光合细菌代谢产物5-氨基乙酰丙酸杀线虫作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物寄生线虫病是多种农作物的重要病害,随着我国农业集约化生产和耕作制度的更替,其成为制约现代农业可持续发展的重要因素之一。目前生产上常用的化学杀线剂不仅毒性大、使用不方便,而且线虫抗药性也非常严重。生物防治具有对环境和人类危害小、不易产生抗药性等优点而逐渐成为线虫防治的研究热点。
     本研究选用光合细菌嗜酸柏拉红菌生防菌株HB-1 (Rhodoblastus acidophilus),对该菌株及其代谢产物5-氨基乙酰丙酸(ALA)的杀线虫活性进行了研究,同时初步探讨了ALA的杀线虫机制。并从嗜酸柏拉红菌菌株中克隆了控制ALA合成的合成酶基因(ALAs),将其进行原核表达,构建的工程菌ALAS-M15能高效表达ALAs,为利用工程菌研制开发杀线虫生防制剂打下基础。主要研究结果如下:
     1、测定了嗜酸柏拉红菌菌株HB-1对秀丽小杆线虫、南方根结线虫的毒力。研究结果表明,该菌株培养液对秀丽小杆线虫、根结线虫具有较强的作用活性,96h对秀丽小杆线虫和根结线虫的LC50分别为5.13mL/L和4.81 mL/L。在温室盆栽条件下研究了该菌株培养液对番茄根结线虫病的防治效果。结果表明该菌株培养液能有效抑制南方根结线虫对番茄的侵染、显著降低番茄根中根结数量,而且能显著促进番茄生长。同时,防治黄瓜根结线虫病的田间小区试验结果也表明,该菌株培养液不仅能显著减少黄瓜根围土样中线虫数量,50倍稀释液处理药效可达到71.5%,使黄瓜早期产量增加57.7%。表明该菌株在植物线虫病害防治上的巨大应用潜力。
     2、通过室内生测,测定了嗜酸柏拉红菌代谢产物ALA对秀丽小杆线虫、南方根结线虫J2、大豆孢囊线虫J2和松材线虫的作用活性,同时研究了ALA对南方根结线虫卵孵化率的影响。研究结果表明,ALA对多种线虫具有作用活性,杀线虫谱广。96h对南方根结线虫J2、大豆孢囊线虫J2以及松材线虫的LC50分别为162.5mg/L、188.5mg/L和442.2mg/L。同时结果显示不仅是对南方根结线虫J2具有毒杀活性,还能显著抑制线虫卵的孵化,500 mg/L处理,对卵的孵化抑制率达到70%以上。而温室盆栽试验条件下ALA对番茄根结线虫病的防治试验结果表明,ALA能抑制根结线虫对番茄的侵染,处理15d后与对照相比根内线虫种群数量少,根组织中根结数量也显著降低。400mg/L处理番茄60d后其防效达到81.7%,与对照药剂阿维菌素防效相当。研究了ALA作用效果影响因子,结果表明光照对ALA的作用活性影响较大,利用ALA处理后再进行自然光照几小时,与黑暗环境中的处理组相比差异极显著,作用效果显著提高。而pH值、温度等对其杀线虫活性影响不大。
     3、利用显微技术观察了ALA处理后线虫形态结构的变化,并从生理生化角度检测了ALA对线虫体内生理代谢产物的影响,从而初步阐明ALA杀线虫作用机制。光学生物显微镜下观察到线虫经ALA处理后先变得异常活跃,随后僵直死亡,内部组织脱水缢缩,与体壁分离。SEM及TEM检测显示经ALA处理后线虫体壁受到损伤,细胞结构遭到破坏,产生自噬体类似结构。生理生化代谢产物检测结果显示,ALA处理组线虫蛋白质含量比对照组降低了16.4%,特别是非水溶性蛋白含量降低了33.4%。而SOD、CAT、GSH-Px检测结果显示处理组线虫体内保护酶系活性显著提高,处理组分别是对照组的1.78、2.33和1.35倍,MDA含量是对照组的2.70倍。ALA可影响神经靶标酶一乙酰胆碱酯酶活性,低浓度下增加乙酰胆碱酯酶活性,高浓度下对其起抑制作用。500mg/L浓度ALA溶液处理线虫,乙酰胆碱酯酶活性提高17.3%。卟啉类代谢产物的检测结果显示,ALA会导致线虫体内原卟啉Ⅸ的积累,处理组比对照组提高了52.4%,锌卟啉含量也有较大的提高。
     从线虫形态、结构研究结果以及蛋白质含量、氧化酶类、神经靶标酶和卟啉代谢物等生理代谢产物检测结果分析,初步认为ALA对线虫的作用机制主要是:ALA使线虫体内产生了大量活性氧,所以会刺激体内保护酶系统活性增加。活性氧会引起细胞内脂质过氧化,导致MDA含量增高。而线虫体内的脂质过氧化极易引起细胞损伤、结构破坏、生物膜渗透性的改变而最终导致线虫死亡。
     4、利用载体介导PCR法对5-氨基乙酰丙酸合成酶基因进行了克隆与原核表达,获得了高效表达ALAs基因的工程菌菌株,并对工程菌菌株的培养条件进行优化。使工程菌发酵液中ALA含量达到5.379g/L,为目前生物合成ALA同类研究的最高水平。对工程菌发酵液进行剂型加工,研制出防治植物线虫病害工程菌粉剂粗产品。利用该产品进行了防治黄瓜根结线虫病的温室盆栽实验,实验结果表明该粉剂产品对黄瓜根结线虫病具有很好的防治效果,2g/株穴施处理,防效可达76.67%,好于对照药剂16.8%阿维菌素·三唑磷WP的防治效果。表现出在线虫生物防治上较好的应用前景。
Plant-parasitic nematode is one of the important pathogen in agriculture and cause serious crop losses worldwide, and become an important constraint to modern agriculture. The current method to control nematodes.is largely depend on chemical nematicide. However, the chemical nematicide is highly toxic to human and the control effect is more and more decreasing because of pathogen resistance Recently, many scientist give more concerns to bioagents on controlling of nematodes because of its low toxicity to human and low resistance risk to target.
     In this study, the nematicidal activity and control effect of Rhodoblastus acidophilus HB-1 to nematode were assayed. Meanwhile, the nematicidal activity of 5-aminolevulinic acid (ALA), a metabolite of HB-1, were tested. The nematicidal mechanism of ALA was deduced through nemetode morphology, biochemical test, EM results. The gene of ALA synthese was cloned from HB-1 and further expressed in E. coli for ALA production. Our work make the basis to develop biological control agents against nematodes. The detailed results are as follows:
