基于压缩感知的认知无线电频谱检测技术及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,如今无线电频谱资源在全球范围内都很稀缺。为了提高频谱的利用率,1999年学者J.Mitola提出了认知无线电这个概念。在认知无线电中,认知用户可以使用频谱检测技术在授权信道寻找空闲信道进行通信。可见,频谱检测技术是整个认知无线电系统中保证成功的关键技术之一。此外,当我们对宽带信道进行频谱检测时,使用传统的奈奎斯特采样定律会产生海量的采样数据,而现在的硬件水平很难满足这一信号的快速处理需求。幸运的是,近年出现的压缩感知理论给这一困境带来了转机:一方面,压缩感知理论允许稀疏信号以低于奈奎斯特采样定理的速率进行采样,大大减轻了硬件的处理压力;另一方面,无线信号在频域上天然的稀疏特性又符合压缩感知理论的前提之一——原始信号的稀疏性。因此基于压缩感知的认知无线电频谱检测技术是一个可行且很有价值的研究方向。
     本文在第一章中介绍了本课题的研究背景,介绍了认知无线电的相关理论,特别是对频谱检测技术做了详细的阐述。在第二章中本文详细的论述了压缩感知理论和其当前的研究成果。在第三章中本文研究了压缩感知重构算法之一的最小l_1范数法,结合迭代加权和约束条件l_1范数化,提出了自己的最小l_1范数法的改进算法,并引入频谱检测,用仿真验证其在频谱检测中的效果。在第四、五章中本文研究了贝叶斯压缩感知的理论和引入优化高斯随机观测矩阵贝叶斯压缩感知理论,并将两种算法分别引入频谱检测技术进行仿真研究;最后以能量检测法和使用能量判决的BCS频谱检测方法为代表分析了传统频谱检测法与压缩重构频谱检测法的优劣。
As we all know, the wireless spectrum resource is very scarce globally. In order to improve the utilization of the wireless spectrum, the conception of Cognitive Radio (CR) was proposed by J. Mitola in 1999. In CR theory, a cognitive user can first search an unoccupied authorized channel, and then use it for transmitting signals. So obviously, the spectrum detection is one of the key technologies in CR. And as we also know, when it comes to detection for the wideband spectrum, the samplings should be two times of the bandwidth according to the Nyquist’s Theorem, which made the hardware hard to burden. Luckily, the appealing of the Compressed Sensing (CS) theory changes the situation. On one hand, the CS theory permits the hardware to deal with the signal far below the Nyquist’s Sampling Rate, which can release the pressure on the hardware’s processing ability. On the other hand, the radio signals are sparse in the frequency domain, which satisfied one of the preconditions to apply the CS theory on. Thus, the research on the CS-based spectrum sensing technology is available and quite meaningful.
     The first chapter of the paper introduces the background of our research and the fundamental knowledge of CR. The second chapter of the paper introduces the CS theory detailedly. The third chapter of the paper focuses on the l_1 norm minimum algorithm and its improved algorithms. We propose a new improved algorithm, which combines the iterative weighted l_1 norm algorithm with the constraints of l_1 norm. The simulations show that the improved algorithm works well in the spectrum detection. In the forth and fifth chapter of the paper, our research is focused on the Bayesian CS (BCS) algorithm and an optimized BCS (OBCS) algorithm. Then we simulate them in the spectrum detection scene. At last we take energy detection and BCS spectrum detection which judged by energy as the examples to compare the traditional spectrum detection and the compressed sensing spectrum detection.
引文
[1]肖维民等,软件无线电综述[J],电子学报,1998,26(2):65-70。Weimin Xiaonei, et al,“Introduction to Software Radios”, ACTA ELECTRONICA SINICA, 1998, 26(2): 65- 70.
    [2] Federal Communications Commission,“Spectrum Policy Task Force”, Rep. ET Docket no. 02-135, Nov. 2002.
    [3] J. MitolaIII,“Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio”, Ph. D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2000.
    [4] FCC. Notice of proposed rule making and order [R]. FCC Et Docket no. 03-322, 2003.
    [5] IEEE 802 LAN/MAN Standards Committee 802.22 WG [EB/OL]. http://www.ieee802.org/22/.
    [6] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, W. Caldwell,“IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard”, IEEE Communications Magazine, 2009, .47(1): 130-138.
