结合稀疏变换的稀疏约束反演一次波估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在基于波动方程的反馈迭代法去除多次波领域里,SRME方法在最近20年间已经发展成为工业界较为成熟的去除表面多次波的有效的方法。最近几年发展起来的EPSI(稀疏反演一次波估计)方法是继SRME方法以后发展出来的一种基于大尺度反演来直接对一次波估计的方法。该方法避免了SRME方法的预测减去过程,进一步提高了一次波的计算精度。原始的EPSI方法是对一次波脉冲响应进行迭代更新,它是基于L0范数约束的稀疏反演问题,采用了传统的最速下降算法每次对一次波脉冲响应的梯度进行更新时加上时窗和反演参数上的设定等约束。在进行迭代更新过程中,时窗包含有一次波信息,而不能包含多次波信息,反演参数也是要经过多次的调试。所以原始的EPSI问题存在着多种条件限制和稳定性等问题。
     为了避免原始的EPSI方法中的基于L0范数约束的稀疏反演求解过程中所带来的问题,在足够稀疏的条件下,L0范数最优化问题可以转化为L1范数约束的凸优化问题,并且采用SPGL1(L1谱梯度投影)算法进行求解,由于它是一种稳健的最优化反演方法,即使在没有局部最小解的情况下仍然能够保持稳定,最后可以收敛于全局解,在反演一次波脉冲响应的过程由于采用了叠前多炮数据,所以引入了3D曲波变换作为稀疏约束条件,一次波脉冲响应在曲波域中表现的更为稀疏,反演得到的一次波通过曲波反变换结果与震源子波褶积得到。因此通过将原始的EPSI改进,不仅提高了一次波反演估计的计算精度,而且避免了在反演过程中的多种条件约束。基于L1范数约束的稀疏反演一次波估计方法不仅能够提高一次波估计的精度而且能够相对提高了计算效率。通过数值模拟数据和实际数据的测试体现了该方法的有效性和稳定性。
     原始的EPSI方法通过一个大尺度的反演过程来实现一次波的估计,所以计算耗时较多,相当于100多次的SRME方法的运算量。同时由于是反演得到的一次波脉冲响应,对于深层的反射信息,不管是原始的EPSI还是经过改进的L1范数约束的稀疏约束反演一次波估计方法,反演的一次波脉冲响应结果都不够理想,很多深层的有效信息不够完整,会对后续的偏移成像和地震解释带来了一定的影响,为了在反演一次波脉冲响应效果和运算量之间得到一个更好的折中,我们可以采用SRME方法与结合曲波变换的基于L1范数约束的EPSI方法联合进行多次波衰减,通过理论数据的实验,得到了较为理想的效果,一次波估计精度不仅得到了提高,深层反射也得到了较大程度的改进,而且运算量也大大降低,得到了较为理想的预期。
     结合稀疏变换的基于L1范数约束的稀疏约束反演方法不仅适合于海上常规拖缆采集技术,针对于海底电缆(OBC)数据采集方式,我们通过改进反演公式,将常规拖缆数据信息和海底电缆数据信息同时应用在其中,同样可以采用该方法进行海底电缆数据的稀疏约束反演一次波估计。为了提高稀疏变换速度,同时采用了二维曲波变换与一维小波变换结合的稀疏变换方法,采用了双凸优化方式,即反演一次波脉冲响应的过程中采用目标函数是一个凸函数以及应用的约束集合同样也是一个凸函数。对一次波脉冲响应运用SPGL1(L1谱梯度投影)算法求解,同时引入了pareto曲线作为收敛准则,提高了收敛速度,采用了最小平方QR分解算法进行子波估计,通过交替优化迭代过程,最后达到更加精确的反演一次波脉冲响应,进而得到一次波反射,同时得到震源子波,在OBC数据中应用了改进型的稀疏反演一次波估计。该方法适用于OBC数据中的各个分量。在模拟算例中我们采用了水检数据,即压力分量来进行一次波估计。通过理论数据得到验证,效果良好。
     对于被动源地震数据,运用常规的地震干涉理论中的互相关算法得到的虚拟炮记录中通常含有表面相关多次波。然而通过被动源数据稀疏反演一次波估计(EPSI)方法,可以求得只含有一次波,不含表面相关多次波的虚拟炮记录。由于被动源数据中的时间窗口选择和反演参数设定更加困难,我们改进了原始的被动源数据稀疏反演一次波估计的求解方法,将基于脉冲震源的被动源稀疏反演一次波估计求解问题转化为L1范数约束的最优化反演问题,避免了在传统的稀疏反演一次波估计过程中用时窗防止反演陷入局部最优化的情况。在这种脉冲震源类型的被动源数据中采用最优化的求解过程中,又结合了二维曲波变换和一维小波变换联合方法,采用基于L1范数约束的SPGL1算法与基于L2范数能量约束的最小二乘QR分解算法分别进行反演,使被动源数据在稀疏变换域中反演得到,从而使求得的结果直接可以获得一次波反射信息,效果更加优越,成像质量得到了进一步改善。
     对于上述结合稀疏变换的基于L1范数约束的稀疏反演一次波估计方法通过对数据矩阵公式的推导与改进。应用拓展到了常规的海上拖缆数据、海底电缆数据(OBC)以及被动源地震数据中。通过模型验证和实际数据验证,都达到了一定的应用效果。从最早提出的SRME方法,继而到传统的EPSI方法,最后我们通过进一步改进EPSI方法。不仅避免了SRME方法中的预测减去的过程,而且优化了反演条件,提高了反演速度,为多次波去除领域及其EPSI方法今后的大规模工业化应用提供了参考。
Feedback iteration method based on the wave equation in the filed of multipleattenuation, the SRME(Surface-related multiple elimination) has developed into theindustry is relatively mature efficient and effective approach to reduce the surfacemultiples in the recent20years, EPSI (estimation of primaries by sparse inversion)was developed following the SRME method based on a large scale inversion anddirectly to a wavelet estimation method in recent years, which not only avoids theSRME method prediction and subtraction the process but further improve thecalculation precision of primaries. Original EPSI method is the gradient of primariesimpulse response of the update, it is based on the sparse inversion problem of L0norm constraint, using the conventional steepest descent algorithm, each timeprimaries impulse response gradient for update with time window and set ofconstraints on the inversion parameters. When making gradient update process, thewindow contains primary information and cannot contain multiple imformation withinversion parameters should be debug many times. So the original EPSI haverestrictions in a variety of conditions and stability problems.