     1. In this work, bioassay of the culture fluid of HB-1 against C.elegans and 2nd stage juveniles of M. incognita were carried out. The results showed that HB-1 has high nematicidal activity with a lethal concentration (LC50) value of 5.13μL/mL and 4.81μL/mL after 96h incubation respectively. Subsequently, the control efficiency of HB-1 against root-knot nematode in greenhouse and in field were checked. The results indicated that HB-1 could efficiently inhibit the infection of M. incognita to tomato and cucumber. At the same time It could also obviously reduce the formation of galls and significantly promote the plant growth. The control effect of HB-1 to M. incognita is 71.5% and the yield of cucumber increased 57.7%. The results showed the great potential of HB-1 on controlling of the plant-parasitic nematodes.
     2. The nematicidal activity of ALA against C. elegans, M. incognita, H. glycines and B. xylophilus were tested. The results showed that ALA is high nematicidal activity to many kind of nematodes and has a broad spectrum activity. The LC5o were 162.5mg/L,188.5mg/L and 442.2mg/L of M. incognita, H.glycines and B. xylophilus after 96h of incubation, respectively. The eggs of M. incognita were inhibited to hatch and the rate of hatching reduced 70% at concentration 500mg/L compared with control. Based on those results, we tested the control efficiency of ALA against root-knot nematode in greenhouse.The results showed that ALA could efficiently inhibited infection of M. incognita to tomato in greenhouse, the formation of galls were obviously reduced and the number of nematodes in root was decreased. The control efficiency was 81.7% at concentration 40mg per plant and was comparatively with Avermectin.The nematicidal activity of ALA under light condition is increased, howerev, the pH and temperature is no effect to its activity.
     3. The mechanism of ALA to nematodes was studied. We observed the morphological changes by microscopy and detected metabolites of nematodes. The nematodes, which were treated by ALA, became active, then stiff, the organization dehydrated, cell structure destructed and similar to autophagosome. ALA could interfere the metabolism of protein, induced SOD,CAT,GSH-Px activity and increased MDA. The SOD,CAT, GSH-Px activity and MDA of treatment is 1.78,2.33,1.35 and 2.70 times to the control groups respectively. ALA could induce the AchE activity at low concentration while inhibit at high concentration. Taken together, our results indicated that ALA could induce the free radical to destroy the protective enzyme system, subsequently lead to lipid peroxidation, cell structural damage, membrane permeability change and finally contribute to nematode death.
