, Zentilin L, Morini M, et al. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther, 2004, 11(1):73-80.
    1. Gerolami R, Uch R, Brechot C, et al. Gene therapy of hepatocarcinoma : a long wey from the concept to the therapeutic impact. Cancer Gene Therapy, 2003, 10 : 649-660
    2. Ishii Y, Nakasato Y, Kobayashi S, et al. A study on angiogenesis-related matrix metalloproteinases networks in primary hepatocellular carcinoma. J Exp Clin Cancer Res. 2003, 22(3): 461-470.
    3. Feitelson MA, Pan J, Lian Z. Early molecular and genetic determinants of primary liver malignancy. Surg Clin North Am, 2004, 84(2):339-354.
    4. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 2001, 93(3): 178-193.
    5. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol, 1998, 10: 602-608.
    6. Freije JM, Balbin M, Pendas AM, et al. Matrix metalloproteinases and tumor progression. Adv Exp Med Biol, 2003, 532: 91-107.
    7. Allan JA, Docherty AJ, Barker PJ, et al. Binding of gelatinases A and B to type- I collagen and other matrix components. Biochem J. 1995,309:299-306.
    8. Aimes RT, Quigley JP.Matrix metallopteinase-2 is an "interstitial Collagenase: Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-andl/4-length fragments. J Biol Chem. 1995, 270:5872-5876.
    9. Patterson ML, Atkinson SJ, Knauper V, et al. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronection-like domain. FEBS Lett. 2001, 503: 158-162.
    10. Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S. Unaltered secretion of -amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem. 1997;272:22389 -22392.
    11. Martigenetti JA, Aqeel AA, Sewairi WA, et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicenric osteolysis and arthritis syndrome.Nat Genet. 2001,28:261-265. 2001 £8:261-265.
    12. Suzuki K, Enghild JJ, Morodomi T, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin) Biochemistry. 1990,29:10261-10270.
    13. Uria JA, Lopez-otin C. Matrilysin-2,a new matrix metalloproteinase expressed in human tumor and showing the minimal domain organization required for secretion, latency,and activity.Cancer Res.2000,60:4745-4751.
    14. Ohuchi E, Imai K, Fujii Y, et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.J Biol Chem. 1997,272:2446-2451.
    15. Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999,99:81-92.
    16. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost. 2001,86:346-355.
    17. Sekine-Aizawa Y, Hama E, Watanabe K, et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci. 2001,13:935-948.
    18. Velasco G, Cal S, Merlos-Suarez A, et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000,60:877-882.
    19. Pei D. Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999,9:291-303.
    20. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem. 1993, 268:23824-23829.
    21. Shipley JM, Wesselschmidt RL, Kobayashi DK, et al. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad sci U S A. 1996,93:3942-3946.
    22. Pendas AM, Knauper V, Puente XS, et al.Identification and characterization of a novel human matrix metalloproteinase with unique structural characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem. 1997,272:4281-4286.
    23. Kolb C, Mauch S, Peter HH, et al. The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol Lett. 1997,57:83-88.
    24. Li w, Gibson CW, Abrams WR, et al. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001,19:755-760.
    25. Yang M, Kurkinen M. Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts: CMMP, Xenopus XMMP, and human MMP19 have a conserved unique cysteine in the catalytic domain. J Biol Chem. 1998,273:17893-17900.
    26. Velasco G, Pendas AM, Fueyo A, et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem. 1999,274:4570-4576.
    27. Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem. 2000,275:33988-33997.
    28. Marchenko GN, Strongin AY. MMP-28, a new human matrix metalloprteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene. 2001,265:87-93.
    29. Lohi J, Wilson CL, Roby JD, et al. a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. Jbiol Chem. 2001,276:10134-10144.
    30. Saarialho-Kere U, Kerkela E, Jahkola T, et al. Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol. 2002,119:14-21.
    31. Joo YE, Seo YH, Lee WS, et al. Expression of tissue inhibitors of metalloproteinases (TIMPs) in hepatocellular carcinoma. Korean J Intern Med, 2000, 15: 171-178.
    32. Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer, 2004, 90: 1265-1273.