     In order to avoid the original EPSI method of sparse inversion based on L0normconstraint in the process of solving the problem. In the condition of sparse enough, L0norm optimization problem can be converted into the L1norm constrained convexoptimization problem, we adopt a algorithm that called SPGL1(Spectrum ProjectedGradient L1) is used, because it is a kind of robust optimization inversion method,even there is not local minimum solution can converge to global solutions, in theprocess of inversion primaries impulse response since the prestack data, so the3Dcurvelet transform is introduced as a sparse constraint conditions, primaries impulse response in the curvelet domain performance more sparse, the inversion of primariesimpulse response result with the source wavelet convolution. So the original EPSIimprovement, not only primary inversion raised the calculation precision ofestimation, but avoids restrictions the variety of conditions in the inversion process.Sparse inversion based on L1norm constraint primary estimation method can not onlyimprove the accuracy of primary estimation but also improved the relative calculationefficiency. Through the numerical simulation data and real data test showed theeffectiveness of the proposed method and stability.
     Original EPSI through a large scale inversion process to implement primaryestimation, so calculation time consuming, equivalent to more than100times theSRME method of computation. At the same time as a result of the inversion is to getprimary impulse response, for deep reflection information, whether it's original EPSIor improved L1norm constraint sparse constraint inversion of primary estimationmethod, primary impulse response of the inversion results are not ideal, a lot ofeffective information is not complete, deep for subsequent migration imaging andbrought certain influence seismic interpretation, in order to respond in primaryimpulse response inversion, multiples attenuation effect and get a better compromisebetween computational complexity, we can use SRME and combining curvelettransform EPSI method based on L1norm constraint joint multiple attenuation,through the theoretical data of the experiment, the ideal result is obtained through, notonly primary estimation precision is improved, the deep reflection have beenimproved largely, and the computation is greatly reduced, the ideal expectations.
     Combined with sparse transformation based on L1norm constraint on the sparseconstraint inversion method is not only suitable for sea of conventional towingacquisition technology, in view of the ocean bottom cable (OBC) data acquisitionmethods, we improve the inversion formula, the conventional towing data informationand submarine cable data information application in it at the same time, also can usethis method to primary sparse constraint inversion of submarine cable data estimation,in order to increase the speed of sparse transform, and applied to two-dimensional curvelet transform and one dimensional wavelet transform in combination withmathematical sparse transform method, adopted double convex optimization method,the inversion of primary impulse response in the process of using the objectivefunction is a collection of convex function and application of the constraint is also aconvex function, in order to improve the speed and reduce memory footprint sparsetransformation, using the two-dimensional curvelet transform combined with wavelettransform, the method of impulse response of primary using SPGL1, at the same timeintroduced the pareto curve as a convergence criterion, improves the convergencespeed, using the least-squares QR decomposition algorithm for wavelet estimation,through alternating optimization iteration process, and finally achieve a more accurateinversion primary impluse response, and then get primary information, at the sametime to get the source wavelet, in OBC data of the application of an improved sparseinversion primary is estimated at a time. This method is suitable for the OBC eachcomponent in the data. We adopted in the simulation example hydrophone data,namely pressure component for another primary of estimates. It have been the goodeffect verified by theoretical data.
     For passive source seismic data, using conventional seismic interference theory ofcross-correlation algorithm of virtual shot records contain of surface multiples. Yet bya passive source data estimation by primaries sparse inversion, contains only primary,can be obtained without surface multiples of the virtual shot record. Due to timewindow selection and inversion parameters of the passive source data set moredifficult, we improved the original passive data sparse inversion solution of primaryof estimates,it will be based on primary impulse response source of passive sparseinversion estimation to solve the problem is transformed into the L1norm constraintoptimization inversion problem, avoided the traditional sparse inversion of primaryestimation process with time window to prevent trapped in local optimum in inversion.In the passive source data of the impulse source type uses the solution of theoptimization process, and combined with two-dimensional curvelet transform and onedimensional wavelet transform method, the SPGL1algorithm based on L1norm constraint and energy of the L2norm constraint inversion with least-squares QRdecomposition algorithm respectively, the passive data in the sparse transform domaininversion, so that we can be obtained results can directly obtain primary reflectioninformation, the effect is more superior, imaging quality has been further improved.