     4. The ALAs gene of Rhodoblastus acidophilus was cloned from its genomic DNA by Veterette PCR and further sub-cloned into an expression vector pQE30. For the overproduction of ALA, the recombinant ALAs was expressed in Escherichia coli strain M15. The expression condition including strain, medium, substrate of ALA synthesize (glycine and succinic acid) and ALA dehydratase inhibitor (levulinic acid) were optimized to achieve the maximum yield of ALA in E. coli M15, and the maximum output of ALA was reached to 5.379g/L, which is the highest yield of ALA up to date by biofermentation. The nematicidal products were manufactured through formulation process. And the control efficiency of this products against root-knot nematode in greenhouse was tested, the results showed that the products could efficiently inhibit the infection of M. incognita to cucumber, obviously reduce the formation of galls. The control effect to root-knot nematode was 76.67%, which is better than Avermectin-triazophos. Our results indicated that this product has great potential on controlling of nematodes.
引文
Abad P, Gouzy J, Aury JM.et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology,2008,26(8):909-915.
    Afonso S, De Salamanca RE, Batlle A, Porphyrin-induced protein structural alteration of heme enzymes II:Protection of 5-aminolevulinic acid dehydratase prophobilinogen deaminase from the photodynamic and non-photodynamic effects of URO and PROTO[J],The international Journal of Biochemistry & Cell Biology.1998,30,534-543.
    Amor BT, Jori G, Sunlight-activated insecticides:historical background and mechanisms of phototoxic activity [J].lnsect Biochemistry and Molecular Biology.2000,30,515-525
    Amor BT.Bortolotto L, Jori G.,et al.Porphyrins and related compounds as photoactivatable insecticides.3.Laboratory and field studies[J].Photochem.Photobiol.2000,71, 123-127
    Atibalentja N, Noel GR & Domier LL.Phylogenetic position of the North American isolates of Pasteuria that parasitizes the soybean cyst nematodes, Heterodera glycines, as inferred from 16S rDNA sequence analysis[J].Int J Syst Evol Micr,2000,50:605-613.
    Barron GL,Thorn RG. Destruction of nematodes by species of Pleurotus ostreatus [J]. Can. J. Bot.,1987,65:774-778.
    Becker, JO.,Effects of rhizobacteria on root knot nematodes and gall formation[J]. Phytopathology,1988,78 (11):1466-1469.
    Bird DM, Opperman CH & Davies KG, Interaction between bacteria and plant-parasitic nematodes:now and then[J]. Int J Parasitol,2003,33:1269-1276.
    Bone LW.Bottjer KP.Gill SS. Trichostrongylus colubriformis.Egg lethality due to Bacillus thuringiensis crystal toxin.Experimental[J], Parasitology,1985,60:314-322.
    Burg RW, Miller BM, Baker EE.et al. Avermectines, a new family of potent anthelmintic agents:producing organisms and fermentations[J].Antimicrob. Agents Chemother, 1979,15:361-367.
    Burnham,B.F.,5-Aminolevulinic acid synthase (Rhodopseudomonas sphaeroides). Methods Enzymol.1970,17A:195-204.
    Castagnone-Sereno P..Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes[J].Heredity,2006,96:282-289.
    Cayrol JC, Frankowski JP, Laniece A, et al. Control of nematodes in mushroom cultures. Statement of a method of biological control using a predatory Hyphomycetes: Arthrobotrys robusta strain Antipolis (Royal 300). Pepinieristes Horticulteurs Maraichers[J]. Revue Horticole,1978,184:23-30.
    Cayrol JC. Possibilities of biological control of Meloidogyne nematode crop pest with the use of the "R350" nematophagous fungus (Arthrobotrys irregularis)[J]. La Defense des Vegetaux,1981,35:279-282.
    Charles L, Carbone I, Davis KG, et al,Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci[J]. J Bacteriol,2005,187:5700-5708.
    Chen S Y, Dickson D W,Fungal penetration of the cyst wall of Heterodera glycines [J]. Phytopathology,1996,86:319-327.
    Chitwood DJ, Research on plant-parasitic nematode biology conducted by the united states department of agriculture-agricultural research service[J]. Pest Manage.Sci., 2003.59(6-7):748-753.
    Choi C.Hong BS.Sung HC, et al. Optimization of extracallular δ-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyhizobium japonicum[J]. Biotechnology Letters,1999,.551-554.
    Ciordia H.Bizzeli WE. A Prelinary Report of the Effects of Bacillus thuringiensis var. thuringiensis Berliner on the Development of the Free-living Stages of Some Cattle Nematodes[J].Journal of Parasitology,1961,47:411-416.
    Davide R D. Biocon controls nematodes biologically[J]. Biotechology,1988,5:772.