    [7]杨小牛,从软件无线电到认知无线电,走向终极无线电——无线通信发展展望[J],中国电子科学研究院学报,2008,3(1):1-7。Yang Xiaoniu,“Software Radio, Cognitive Radio and Ultimate Radio- A Prospect of Wireless Communication”, Journal of CAEIT, 2008, 3(1): 1-7.
    [8] C.J.Rieser,“Biologically inspired cognitive radio engine model utilizling distributed genetic algorithms for secure and robust wireless communications and networking”, Virginia Tech, Blacksburg, VA, August 2004.
    [9] D. Cabric, S. Mishra, and R. Brodersen,“Implementation issues in spectrum sensing for cognitive radios”, in Proc. Asilomar Conf. on Signals, Systems and Computers, vol. 1, Pacific Grove, California, USA, Nov. 2004, pp. 772-776.
    [10] G. Ganesan, Y. G. Li,“Cooperative spectrum sensing in cognitive radio networks”, Proc. IEEE DySPAN 2005, Nov 2005, pp. 137-143.
    [11] Z. Chair, P. K. Varshney,“Optimal Data Fusion in Multiple Sensor Detection Systems”, IEEE Transactions on Aerospace and Electronic Systems. AES-22,1(Jan. 1986), pp. 98-101.
    [12] Tevfik Yucek, Huseyin Arslan,“A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications”, IEEE Communications surveys & Tutorials, Vol.11, No.1, First Qurarter 2009.
    [13] D. Cabric, R. Brodersen,“Cognitive Radios: System Design Perspective”, EE& CS, University of California at Berkeley, Dec. 2007.
    [14] H. Urkowitz,“Energy Detection of Unknown Deterministic Signals”, in Proc. IEEE, vol. 55, 1967, pp. 523-531.
    [15] Gardner W. A.,“Exploitation of Spectral Redundancy in Cyclostationary Signals”, IEEE Signal Process Magazine, 1991, 8(2): 14-36.
    [16] J. Lunden, V. Koivunen, A. Huttunen, etc.,“Spectrum Sensing in Cognitive Radios based on Multiple Cyclic Frequencies”, in Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Commun. (Crowncom), Orlando, Florida, USA, July/Aug. 2007.
    [17] Zeng Y, and Liang Y. C.,“Maximum-minimum Eigenvalue Detection for Cognitive Radio”, The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007: 1-5.
    [18]王颖喜,卢光跃,基于空间谱的频谱感知方法[C],第三届全国通信新理论与新技术学术大会,宁波,2009,10。Wang Ying-xi and Lu Guang-yue,“Spectrum Sensing using Spatial Spectrum”, The 3rd National Conf. of Communication new theory and new technique, Ningbo, 2009, 10.
    [19] Wald A.“Sequential Analysis”, New York: Dover Publications, 2004: 1-224.
    [20] Choi K. W., Jeon W. S., and Jeong D. G.,”Sequential Detection of Cyclostationary Signal for Cognitive Radio Systems”, IEEE Transactions on Wireless Communications, 2010, 8(9):4480-4485.
    [21]闫琦,杨家玮等,认知无线电中基于截断序贯检测的频谱感知技术[J],电子与信息学报,2011,33(7):1532-1536。Yan Qi, Yang Jia-wei, etc,“Truncated Sequential Detection for Spectrum Sensing in Cognitive Radio”, Journal of Electronics & Information Technology, 2011, 33(7): 1532-1536.
    [22] Wald A.“Sequential Analysis”, New York: Dover Publications, 2004, pp. 1-224.
    [23]赵春晖,马爽等,基于分形盒维数的频谱感知技术研究[J],电子与信息学报,2011,33(2):475-478。Zhao Chun-hui, Ma shuang, etc,“Spectrum Sensing in Cognitive Radios Based on Fractal Box Dimension”, Journal of Electronics & Information Technology, 2011, 33(2): 475-478.
    [24]王颖喜,卢光跃,基于最大最小特征值之差的频谱感知技术研究[J],电子与信息学报,2010,32(11):2571-2575。Wang Ying-xi, Lu Guang-yue,“DMM Based Spectrum Sensing Method for Cognitive Radio Systems”, Journal of Electronics & Information Technology, 2010, 32(11): 2571-2575.