     For the combination of sparse transformation based on L1norm constraintestimation of primaries by sparse inversion based on the data matrix formula isderived and improvement of the application to the Marine towing data of conventionalocean bottom cable (OBC), and passive seismic data, through the model and realdata,it have reached a certain application effect. From the earliest SRME method isput forward, and then to traditional EPSI method, finally, we further improve EPSImethod, not only avoid the SRME method of prediction and subtraction, the processof inversion condition was optimized at the same time, improve the inversion speed,multiple removing areas and EPSI method for the future of the large-scale industrialapplication provides reference.
引文
[1].何樵登.地震波理论[M].北京:地质出版社,1988.
    [2]. Verschuur, D.J., Seismic multiple removal techniques: Past, present and future.EAGE Publications BV,Netherlands.,2006.
    [3]. Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A. Adaptive surface-relatedmultiple elimination. Geophysics,1992,57(9),1166–1177.
    [4]. Verschuur, D. J., and A. J. Berkhout,Estimation of multiple scattering by iterativeinversion, Part II: Practical aspects and examples: Geophysics,1997,62,1596–1611.
    [5]. van Groenestijn, G. J. A., and D. J. Verschuur, Estimating primaries by sparseinversion and application to near-offset data reconstruction: Geophysics,2009a,74, no.3, A23–A28.
    [6]. van Groenestijn, G. J. A., and D. J. Verschuur, Estimation of primaries andnear-offset reconstruction by sparse inversion: Marine data applications:Geophysics,2009b,74, no.6, R119–R128.
    [7]. Feng Fei, Wang De-li, Zhu Heng, et al, Estimating Primaries by Sparse Inversionof the3D Curvelet Transform and the L1-norm Constraint, Applied Geophysics,2013,10(2):201-209.
    [8]. Lin, T. T. Y.,Felix J. Herrmann Stabilization of estimation of primaries via sparseinversion.2010,EAGE technical program, EAGE.
    [9]. Lin, T. T. Y., Felix J. Herrmann, Robust Estimation of Primaries by Inversion viaOne-norm Minimization, Geophysics,78(3):R133-R150.
    [10].Lin, T. T. Y., Felix J. Herrmann, Estimating Primaries by Sparse Inversion in aCurvelet-like representation domain,2011,73th Conference andExhibition,EAGE, Extended Abstracts,H043.
    [11].Lin, T. T. Y., and F. J. Herrmann,2009, Unified compressive sensing frameworkfor simultaneous acquisition with primary estimation:79th Annual InternationalMeeting, SEG, Expanded Abstracts,3113–3117.
    [12].Lin, T. T. Y., and F. J. Herrmann,2011, Robust source signature deconvolutionand the estimation of primaries by sparse inversion:81st AnnualInternationalMeeting, SEG, Expanded Abstracts,4354–4359.
    [13].Lin, T. T. Y., N. Tu, and F. J. Herrmann,2010, Sparsity-promoting migrationfrom surface-related multiples:80th Annual International Meeting,SEG,Expanded Abstracts,3333–3337.
    [14].Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, Fast discrete curvelettransforms: Multiscale Modeling and Simulation,2006,5,861–899.
    [15].Ying, L., L. Demanet, and E. J. Candès,2005,3-D discrete curvelet transform:Proceedings of Wavelets XI, SPIE,5914,344–354.
    [16].Robinson, E. A., Predictive decomposition of time series with application toseismic exploration:1954,MIT GAG report No.7; reprinted in Webster, G. M.,Ed.,Deconvolution,52-118.
    [17].Robinson,E.A.,Predietive decomposition of seismic+traces,Geophysies,1957,22(4):767~778
    [18].Robinson, E. A., Principle of digital Wiener filtering. Geophysical Prospecting,1967,15(3):311~333.
    [19].Backus, M. M., Water reverberations-their nature and elimination: Geophysics,1959,24, no.2,233-261.
    [20].Peacock, K. L., and T reitel, S., Predictive deconvolution: Theory andpractice:Geophysics,1969,34, no.2,155-169.
    [21].Taner, M. T.. Long period sea-floor multiples and their suppression. GeophysicalProspecting,1980,28:30~48
    [22].Alam,A.,andAustin,J.,Multiple attenuation using slant staeks.51stAnn.Internat.Mtg.,Soe.Ex PI,GeoPhyS.,Expanded Abstraets,981:997一100
    [23].Treitel,S.,Gutowski,P.R.,and Wagner,D.E.,Plane-wave decomposition ofseismograms.Geophysies,1982,47(10):1375一1401
    [24].Dmitri Lokshtanov.Multiple suppression by single channel and multichanneldeconvolution in the tau-p domain[J]. SEG Expanded Abstracts14,1995:1482~1485.