    Dhakal BK.Lee W.Kim YR et al. Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection[J]. Biochemical and Biophysical Research Communication, 2006,346:751-757.
    Egland P G,Pelletier D A.Dispensa M D,et al. Acluster of bacterial genes for anaerobic benzene ring biodegradation[J].Proc.Natl.Acad.Sci.USA,1997,94(12):6484-6489.
    Ellen L, Kaplan S. Expression of the Rhodakobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthetase isozymes[J]. J Bacteriol Lett.1993, 175:2292-2303
    Endo BY. The ultrastructure and distribution of an intracellular bacterium-like microorganism in tissues of larvae of the soybean cyst nematode, Heterodera glycines.[J]. Ultrastruct. Res.,1979,67:1-14.
    Giannakou IO & Prophetou-Athanasiadou D,A novel non-chemical nematicide for the control of root-knot nematodes[J]. Appl Soil Ecol,2004,26:69-79.
    Giannakou IO, Prophetou-Athanasiadou D. A novel non-chemical nematicide for the control of root-knot nematodes[J].Appl.Soil Ecol.,2004,26:69-79.
    Giblin-Davis RM, Williams DS, Wergin WP, et al,Ultrastructure and development of Pasteuria sp. (S-1 strain), an obligate endoparasite of Belonolaimus longicaudatus (Nemata:Tylenchida)[J]. J Nematol 2001,33:227-238.
    Giblin-Davis, RM., Williams DS. Beka S, at al. Candidatus Pasteuria usgae sp. nov., an obligate endoparasite of the phytoparasitic nematode, Belonolaimus longicaudatus[J].International Journal of systematic and evolutionary microbiology, 2003,53:197-200.
    Giblin-Davis, RM., Williams DS., Wergin WP. et al. Ultrastructure and development of Pasteuria sp.(S-1 strain), an obligate endoparasite of Belonolaimus longicaudatus (Nemata:Tylenchida)[J]. Journal of Nematology.2001,3:227-238.
    Glper S, Cohnm E, Spiegel Y, et al. A collage-nolytic fungus, luning hamella elegans, for biological control of plant-parasitic nematodes[J]. J Nematology,1991,(23):269-274.
    Gortari MC, Hours RA. Fungal chitinases and their biological role in the antagonism onto nematode eggs[J]. A review. Mycol. Progress,2008,7(4):221-238.
    Hallmann J, Faupel A.Krachel A, et al.Occurrence and biocontrol potential of potato-associated bacteria[J]. Nematol.,2002,4:285. (Abstr)
    Hotta Y.Watanabe K.Plant growth-regulating activities of 5-aminolevulinic acid. Syokubutu-no-kagaku-tyousetu(Chemical regulation of plants).1999,(34):85-96.
    Huang XW, Tian BY, Niu QH, et al, An extracellular protease from revibacillus later-osporus G4 without parasporal crystal can serve as a pathogenic factor in infection of nematodes[J]. Res Microbiol,2005,156:719-727.
    Jatala P, Biological control of plant-parasitic nematodes[J].Annu Rev Phytopathol 1997,24: 453-489.
    Johnston TM. Effect of fatty acid mixture on the rice stylet nematode(Tylenchorhynchus martini)[J], Fielding. Nature,1959,183:1392
    Kamiyama H, Hotta Y, Tanaka T,et al. Production of 5-aminolevulinic acid by a mutant strain of aphotosynthetic bacteria[J]. Seibutu-Kougaku 2000,78:48-55.
    Kerry BR, Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes[J]. Annu Rev Phytopathol,2000,38:423-441.
    Khan MR, Kounsar K, Hamid A. Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram[J].Nematologia Mediterranea,2002,31:85-89.
    Kloepper, JW, Schroth. MN.,. In P roc.4th Int. Conf. Plant Pathog. Bact. Angers, Fr. 1978,1:,245-250.
    kobayashi k. Subnational diversity in the population growth rate of Thailand during the 1960s.Tonan Ajia Kenkyu.1981,19(1):19-53.
    Koch J, Eisenreich W.Bacher A,et al. Products of enzymatic reduction of benzoyl-coA,a key reaction in anaerobic aromatic metabolism[J].Eur.J.Biochem.,1993,221 (3): 649-661.
    Kotze AC, O'Grady J, Gough JM, et al,Toxicity of Bacillus thuringiensis toparasitic and free-living life stages of nematodes parasites oflivestock[J]. Int J Parasitol,2005,35: 1013-1022.