    33. Cousses LM, Finglrton B, Matrisain LM. Matrix metalloproteinases inhibitors and cancer: trials and tribulations. Science, 2002,295: 2387-2392.
    34. Thiennu H. Vu, Zena Werb. Matrix metalloproteinases: effectors of development and normal physiology. Genes & Development, 2000,14: 2123-2133.
    35. Ennis BW, Matrisian LM. Matrix degrading metalloproteinases. J Neurooncol, 1994, 18(2): 105-109.
    36. Powell WC, Matrisian LM. Complex roles of matrix metalloproteinases in tumor progression. Curr Top Microbiol Immunol, 1996, 213 (Pt 1):1-21.
    37. Yang C, Zeisberg M, Lively JC, et al. Integrin alpha 1 beta 1 and alpha2betal are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res, 2003, 63: 8312-8317.
    38. Mark D, Sternlicht. How matrix metalloproteinases regulate cell behaviour. Annu Rev Cell Dev Biol, 2001,17(2): 463-469.
    39. Jicui D, Hongguang D, Campana A, et al. Matrix metalloproteinases and their special tissue inhibitors in mensruation. Reproduction, 2002, 123(5): 162-174.
    40. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res, 2001, 7(1):14-23.
    41. Zucker S, Hymowitz M, Conner C, et al. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues.Clinical and experimental applications. Ann N Y Acad Sci, 1999, 878: 212-227.
    42. Skiles JW, Gonnella NC, Jeng AY. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem, 2001, 8: 425-474.
    43. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science, 2002,115: 3719-3727.
    44. Kordula T, Guttgemann I, Rose-John S, et al. Synthesis of tissue, inhibitor of metalloproteinase-1 (TIMP-1) in human hepatoma cells (HepG2). Up-regulation by interleukin-6 and transforming growth factor beta 1. FEBS Lett, 1992, 313(2): 143-147.
    45. Wingfield PT, Sax JK, Stahl SJ, et al. Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J Biol Chem. 1999,274(30): 21362-21368.
    46. Tran PL, Vigneron JP, Pericat D, et al. Gene therapy for hepatocellular carcinoma using non-viral vectors composed of bis guanidinium-tren -cholesterol and plasmids encoding the tissue inhibitors of metalloproteinases TIMP-2 and TIMP-3. Cancer Gene Ther, 2003, 10: 435-444.
    47. Greene J, Wang M, Liu YE, et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem, 1996,271(48): 30375-30380.
    48. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002,21:2245-2252.
    49. Lambert E, Dasse E, Haye. B, et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol, 2004,49:187-198
    50. Fernandez HA, Kallenbach K, Seghezzi G, et al. Inhibition of endothelial cell migration by gene transfer of tissue inhibitor of metalloproteinases-2. J Surg Res, 1999, 82: 156-162.
    51. Jiang Y, Wang M, Celiker MY, et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res, 2001, 61: 2365-2370.
    52. Wen W, Moses MA, Wiederschain D, et al. The generation of endostatin is mediated by elastase. Cancer Res, 1999, 59: 6052-6056.
    53. Kinoshita T, Sato H, Okada A, et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem, 1998,273: 16098-16103.
    54. Arlt M, Kopitz C, Pennington C, et al. Increase in gelatinase-specificity of matrix metalloproteinase inhibitors correlates with antimetastatic efiRcacy in a T-cell lymphoma model. Cancer Res. 2002, 62(19):5543-5550.
    55. Watson SA, Morris TM, Robinson G, et al. Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res, 1995, 55(16):3629 - 3633.
    56. Bu W, Tang ZY, Sun FX, et al. Effects of matrix metalloproteinase inhibitor BB-94 on liver ancer growth and metastasis in a patient-like orthotopic model LCI-D20. Hepatogastroenterology, 1998,45(22):1056-1061.
    57. Pia V, Veli-matti K. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int J Cancer, 2002, 99(2): 157-163.
    58. Okazaki I, Wada N, Nakano M, et al. Difference in gene expression for matrix metalloproteinase-1 between early and advanced hepatocellular carcinomas. Hepatology, 1997, 25(3):580-584.