    [25].Diebold,J.B.,and P.L.Stoffa, The traveltime equation tau-p mapping andinversion of common midpoint data:Geophysics,1981,70,V31-V43.
    [26].Stoffa,P.L.,Tau-P:A Plane Wave Approach to the Analysis of SeismicData:Kluwer Academic,Amsterdam.1989.
    [27].Hampson,D., Inverse velocity stacking for multiple elimination [J].Journal of the Canadian Society of Exploration Geophysicists,1986,22:44~55.
    [28].Evgeny Landa.. Multiple attenuation in the Parabolic τ p domainusing wavefront characteristic of multiple generating primaries. Geophysics,1999,64(6):1806~1816.
    [29].Foster, D. J., and Mosher, C. C.. Suppression of multiple reflection using theRadon transform. Geophysics,1992,57(3):386~395.
    [30].Wiggins J W, Abma R. Using the parabolic Radon transform as a moveout filter[J].52nd Ann. International Mtg., EAGE,1990. Abstracts.
    [31].Schneider W A, Pince E R, Giles B F. A newdata-processing technique for multiple attenuation exploitingdifferential normal moveout [J]. Geophysics,1965,30:348~362.
    [32].Mayne,W.H.,Common reflection point horizontal data stackingtechniques,Geophysics,1962,17,927-938.
    [33].Embree,P.,J.P.Burg,and M.M.Backus, Wide-band velocity filtering-The pie-sliceprocess: Geoghysics,1963,28,948-974
    [34].March,D.W.,andA.D.Bailey, Areview of the two-dimensional transform and itsuse inseismic processing:Frist Break,1983,01,9-21
    [35].Duncan,G.,and G.Beresford, Slowness adaptive f-k filtering of prestack seismicdata:Geophysics,1994,59,140-147.
    [36].Duncan,G.,and G.Beresford, Median filter behavior with seismicdata:Geophysical Prospecting:1995,43,329-345
    [37].Peacock,L.G.,and C.W.M.Bacon, An introduction to FKK techniques:FristBreak,1992,10,113-123.
    [38].Meunier,J.,3-D geometry,velocity filtering,and scattered noise:69th AnnualInternational Meeting,SEG,Expanded Abstracts,1999,1216-1219.
    [39].Ryu, J. V., Decomposition (decom) approach applied to wave field analysis withseismic reflection records: Geophysics,1982,47, no.6,869-883.
    [40].Yilmaz, O.Z. Velocity-stack processing. Geophysical Prospecting,1989,37(4):357~382
    [41].Manin,M.,and S.Spitz,3-D extraction of a targeted multiple:65th AnnualInternational Meeting,SEG,Expanded Abstracts,1995,1216-1219.
    [42].Kneib,G.,AND v.Bardan,1997,3D targeted multiple attenuation:GeophysicalProspecting,45,701-714
    [43].Berkhout, A. J., Seismic migration, imaging of acoustic energy by wave fieldextrapolation, a: theoretical aspects: Elsevier.1982.
    [44].Morley,L.and Claerbout,J.F.,Predictive deconvolution in shot-receiverspace.Geophysics,1983,48(5):515-531.
    [45].Wiggins,J.L.,Attenuation of complex water-bottom multiples by wave-equationsbased prediction and subtraction:Geophyscis,1988,53(12):1527-1539.
    [46].Schneider,W.A.,Integral formulation formigration in two-dimensions andthree-dimension:Geophysics,1978,43,49-76.
    [47].Berryhill,J.R.,Wave-equation datuming:Geophysics,1979,44,1329-2066.
    [48].Berryhill,J.R.,Wave-equation datuming before stack:Geophyscis,1984,49,2064-2066
    [49].Berryhill,J.R.,and Kim,Y.C., Deep-water peg-legs and multiple:Emulation andsuppression:Geophysics,1986,51,2177-2184.
    [50].Wapenaar,C.P.A.,,and A.J.Berkhout, Elastic wavefield extrapolation:Redatumingof single andmulti-component data:Elsevier,1989,Amsterdam
    [51].Wapenaar,C.P.A.,Kirchhoff-Helmholtz downward extrapolation in a layeredmedium with curved interfaces:Geoph.J.Int.,1993,115,445-455.
    [52].Lokshtanov,D.,Multiple suppression by single channel and multichanneldeconvolution in the tau-p domain,65th Annual InternationalMeeting,SEG,Expanded Abstracts,1995,1482-1485.
    [53].Carvalho,F.M.,Weglein,A.B.,and Stolt R.H.,Examples of a nonlinear inversionmethod based on the T matrix of scattering theory:Application to multiplesuppression:61stAnnual International Meeting,SEG,Expanded Abstracts,1991,1319-1322.
    [54].Carvalho,F.M.,Weglein,A.B.,and Stolt R.H.Nonlinear inverse scattering formultiple suppression:application to real data,Part I.62nd Annual InternationalMeeting,SEG,Expanded Abstracts,1992,1093-1095.
    [55].Weglein,A.B.,Gasparotto,F.A.,Carvalho,P.M.,and Stolt,R.H.,Aninverse-scattering series method for attenuating multiples in seismic reflectiondata.Geophysics,1997,62(6):1975-1989.