    Kuramochi H, Konnai M, Tanaka T, et al. Method for improving plant salt tolerance.1997, US patent,5661111
    Lascelles J. Regulation of pyrrole synthesis. In Clayton R.K.Sistrom WR(eds)The photosynthetic bacteria Plenum Press[J]., New York,PP.1978:795-808
    Mariet,J.,Werf,V.D.,Zeikus,J.G.,5-aminolevulinate production by E.coli containing the Rhodobacter sphaeroides hemA Gene. Appl Environ Microbiol,1996,62 (10):3560-3566.
    Marroquin LD, Elyassnia D, Griffitts JS,et al, Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans [J].Genet,2000,155:1693-1699.
    Mclnnis I. Suppression of Criconemella xenoplax on peach by rhizosphere bacteria. Proc. 2nd Inter. Nematology Congr., Veldhoven, The Netherlands.,1990.
    Meyer SLF, Roberts DP, Chitwood DJ, et al.Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations.against Meloidogyne incognita on bell pepper[J].Nematropica,2002,31:75-86.
    Meyer SLF. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes[J].Pest Manag. Sci.,2003,59:665-670.
    Miller TW, Charet L, Cole DJ, et al. Avermectines, a new family of potent anthelmintic agents:Isolation and chromatographic properties[J]Antimicrob. Agents Chemother, 1979,15:368-371.
    Milligan SB,Bodean J.Yaghoobi J,et al The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine rich repeat family of plant genes[J]. The Plant Cell,1998,10(8):1307-1319.
    Monteiro HP, Abdalla DSP, Auguato O, et al, Free radical generation during δ-aminolevunic acid autoxidation:Induction byhemoglobin and connections with porphyrinpathies[J]. Arch Biochembiophys,1989,271:206-216.
    Nishikawa S, Watanabe K, Tanaka T,et al. Rhodobacter sphaeroides mutant which accumulate 5-aminolevulinic acid under aerobic and dark conditions[J].J Biosci Bioeng 1999,87:798-804.
    Oliveira EJ, Rabinovitch L, Monnerat RG, et al,Molecular characterization of Brevibacillus laterosporus and its potential use in biological control[J]. Appl Environ Microbiol, 2004,70:6657-6664.
    Oostendorp M & Sikora RA,In-vitro interrelationships between rhizosphere bacteria and Heterodera schachtii[J]. Rev Nematol,1990,13:269-274.
    Oostendorp M, Sikora RA. Seed treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet[J]. Revue Nematol,1989,12:77-83.
    Ostling O.Johanson KJ.Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells[J]. Biochem Biophys Res Corn,1984,123:291-298.
    Oteiza Pl,Bechara EJ,5-aminolevulinic acid induces lipid peroxidation in cardiolipin rich liposomes[J]. Arch Biochem Biophys,1993,305:282-287.
    Pelletetier DA.Harwood CS.2-Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris[J]. J. Bacteriol.,1998,180(9):2330-2336.
    Pelletier DA. and Harwood CS.2-Hydroxycyclohexanecarboxyl Coenzyme A dehydro-genase, an enzyme characteristic of the anaerobic benzoate degradation pathway used by Rhodopseudomonas palustris[J]. J.Bacteriol.1999,182:2753-2760.
    Racke J & Sikora RA.Isolation, formulation andantagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida[J]. Soil Biol Biochem,1992,24:521-526.
    Ravin V and Alatossava T. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii:isolation, molecular characterization, and potential use for strain identification. Plasmid,2003,49(3):253-268. Rebeiz CA, Juvik J A, Rebeiz CC, Porphyric insecticides. US:5300526,1994.
    Rebeiz CA, Montazer-Zouhool A, Hopen HJ et al, Photodynamic herbicides Concepts and phenomenology[J].Enzyme Microb. Technol.1984,6:390-401.
    Rebeiz CA, Hopen HJ, Photodynamic herbicidal compositions using delta-aminolevulinic acid. US:5286708,1994.
    Rebeiz, CA, Juvik, JA, Rebeiz, CC, Porphyric insecticides.1. Concept and phenomenology [J].Pestic. Biochem. Physiol.1988,30,11-27.
    Rebeiz,CA, Juvik.JA, Bouton CE.Porphyric photoactivatable insecticides 2.1,10-Phenan-throline, a Potent Porphyric Insecticide Modulator [J],Pesticide Biochemistry and Physiology.1990,36,201-207
    Rodriguez-Kabana R, Jordan JW, Hollis JP, Nematodes:biological control on rice field:role of hydrogen sulfide[J]. Science,1965,148:524-526.
    Sasaki K, Marquez FJ, Nishio N, et al,Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platenesis[J].Joural Ferm Bioeng,1995,79(5): 453-457.
    Sasaki K, Watanabe M, TanakaT, et al. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol[J].,2002,58:23-29.