    59. Hayasaka A, Suzuki N, Fujimoto N, et al. Elevated plasma levels of matrix metalloproteinase-9 (92-kd type Ⅳ collagenase/gelatinase B) in hepatocellular carcinoma. Hepatology, 1996, 24(5): 1058-1062.
    60. 蒋泽生,方石岗,高毅,等.大鼠肝细胞癌发生过程中MMP-2表达的动态变化与意义.肿瘤,2003,23(1):39-41.
    61. Yamamoto H, Itoh F, Adachi Y, et al. Messenger RNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human hepatocellular carcinoma. Jpn J Clin Oncol, 1999, 29(2): 58-62.
    62. 胡劲松,翟为溶,张月娥,等.基质金属蛋白酶及组织抑制剂在肝癌中的表达及与预后的关系.中华消化杂志,2001,21(8):461-464.
    63. 谢玉梅,聂青和,周永兴,等.TIMP-1和TIMP-2在原发性肝癌生长、浸润及转移中的作用.胃肠病学和肝病学杂志,2002,11(3):225-228.
    64. Hanke B, Wein A, Martus P, et al. Serum markers of matrix tumover as predictors for the evolution of colorectal cancer metastasis under chemotherapy. Br J Cancer, 2003, 88(8):1248-1250.
    65. 万兴旺,王红阳,何雅琴,等.细胞内基质金属蛋白酶-2/细胞内基质金属蛋白酶组织抑制剂.2在PTEN抑制肝癌细胞粘附及浸润迁移中的作用.中华实验外科杂志,2003,20(6):508-510.
    66. Westermark J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999, 13(8):781-792.
    67. Xia D, Tong Y, Yan LN, et al. Construction of recombinant adenoviral vector carrying human tissue inhibitor of metalloproteinase-1 gene and its expression in vitro. Hepatobiliary & Pancreatic Disease International, 2005, 4(2): 172-177.
    68. Seo DW, Li H, Guedez L, et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell, 2003, 114(2): 171-180.
    69. 龚时文,区庆嘉,闵军,等.裸鼠肝部分切除术后肝癌组织基质金属蛋白酶-2及其抑制剂表达.肿瘤学杂志,2003,9(3):183-184.
    70. Yoshiji H, Kuriyama S, Yoshii J, et al. Extracellular matrix remodeling may predominate over hepatocyte injury in hepatocellular carcinoma development. Oncol Rep. 2003, 10(4):957-962.
    71. Theret N, Musso O, Turlin B, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology, 2001, 34: 82-88.
    72. Torimura T, Ueno T, Kin M, et al. Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of betal integrins. Hepatology, 2001, 34:62-71
    73. Giannelli G, Bergamini C, Marinosci F, et al. Clinical role of MMP-2/TIMP-2 imbalance. in hepatocellular carcinoma. Int J Cancer, 2002, 97:425-431.
    74. McKenna GJ, Chen Y, Smith RM, et al. A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. Am J Surg, 2002,183: 588-594.
    75. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med, 2003, 3: 659-671.
    76. Bodey B, Bodey B Jr, Siegel SE, et al. Immunocytochemical detection of MMP-3 and -10 expression in hepatocellular carcinomas. Anticancer Res, 2000, 20: 4585-4590.
    77. 汤钊猷.复发与转移——原发性肝癌研究的一个重点.中华肝胆外科杂志,1999,5: 3-5
    78. Xia D, Zhang MM, Yan LN. Recent advances in liver-directed gene transfer vectors. Hepatobiliary & Pancreatic Disease International, 2004, 3(3): 332-336.
    79. Brand K, Baker AH, Perez-Canto A, et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Research, 2000, 60: 5723-5730.
    80. Zacchigna S, Zentilin L, Morini M, et al. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther, 2004, 11(1):73-80.
    81. Hasegawa S, Koshikawa N, Momiyama N,et al. Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer, 1998, 76(6):812-816.
    82. 孙建新,张从昕,殷学平,等.重组金属蛋白酶抑制因子-3 抗肿瘤作用的实验研究.中华肿瘤杂志,1998,20:287-289
    83. Sangro B, Mazzollini G, Prieto J. Future therapies for hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005, 17(5):515-521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700