    [56].Riley, D. C., and Claerbout, J. F.,2-d multiple reflections: Geophysics,1976,41,no.4,592-620.
    [57].Anstey,N.A.,and P.Newman,1966,The sectional auto-coorelogram and thesectional retro-correlogram:Geophysical Prospecting,14,389-426.
    [58].Kennett,B.L.N.,The suppression of surface multiples on seismicrecords:Geophysical Prospecting,1979,27,584-600.
    [59].Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A. Adaptive surface-relatedmultiple elimination. Geophysics,1992,57(9),1166–1177.
    [60].Verschuur, D.J.,Surface-related multiple elimination:an inversionapproach:Ph.D.thesis,Delft University of Technology.1991.
    [61].Verschuur,D.J.,and M.M.N.Kabir,1992,Comparison of surface-related multipleelimination with Radon multiple elimination:J.of.Seism.Expl.,1,363-377
    [62].Verschuur, D. J., and A. J. Berkhout,Estimation of multiple scattering by iterativeinversion, Part II: Practical aspects and examples: Geophysics,1997,62,1596–1611.
    [63].Berkhout,A.J.,Verschuur,D.J.,Estimation of multiple scattering by iterativeinversion,Part I:Theorctieal considerations,Geophysics,1997,62(5),1586-1595.
    [64].Weglein,A.B., Multiple attenuation:an overview of recent advances and the roadahead:The Leading Edge,1999,18,no.1,40-44.
    [65].Dragoset,W.H.andZ.,Jeri.ceviec,Some remarks on surface multipleattenuation:Geophysics,1998,63,772-789.
    [66].Wang,Y.,Multiple subtraction using an expanded multichannel matchingfilter:Geophysics,2003,68,346-354.
    [67].Wang,Y., Multiple prediction through inversion:A fully data-driven concept forsurface-ralated multiple attenuation:Geophyscis:2004,69,547-553.
    [68].Guitton,A.,and D.J.Verschuur, Adaptive subtraction of multiple using theL1-norm:Geophysical Prospecting:2004,52,27-38.
    [69].Guitton,A., Multiple attenuation in complex geology with a pattern-basedapproach:Geophysics,2005,70,V97-V107
    [70].van Dedem,E.J.,3D surface-related multiple prediction:Ph.D.thesis,DelftUniversity of Technology,2002
    [71].van Dedem,E.J.,and D.J.Verschuur, Analysis of surface-related multiples in a3-D media,67th Annual International Meeting,SEG,Expanded Abstracts,1997,1180-1183
    [72].van Dedem,E.J.,and D.J.Verschuur,3-D surface-related multiple prediction,aninversion approach:70h Annual International Meeting,SEG,Expanded Abstracts,2000,1965-1968
    [73].van Dedem,E.J.,and D.J.Verschuur,3-D surface-related multiple prediction:Asparse inversion approach:Geophysics,2005,70,V31-V43
    [74].Berkhout, A. J. Seismic processing in the inverse data space: Geophysics,2006,71, no.4, A29–A33
    [75].van Groenestijn, G. J. A., and W. Ross, Primary estimation on OBC data bysparse inversion:81st Annual International Meeting, SEG, Expanded Abstracts,2011,3531–3535.
    [76].van Groenestijn, G. J. A., and D. J. Verschuur, Towards a new approach forprimary estimation:78th Annual International Meeting,SEG, Expanded Abstracts,2008,2487–2491.
    [77].van Groenestijn, G. J. A., and D. J. Verschuur, Estimation of primaries by sparseinversion applied to up/down wavefields:79th Annual International Meeting,SEG, Expanded Abstracts,2009,3143–3147.
    [78].van Groenestijn, G. J. A., and D. J. Verschuur, Estimation of primaries by sparseinversion from blended data:71st Annual InternationalConference andExhibition, EAGE, Extended Abstracts.2009
    [79].van Groenestijn, G. J. A., and D. J. Verschuur, Estimation of primaries by sparseinversion from passive seismic data: Geophysics,2010,75, no.4,SA61–SA69
    [80].van Groenestijn, G. J. A., and D. J. Verschuur, Incorporating the source array intoprimary estimation:72nd Annual International Conference and Exhibition,EAGE, Extended Abstracts.2010
    [81].van Groenestijn, G. J. A., and D. J. Verschuur, Using surface multiples toestimate primaries by sparse inversion from blended data:GeophysicalProspecting,2011,59,10–23
    [82].胡天跃,王润秋,White, R. E..地震资料处理中的聚束滤波方法.地球物理学报,2000,43:105~115.
    [83].胡天跃,王润秋,温书亮.聚束滤波方法消除海上地震资料的多次波[J]..石油地球物理勘探,2002,37(1):18~23.
    [84].王润秋,胡天跃.用三维聚束滤波方法消除相关噪音[J]..石油地球物勘探,2005,40(1):42~47.
    [85].洪菲,胡天跃,张文坡,刘东奇.用优化聚束滤波方法消除低信噪比地震资料中的多次波[J]..地球物理学报,2004,47(6):1106~1110.
    [86].张军华,吕宁,雷凌,田连玉,郭见乐.抛物线拉冬变换消除多次波的应用要素分析[J]..石油地球物理勘探,2004,39(4):398~405.