    Sasikala CH, Ramana CH. Biotechnological potentials of anoxygenic phototrophic bacteria.II.Biopolyesters, biopesticide, biofuel, and biofertilizer[J].Advances Appl Microbiol,:995,41:227-278.
    Sasser JN.Freckman DW, A world perspective on nematology:The role of society.Vistas on Nematology.Society of Nematologists[J],Hyatttsville,Mariland,In;D.W.Dickson, J.A.V.a. (Ed.),1987,7-14.
    Schneider SM, Rosskopf EN, Leesch JG,ef al, Research on alternatives to methyl bromide:pre-plant and post-harvest[J]. Pest Manag Sci,2003,59:814-826.
    Shepherd A M, Cla rk S A, Kempton A. An intr acellular micr oo rg anism asso ciated with tissues of Heterdera spp. [J].Nemat logica,1973,19:31-34.
    Siddiqui ZA,Mahmood I. Role of bacteria in the management of plant parasitic nematodes:A review[J].Bioresource Technol.1999,69:167-179.
    Sikora RA, Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms[J]. Med.Fac.Landbouvow. Rijksuniv. Gent.,1988, 53/2b:867-878
    Stirling GR. Biological control of plant parasitic nematode:progress.problems and prospects [M]. CAB International, Wallington, United Kingdom,1991.
    Suslow, TV.,et al., In P roc,4th Int. Conf. P lant Pathog. Bact. A ngers, Fr.2:885.1978
    Tanaka T, Takahashi K, Hotta T, et al. Promotive effects of 5-aminolevulinic acid on yield of several crops. In:Proceedings of the 19th annual meeting of plant growth regulator Society of America, San Francisco. Plant Growth Regulator Society of America, [J] Washington DC,pp 1992,237-241.
    Tanaka Y, Tanaka A, Tsuji H. Efects of 5-aminolevulinic acid on the accumulation of chlorophyll bandapo proteins of the light hatvesting chlorophyl a/b-protein complex of photesystemⅡ[J].Plant Cell Physiol,1993,34:465-472.
    Thorn RG, Barron G L. Carnivorousmushroom [J].Science,1984,224:76-78.
    Tian BY, Li N, Lian LH.et al, Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4[J]. Arch Microbial,2006,186:297-305.
    Tian BY,Yang JK,Zhang KQ, Bacteria used in the biological control of plant-parasitic nematodes:populations,mechanisms of action, and future prospects[J].FEMS Microbiol Ecol,2007,61:197-213.
    Tunlid,A.,Ahman,J,Oliver RP. Transformation of the nematode-trapping fungus Arthrobotrys oligospora[J]. FEMS Microbiol Letters,13:111-116.
    Warrior P,Beach RM, Grau PA,et al Commercial development and introduction of Ditera, a new nematicide. In 9th international congress of pesticide chemistry, Royal Society of Chemistry, Cambridge, UK.1998.
    Weaver PF, Wall JD, Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol,1975,105:207-216.
    Wei JZ, Hale K, Carta L, et al, Bacillus thuringiensis crystal proteins that target nematodes[J]. PNAS,2003,100:2760-2765.
    Xie L.Eiteman MA, Altman E. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol Lett,2003,25:1751-1755
    Xie L,Eiteman MA, Altman E. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase[J]. Biotechnol Lett,2003,25:1751-1755
    Zhang MQ.and Zou YL, DNA damage of Ditylenchus dipsaci caused by aldicarb and SDBS-humid acids complex pollution system[J].Soil and Environmental Science,2001,10(4):259-262.
    Zopf W. Zur Kenntnis der Infektions Krandheiten nerderer Thiere und Pflanzen. Nova Acta Acad. Leop[J]. Carol.,1888,52:314-376.
    陈德华,吉林,光合细菌添加剂饲养蛋鸡试验[J].饲料工业,1994,15(5):11-12.
    陈立杰,陈井生,段玉玺等,防治大豆孢囊线虫的生防放线菌初步筛选[J],植物保护,2008,34(3):116-119.
    陈品三.杀线虫剂主要类型、特性及其作用机制[J].农药科学与管理,2001,22:33-35.
    程菊娥,肖启明,成飞雪等,5-氨基乙酰丙酸对温室烟草的光合作用及抗逆性的促进效应[J],湖南农业科学2007,(4):58-60.
    邓干臻,姚宝安,冯汉荷等,14株苏云金芽胞杆菌伴胞晶体蛋白对猪蛔虫第3期幼虫的毒性比较[J],中国兽医学报,2004,4(24):338-340.
    冯志新.植物线虫学[M].北京:中国农业出版社,2001.