    [25] Park J., Hur Y., etc,“Implementation Essues of a Wideband Multi-Resolution Spectrum Sensing(MRSS) Technique for Cognitive Radio(CR) Systems”, Proceedings of the 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications(CROWNCOM’06), Jun. 8-10, 2006, Mykonos Island, Greece. Piscataway, NJ, USA, IEEE, 2006:5p.
    [26]钟国辉等,基于循环平稳特性的双循环频率频谱感知技术[J],华中科技大学学报,2010,38(7):78-81。Zhong Guohui, et al,“Cyclostationary Spectrum based Dual Cycle Frequencies Sensing Technique”, J. Huazhong Univ. of Sci. & Tech., 2010, 38(7): 78-81.
    [27] E. Candes,“Compressive Sampling”, Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006, 3: 1433-1452.
    [28] E. Candes, J. Romberg, et al,“Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency information”, IEEE Trans. on Information Theory, 2006, 52(2): 489-509.
    [29] E. Candes, J. Romberg,“Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions”, Foundations of Comput. Math, 2006, 6(2): 227-254.
    [30] D. L. Donoho,“Compressed Sensing”, IEEE Trans. on Information Theory. 2006, 52(4): 1289-1306.
    [31] E. Candes, J. Romberg,“Practical Signal Recovery from Random Projections”, http:// www.acm.caltech.edu/~emmanuel/papers/practicalRecovery.pdf .
    [32] D. L. Donoho, Y. Tsaig,“Extensions of Compressed Sensing”, Signal Processing. 2006, 86(3): 533-548.
    [33] Tian Z., Giannakis G. B.,“Compressed Sensing for Wide-band Cognitive Radios”, ICASSP’07, Honolulu, HI, USA, 2007: 1357-1360.
    [34] Polo Y. L., Wang Y., et al,“Compressive Wide-band Spectrum Sensing”, IEEE ICASSP’09, San Diego, CA, USA, 2009: 178-183.
    [35] Laska J., Kirolos S., et al,“Random Sampling for Analog-to-information Conversion of Wideband Signals”, IEEE Dallas Circuits and Systems Workshop, Richardson, TX, USA, 2006: 119-122.
    [36] E. Candes, T. Tao,“Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies”, IEEE Trans. Info. Theory, 2006, 52(12):5406-5425.
    [37] R. Baraniuk,“A Lecture on Compressive Sensing”, IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    [38] E. Candes,“The Restricted Isometry Property and its Implications for Compressed Sensing”, Academie des sciences, 2006, 346(1): 589-592.
    [39] Chen S B, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit [J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
    [40] Stephane M., Zhifeng Zhang,“Matching Pursuits with Time-Frequency Dictionaries”, IEEE Trans. on Signal Processing, 1993, 41(12): 3397-3415.
    [41] G. Peyre,“Best Basis Compressed Sensing”, Lecture Notes in Computer Science, 2007, 4485: 80-91.
    [42] H. Rauhut, K. Schass, P. Vandergheynst,“Compressed Sensing and Redundant Dictionaries”, IEEE Trans. on Information Theory, 2008, 54(5): 2210-2219.
    [43]石光明,刘丹华等,压缩感知理论及其研究进展[J],电子学报,2009,37(5):1070-1081。Shi Guangming, et al,“Advances in Theory and Application of Compressed Sensing”, 2009, 37(5): 1070-1081.
    [44] V. Temlyakov,“Nonlinear Methods of Approximation”, IMI Research Reports, Dept of Mathematics, University of South Carolina, 2001, 01-09.
    [45] M. Aharon, M. Elad, et al,“K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation”, IEEE Trans. on Signal Processing, 2006, 54(11): 4311-4322.
    [46]郭海燕,杨震,基于近似KLT域的语音信号压缩感知[J],电子与信息学报,2009,31(12):2948-2952。H. Y. Guo, Z. Yang,“Compressed Speech Signal Sensing based on Approximate KLT”, Journal of Electronics & Information Technology, 2009, 31(12): 2948-2952.
    [47] E. Candes, T. Tao,“Decoding by Linear Programming”, IEEE Trans. on Information Theory, 2005, 51(12), 4203-4215.
    [48]薛明,压缩感知及稀疏性分解在图像复原中的应用研究[D],西安电子科技大学,2009。
    [49] B. Bah, J. Tanner,“Fast Improved Bounds on Restricted Isometry Constants for Guassian Matrices”, SIAM J. MATRIX ANAL. APPL. 2010, 31(5): 2882-2898.