    [87].刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J]..地球物理学进展,2004,19(1):8~15.
    [88].牛滨华,孙春岩,张中杰.多项式Radon变换[J]..地球物理学报,2001,44(2):263~271.
    [89].朱生旺,魏修成,李锋.用抛物线Radon变换稀疏解分离和压制多次波[J]..石油地球物理勘探,2002,37(2):110~115.
    [90].顾建平.改进的Radon滤波压制多次波技术及应用效果[J].石油地球物理勘探,2003,38:38-41.
    [91].刘伊克,Sun H,常旭.基于波射线路径偏移压制多次波[J].地球物理学报,2004,47(4):697~701.
    [92].刘伊克,常旭,卢孟夏等.波路径偏移压制层间多次波的理论与应用[J],地球物理学报,2008,51(2):589-595
    [93].黄新武,孙春岩等,基于数据一致性预测与压制自由表面多次波-理论研究与试处理[J].地球物理学报,2005,48(1):173-180.
    [94].李翔,胡天跃.逆散射级数法去除自由表面多次波.地球物理学报[J],2009,52(6)1633-1640.
    [95].李学聪,刘伊克,常旭等.均衡多道1范数匹配多次波衰减的方法与应用研究[J].地球物理学报,2010,53(4):943-973.
    [96].马继涛,Sen K.Mrinal,陈小宏,姚逢昌.海底电缆多次波压制方法研究.地球物理学报[J].2011,54(11):2960~2966.
    [97].石颖,王维红.基于波动方程预测和双曲Radon变换联合压制表面多次波.地球物理学报[J],2012,55(9):3115-3125.
    [98].石颖,刘洪.基于GPU的表面多次波预测技术.石油地球物理勘探[j],2010,45(4):540~544
    [99].石颖,王维红,李莹等.基于波动方程三维表面多次波预测方法研究.地球物理学报[J],2013,56(6):2023-2032
    [100].刘国昌,陈小宏,宋家文.基于稀疏反演的OBS数据多次波压制方法.地球物理学报[J],2013,56(12):4288-4296
    [101]. Daubechies, I., M. Fornasier, and I. Loris, Accelerated projected gradientmethod for linear inverse problems with sparsity constraints: Journal of FourierAnalysis and Applications,2008,14,764–792
    [102]. Donoho, D. L., For most large underdetermined systems of linear equationsthe minimal L1-norm solution is also the sparsest solution:Communications onPure and Applied Mathematics,2006,59,797–829
    [103]. Donoho, D. L., and Y. Tsaig, Fast solution of L1-norm minimizationproblems when the solution may be sparse: IEEE Transactions on InformationTheory,2008,54,4789–4812
    [104]. Candés, E. J., J. Romberg, and T. Tao, Stable signal recovery fromincomplete and inaccurate measurements: Communications on Pure and AppliedMathematics,2006
    [105]. Berkhout, A. J., and D. J. Verschuur, Imaging of multiple reflections:Geophysics,2006,71, no.4, SI209–SI220.
    [106]. Boyd, S., Vandenberghe, L.,2004,Convex Optimization [M]. CambridgeUniversity Press,USA.
    [107]. van den Berg, E., and M. P. Friedlander, Probing the Pareto frontier for basispursuit solutions: SIAM Journal on Scientific Computing,2008,31,890–912
    [108]. Paige, C. C., and M. A. Saunders, LSQR: An algorithm for sparse linearequations and sparse least squares: ACM Transactions on MathematicalSoftware,1982.
    [109]. M. Elad and A.M. Bruckstein,“A Generalized Uncertainty Principle andSparse Representation in Pairs of Bases", IEEE Trans. On Information Theory,September,2002,Vol.48, pp.2558-2567,.
    [110]. Chen, S. S., and D. L. Donoho, Basis pursuit: Presented at28th AsilomarConference on Signals, Systems, and Computers,1994,41–44.