    黄金林,汤锦如等.光合细菌在家禽水产养殖中的应用研究[J].江苏农艺师业研究,2000,24(4):15-17.
    雷丽萍,李天飞,余清等,生防菌剂田间试验示范[J].中国烟草科学,1998,3:30-32.
    李坤宝,俞皓,光合细菌在保护地樱桃番茄上的应用[J].上海交通大学学报,1995,2(3):152-156.
    李天飞,张克勤,刘杏中,食线虫真菌分类学[M].北京:中国科学技术出版社,2000.
    李月梅,郭亚平,李琦等,卟啉杀虫剂对稻蝗的毒杀作用及机理初探[J].山西大学学报:自然科学版,2005,28(2):196-201.
    林志新薛太白.光合细菌作为饲料添加剂在肉鸡饲养中的应用[J].上海农业学报,1991(3):10-15.
    林志新俞吉安。光合细菌P4株对植物抗病毒活性的诱导作用[J].上海农业学报,1992,8(4): 64-68.
    刘斌,线虫病毒和立克次氏体[M]//刘杏忠,张克勤,李天飞,植物寄生线虫生物防治,北京:中国科学技术出版社,2004:45-50.
    刘维志,植物线虫志[M].北京:中国农业出版社,2004.
    刘维志.植物病原线虫学[M].北京:中国农业出版社,2000.
    刘杏忠,张克勤,李天飞等,植物寄生线虫生物防治[M].北京:中国科学技术出版社.2004:66-76.
    刘秀艳,徐向阳,陈蔚青.光合细菌产生5-氨基乙酰丙酸(ALA)的研究.浙江大学学报(理学版),2002,29(3):336-34.
    刘勇,王小平.光合细菌PSB-1对辣椒病毒病的防治作用.湖南农业科学.2000,(6):30-31.
    刘勇,王小平.光合细菌PSB-1对辣椒苗期生长和产量的影响.湖南农业科学.2000,(5):19-20.
    刘勇,张德咏.光合细菌PSB-1菌株的分离鉴定及其生物学特性的研究[J].生命科学研究,2000,4(4):331-336.
    刘志明,余玉冰,秦碧霞等,根结线虫幼虫致病细菌的筛选[J].中国生物防治,2000,16(3):142.
    刘中.光合细菌在淡水养殖中的应用[J].水产科学.1995,14(1):13-17.
    马金石,成吴,张驿等,新型绿色农药—光活化农药[J]化学进展,1999,11(4):341-347.
    牛俊海,郭仰东,简恒等,RNA干扰在植物抗根结线虫病基因工程应用中的研究进展[J].基因组学与应用生物学,2009,28(1):167-173.
    彭德良,蔬菜,蔬菜病虫害的综合治理(十)蔬菜线虫病害的发生和防治,中国蔬菜,1998,19(4):57-58.
    彭德良,李慧霞,王锡峰等,我国小麦禾谷孢囊线虫的新发生分布地区[M],中国线虫学研究第二卷,2008,2:344-345.
    史清亮,贺跃武,马玉珍等.光合细菌在农业上的应用研究.山西农业科学.2000,28(2):59-
    61.
    宋仕清,郭世荣,5-氨基乙酰丙酸的生理作用及其在农业生产中的应用[J], 河北科技师范学院学报,2004,18(2):54-57.
    孙耀冉,陈涛、吕连营等,新型绿色农药:5-氨基乙酰丙酸[J].农药,2008,47(10):710-712.
    田红林,北京市蔬菜线虫种类研究及拮抗线虫的细菌筛选[研究生论文],1992,中国农业大学.
    汪良驹姜卫兵黄保健,5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应[J],园艺学报2004,31(3):321-322.
    汪良驹,姜卫兵,章镇等,5-氨基乙酰丙酸的生物合成和生理活性及其在农业中的潜在应用[J],植物生理学通讯,2003,39(3):185-192.
    汪良驹,王中华,李志强等,5-氨基乙酰丙酸促进苹果果实着色的效应[J],果树学报2004,21(6):512-515.
    王德城,一种新型低毒除草剂—氨基乙酰丙酸[J].现代化工,1990,10(4):59-60.
    王晖,光合细菌肥料对植物的影响[J].山西教育学院学报,2000,3(3):36-38.
    王静,马玉珍,史清亮.大豆根瘤菌与光合细菌混合接种效果.土壤肥料.1997,(2):41-42.
    王俊卿,张肇铭,5-氨基乙酰丙酸的光动力应用研究进展[J],微生物学通报,2004,31(3):136-140.
    王育锋.光合细菌在池塘鱼种培育中最佳施用方式研究[J].淡水渔业.1993,23(3):38-39.