    [50] G. Z. Li, G. D. Liu,“A Recurrence Formula for Higher Order Bernoulli Numbers and Its Applications”, College Mathematics, 2009, 25(1): 154-156.
    [51] D. L. Donoho, X. Huo,“Uncertainty principles and ideal atomic decompositions[J]”, IEEE Translation Information Theory, 2001,47(7):2845-2862.
    [52] G. Lu, T. D. Thong, et al,“Fast Compressive Imaging using Scrambled Block Hadamard Ensemble”, EUSIPCO, 2008.
    [53] Zaixing He, Takahiro O., et al,“The Simplest Measurement Matrix for Compressed Sensing of Nature Images”, IEEE 17th ICIP, Hong Kong, 2010, 4301-4304.
    [54] Shihao Ji, Ya Xue, Carin L.,“Bayesian Compressive Sensing”, IEEE Trans. on Signal Processing, 2008, 56(6), 2346-2356.
    [55] J. Tropp, A. Gillbert,“Signal Recovery from Partial Information by Orthogonal Matching Pursuit”, IEEE Trans. on Information Theory, 2008, 53(12): 4655-4666.
    [56] D. Needell, R. Vershynin,“Uniform Uncertainty Principle and Signal Recovery via Regularized Orthononal Matching Pursuit”, Found. Comput. Math. 2008, in press.
    [57] D. Needell, J. A. Tropp,“CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples”, ACM Technical Report 2008, California Institute of Technology, Pasadena, 2008.7.
    [58] T. Blumensath, M. E. Davies,“Gradient Pursuits”, IEEE Trans. on Signal Processing, 2008, 56(6): 2370-2382.
    [59] T. Blumensath, M. E. Davies,“Stagewise Weak Gradient Pursuits”, IEEE Trans. on Signal Processing, 2009, 57(11): 4333-4346.
    [60] G. Rath, C. Guillemot,“Sparse Approximation with An Orthogonal Complementary Matching Pursuit Algorithm”, ICASSP, Taibei, Taiwan, 2009, 3325-3328.
    [61] T. Fiqueiredo, D. Nowak, et al,“Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems”, IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598.
    [62] L. Donoho, Y. Tsaig,“Fast Solution of l1–norm Minimization Problems when the Solution may be Sparse”, Technical Report, Department of Statistics, Stanford University, USA, 2008.
    [63] M. Malioutov, R. Sanghavi, et al,“Sequential Compressed Sensing”, IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 435-444.
    [64]谢显中,感知无线电技术及其应用[M],电子工业出版社,2008。
    [65] E. Candes, M. Wakin, S. Boyd,“Enhancing Sparsity by Reweighted l1 Minimization”, Journal of Fourier Analysis and Applications, 2008, 14(5-6): 877-905.
    [66]芮国胜等,一种基于基追踪压缩感知信号重构的改进算法[J],电子测量技术,2010,3(4):8-41。Rui Guosheng,“Improved Algorithm based Basis Pursuit for Compressive Sensing Reconstruction”[J], Electronic Measurement Technology, 2010, 33(4): 8-41.
    [67] A. Papoulis, S. U. Pillai,“Probability, Random Variables and Stochastic Processes”, 4th ed. McGraw-Hill, 2002.
    [68] M. E. Tipping,“Sparse Bayesian Learning and The Relevance Vector Machine”[J], Journal of Machine Learning Research, 2001, vol.1, 211-244.
    [69] Danjila B. C.,“Cognitive Radios: System Design Perspective”[D], University of California, Berkeley, 2007.
    [70] Michael Elad,“Optimized Projections for Compressed Sensing”, IEEE Trans. on Signal Processing, 2007, 55(12): 5695-5702.
    [71]肖小潮等,基于最优观测矩阵的压缩信道感知[J],信号处理,2012(已录用)。Xiao Xiaochao, et al,“Compressed Channel Estimation based on Optimized Measurement Matrix”, Signal Processing, 2012, in press.
    [72] S. Dhillon, R. W. Heath, et al,“Design Structured Tight Frames via Alternating Projection”, IEEE Trans. on Information Theory, 2005, 51(1): 188-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700