    [111]. Chen, S. S., D. L. Donoho, and M. A. Saunders, Atomic decomposition bybasis pursuit: SIAM Review,2001,43,129–159
    [112]. G. H. Mohimani, M. Babaie-Zadeh, C. Jutten. A fastapproach for overcomplete sparse decomposition based on smoothed L0norm. IEEE Transactions on Signal Processing,2009,57(1):289-301
    [113]. S. Mallat, Z. Zhang. Matching pursuits with time-frequency dictionaries.IEEE Transactions on Signal Processing,1993,41(12):3397-3415
    [114]. T. T. Do, L. Gan, N. Nguyen, et al. Sparsity adaptive matching pursuitalgorithm for practical compressed sensing.42nd Asilomar Conferenceon Signals, Systems and Computers,2008:581-587
    [115]. Donoho, D. L., For most large underdetermined systems of linear equationsthe minimal L1-norm solution is also the sparsest solution:Communications onPure and Applied Mathematics,2006,59,797–829
    [116]. E.J., Candès,and D.L.Donoho,Curvelets-A surprisingly effectivenonadaptive representation for objects with edges,Technical Report,LarryL.Schumaker,Eds.Nashville:VanderbiltUniversityPress,1999
    [117]. E.J. Candès and L.Demanet,The curvelet representation of wave propagatorsis optimally sparse,Communications on Pure and AppliedMathematics,2005,vol.58,pp.1472-1528
    [118]. Gilles Hennenfent and Felix J. Herrmann,“Seismic Denoising withNonuniformly Sampled Curvelets”, Computing in Science&Engineering,2006,vol.8Issue:3, p.16-25
    [119]. Felix J. Herrmann, U. Boeniger, and D. J. Verschuur,“Non-linearprimary-multiple separation with directional curvelet frames”, GeophysicalJournal International,2007,vol.170, p.781-799
    [120]. Felix J. Herrmann, Peyman P. Moghaddam, and Chris Stolk,“Sparsity-andcontinuity-promoting seismic image recovery with curvelet frames”, Applied andComputational Harmonic Analysis,2008,vol.24, p.150-173
    [121]. Felix J. Herrmann and Gilles Hennenfent,“Non-parametric seismic datarecovery with curvelet frames”, Geophysical Journal International,2008,vol.173,p.233-248
    [122]. Felix J. Herrmann, Deli Wang, Gilles Hennenfent, and Peyman P.Moghaddam,“Curvelet-based seismic data processing: a multiscale andnonlinear approach”, Geophysics,2008,vol.73, p. A1-A5
    [123]. Deli Wang, Rayan Saab, Ozgur Yilmaz, and Felix J. Herrmann,“Bayesianwavefield separation by transform-domain sparsity promotion”, Geophysics,2008,vol.73, p.1-6
    [124]. Felix J. Herrmann, Deli Wang, and D. J. Verschuur,“Adaptivecurvelet-domain primary-multiple separation”, Geophysics,2008,vol.73, p.A17-A21,
    [125]. Felix J. Herrmann, Cody R. Brown, Yogi A. Erlangga, and Peyman P.Moghaddam,“Curvelet-based migration preconditioning andscaling”, Geophysics,2009,vol.74, p. A41
    [126]. Gilles Hennenfent, Lloyd Fenelon, and Felix J. Herrmann,“Nonequispacedcurvelet transform for seismic data reconstruction: A sparsity-promotingapproach”, Geophysics,2010, vol.75, p. WB203-WB210
    [127]. van den Berg, E., and M. P. Friedlander, Probing the Pareto frontier for basispursuit solutions: SIAM Journal on Scientific Computing,2008,31,890–912
    [128]. van den Berg, E., and M. P. Friedlander, Sparse optimization with lleast-squares constraints: SIAM Journal on Optimization,2011,21,1201–1229
    [129]. Osborne, M. R., B. Presnell, and B. A. Turlach, On the LASSO and its dual:Journal of Computational and Graphical Statistics,1999,9,319–337
    [130]. Cao, J. J.,Wang, Y. F.,Yang, C. C., Seismic data restoration based oncompressive sensing using the regularization and zero-norm sparse optimization[J]. Chinese J,Geophys.(in Chinese),2012,55(2):596-607
    [131]. Barr F J. Sanders J I. Attenuation of water column reverberation usingpressure and velocity detectors in a wager-bottom cabled.59th AnnualInternational Meeting,SEG,Expanded Abstracts,1989.635-656.
    [132]. Fred J B.Dual-sensor OBC technology.The Leading Edge,1997,16(1):45-51
    [133]. Brian,H.H et al.Applications of OBC recording..The Leadingdge,2000,19(4):382-391
    [134]. Dragoset.B,Barr.F.J.,. Ocean-bottom cable dual-senson scaling [C].64thAnnual International Meeting,SEG,Expanded Abstracts,1994:857-860.
    [135]. Verschuur D J,Neumann EI.Integration of OBS data and surface data forOBS multiple removal.In:69th Ann,Internat Mtg.,soc.Expi.Geophys.. ExpandedAbstracts,1999.1350~1353
    [136]. Ikelle, L T.Using even terms of the scattering series for deghosting andmultiple attenuation of ocean-bottom cable data.Geophysics,1999,64(2):579~592
    [137]. Ikelle, L T., Combining two seismic experiments to attenuate free-surfacemultiples in OBC data:Geophysical Prospecting,1999,47, no.2,179~193.
    [138]. Schalkwijk,K M, Verschuur D J, Wapenaar, C P A, A decomposition andmultiple removal strategy for multicomponent OBC data.71th Ann, InternatMtg.,soc.Expi.Geophys.. Expanded Abstracts,2001.813~817
    [139]. Robinson E A.Wavelet estimation and Einstein deconvolution. The LeadingEdge,2000,19(1):56~60
    [140].韩立强,全海燕.老堡南地区海底电缆采集方法.石油地球物理勘探,2003,38(3):226-230
    [141].全海燕,韩立强.海底电缆双检接收技术压制水柱混响.石油地球物理勘探,2005,40(1):7-12
    [142].程玉坤,曹孟起.海底电缆双检接收资料的几种处理方法及应用效果.天然气工业,2007,27(增刊A):86-89.