    魏新田等.农用光合细菌菌液在芝麻生产上的应用.河南农业科学.2000,(9):7-9.
    吴铁一,屠铁城,赵红卫等,焦脱镁叶绿酸-a作为光活化农药的光活化机理研究[J].化学学报,2006,64(1):17-21.
    吴小平.光合细菌在烟草上的应用[J].福建农业大学学报.1999,28(4):47-473.
    席敏,光合细菌应用于废弃物资源化处理及综合利用.安徽农业科学.2002,30(4):631-632.
    夏宏,许建香,光合细菌及复配剂在番茄上的应用研究[J].山西农业科学,1999,27(4):47-49.
    夏宏,张请元,光合细菌在早熟甘蓝、油菜上的应用研究[J].山西农业大学学报:自然科学版,2000,2(2):116-118.
    向红琼,冯志新,Plattner ostreatus对线虫作用机理的研究[J].植物病理学报,2002,30(4):357-363.
    谢冰,史家墚,岳宝等,有机磷农药废水处理技术[J].化工环保.1999,19(2):89-92.
    刑华,光合细菌在水产养殖上的开发及应用(一)[J].科学养鱼,1994,2-3:20.
    闫宏涛,李汉杰,王邦法.光活化除草剂ALA作用机理初探[J].植物保护.1994,20(1):44-45.
    闫宏涛,王邦法,李汉杰,光活化农药δ-ALA除草增效剂的研究[J].科技通报.1995,11(4):228-231
    杨宝君,曾大鹏,植物根结线虫(生物学、分类鉴定和防治)[M].北京:科学出版社,1983.
    杨宝君,汤坚,王玉嬿等,松材线虫病[M].北京:中国林业出版社,2003.
    阴琨,马恩波,薛春荣等,5一氨基乙酰丙酸对中华稻蝗(Oxya chinensis)的杀虫活性及对3种酶活性的影响[J],中国农业科学2008,41(7):2003-2007
    尹乐斌,张德咏,刘勇等,降解氯氰菊酯光合细菌的分离鉴定及降解特性研究[J].生态环境学报,2010,19(8):1881-1886.
    于沛芬.光合细菌的分离、鉴定和固定化及其在净化浴池水质中的应用研究[J]生物技术.1995,5(3):35-36
    余永年,虫生串胞壶菌——线虫内寄生真菌[J],微生物学报,1977,4:176-179.
    张波,张阳德,夏代林等,5-氨基乙酰丙酸诱导原卟啉Ⅸ在大鼠大肠癌组织中积聚的特征研究[J].哈尔滨医科大学学报,2005,39(5):308-310.
    张德咏,刘勇.光合细菌PSB-1对几种蔬菜种子发芽及成苗的作用[J].湖南农业科学,2001,1:31-32.
    张德咏,谭新球,罗香文等.一株能降解有机磷农药甲胺磷的光合细菌HP-1的分离及生物学特性的研究,生命科学研究,2005,9(3):247-253
    张飞跃,孙炳剑,李洪连等,植物寄生线虫生防因子研究进展,河南农业科学,2008,8:16-19
    张克勤,何世川,周薇等,真菌和细菌在线虫生防中的作用及其研究进展[J],杀虫微生物,1991,3:55-61.
    张克勤,刘杏忠,李天飞,食线虫真菌生物学[M].北京:中国科技出版社,2001.
    张松柏,张德咏,刘勇等,光合细菌PSB07-15对水培黄瓜体系中甲氰菊酯污染的生物修复[J].农业环境科学学报,2009,28(10):2198-2203.
    张松柏,张德咏,刘勇等,一株菊酯类农药降解菌的分离鉴定及其降解酶基因的克隆[J],微生物学报,2009,49(11):1520-1526.
    张一宾,5-氨基乙酰丙酸(ALA)的功能与展开[J], 世界农药,2006,28(4):14-17
    祝明亮,李天飞,张克勤等,根结线虫生防资源概况及进展[J].微生物学报,2004,31(1):100-104.
    祝明亮,张克勤,李天飞等,三种生物制剂对烟草根结线虫病防效研究[J].云南大学学报(自然科学版),2000,22(5):369-372.
    祝明亮,张克勤,李天飞等,烟草根际厚孢轮枝菌生态效应研究[J].微生物学通报,2002,29(2):5-8.
    卓侃,廖金铃, 崔汝强等,寄生象耳豆根结线虫上淡紫拟青霉的分离鉴定[C]//廖金铃,彭得良,郑经武等,中国线虫学研究(第1卷),北京:中国农业科学技术出版社,2006:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700