    [143].赵伟,陈小宏,李景叶.海底电缆采集地震数据多次波压制处理西安石油大学学报(自然科学版),2007,22(6):1-4
    [144].倪成洲,全海燕,陈刚,牛宏轩.一种高精度初至波二次定位新方法—搜索法.石油地球物理勘探,2008,43(2):131-157
    [145].王振华,夏庆龙,田立新,等.消除海底电缆双检地震资料中的鸣震干扰.石油地球物理勘探,2008,43(6):626-635
    [146].易昌华,方守川,秦学彬.OBC二次定位系统定位算法研究.物探装备,2008,18(6):353-366
    [147].王红梅,赵建明.双检检波器在OBC勘探中的应用.物探装备,2009,19(增刊):38-40
    [148].陈浩林,张保庆,倪成洲,等.水深对OBC地震资料的影响分析与对策.石油地球物理勘探,2010,45(增刊1):18-24
    [149].杨志国,陈昌旭,张建峰,等.提高浅海OBC地震资料采集作业放缆点位精确度的理论计算方法.石油物探,2011,50(4):406-409
    [150].金丹,阎贫,唐群署,等. Kirchhoff波场延拓在OBC记录海水层基准面校正中的应用.热带海洋学报,2011,30(6):84-89
    [151].马继涛,Sen K.Mrinal,陈小宏,姚逢昌.海底电缆多次波压制方法研究.地球物理学报[J].2011,54(11):2960~2966.
    [152].王德利,党丹,刘伟明,张亚红, CFP技术层间多次波预测及Curvelet域相减方法,吉林大学学报:地球科学版,2011,41(3):908-914.
    [153].仝中飞,王德利,刘冰.基于Curvelet变换阈值法的地震数据去方法[J],吉林大学学报:地球科学版,2008,38(增刊):48-52.
    [154].地球物理反演理论,王家映,2005.
    [155]. Wapenaar K, van der Neut J, Ruigrok E. Passive seismicinterferometry by multidimensional deconvolution [J]. Geophysics,2008,73(6):51-56.
    [156]. Claerbout J F. Synthesis of a layered medium from itsacoustic transmission response [J]. Geophysics,1968,33:264–269.
    [157]. Scherbaum F. Seismic imaging of the site response usingmicroearthquake recordings, Part I: Method [J]. Bull. Seis. Soc. Am.,1987a,77:1905–1923.
    [158]. Scherbaum F. Seismic imaging of the site response usingmicroearthquake recordings, Part II: Application to the SwabianJura, southwest Germany, seismic network[J]. Bull. Seis. Soc.Am.,1987b,77:1924–1944.
    [159]. Cole S. Passive seismic and drill-bit experiments using2-D arrays [D]. Ph.D.dissertation, Stanford University,1995.
    [160]. Duvall T L, S M Jefferies, J W Harvey, M A Pomerantz.Time-distance helioseismology [J]. Nature,1993,362:430–432.
    [161]. Gilles P M, Duvall T L, Scherrer P H, Bogart R S., A subsurface flow ofmaterial from the Sun,equator’s to its poles [J]. Nature,1997,390:52–54.
    [162]. Cassereau D, Fink M. Focusing with plane time reversal mirrors: an efficientalternative to closed cavities [J]. Journal of the Acoustical Society of America,1993,94(4):2373-2386.
    [163]. Fink M. Time reversal mirrors [J]. J. Phys. Rev.: Appl. Phys.,1993,26,1330-1350.
    [164]. Fink M. Time reversed acoustics [J]. Physics Today,1997,50:34-40.
    [165]. Schuster G T, Rickett J. Daylight imaging in V(x,y,z) media
    [R]. Utah Tomography and Modeling-Migration Project Midyear Reportand SEP Report at Stanford University,2000.
    [166]. Schuster G T. Seismic interferometry [M]. New York: Cambridge UniversityPress,2009.
    [167]. Wapenaar K, Draganov D, Thorbecke J, Fokkema J. Theory of acousticdaylight imaging revisited [C].72nd Annual International Meeting, SEG,Expanded Abstracts,2002,2269–2272.
    [168]. Berkhout A, Verschuur D. Imaging of multiple reflections, Geophysics,2006,71, SI209–SI220.
    [169]. Yu J, Schuster G T, Crosscorrelogram migration of IVSPWD data [J].71stAnn. Internat. Mtg., SEG Expanded Abstracts,2001,456–459.
    [170]. Yu J, Schuster G T, Enhancing illumination coverage of VSP data bycross-correlogram migration,74th Ann. Internat. Mtg., SEG Expanded Abstracts,2004,2501–2504.
    [171]. Yu J, Schuster G T, Crosscorrelogram migration of inversevertical seismic profile data [J]. Geophysics,2006,71, S1–S11.
    [172]. Snieder R. The theory of coda wave interferometry [J].Pureand Appl. Geophys,2006,163:455-473.
    [173].齐诚,陈棋福,陈颙.利用背景噪声进行地震成像的新方法[J].地球物理学进展,2007,22(3):771-777.
    [174].朱恒,王德利,时志安等.地震干涉技术被动源地震成像.地球物理学进展2012,27(2),0496-0502.
    [175].王德利,程浩等.基于反褶积算法的地震干涉技术被动源成像.吉林大学学报2012,42(6),1920-1926.
    [176].许卓,地震干涉技术被动源成像方法研究,博士论文,吉林大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700