维拉帕米代谢的微生物模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要目的是以维拉帕米为模型药物,考察微生物模型和哺乳动物在药物代谢方面的异同,探讨采用微生物模型部分替代哺乳动物进行药物代谢研究的可行性;制备微生物微粒体并进行体外孵化实验,直接证明了维拉帕米在微生物模型中的Ⅰ相代谢反应是由菌体内的CYP450酶催化的,从亚细胞水平阐述了微生物模型能够模拟哺乳动物药物代谢的物质基础;利用微生物模型制备萘普生和甲苯磺丁脲的代谢产物,考察微生物模型用于制备药物代谢产物的通用性。
     一、维拉帕米在微生物模型中的代谢研究
     通过菌株筛选实验,考察了13株真菌对维拉帕米的转化能力,其中短刺小克银汉霉AS 3.153对维拉帕米的转化比较完全,且代谢产物种类多,因此将其选作模型微生物,用于维拉帕米的代谢研究。按照优化的条件(培养基初始pH 6.5、底物浓度0.75 mg/mL和转化时间72 h)进行制备规模转化,采用半制备反相高效液相色谱法分离纯化代谢产物。通过核磁共振光谱和电喷雾离子化质谱进行结构鉴定,制备得到的5种维拉帕米代谢产物的化学结构分别为30-O-去甲基维拉帕米、20-O-去甲基维拉帕米、N-去甲基维拉帕米、α-(3-甲氨基丙基)-3,4-二甲氧基-α-异丙基苯乙腈(N-去苯乙基部分代谢产物)和N-甲基-3,4-二甲氧基苯乙胺(N-去苯乙腈部分代谢产物),可将它们作为代谢产物对照品用于维拉帕米的代谢研究。
     采用液相色谱-多级质谱联用(LC/MS~n)方法对维拉帕米及其5种代谢产物进行质谱分析,总结得到以下规律:(1)结构中都含有一个碱性较强的氮原子,电喷雾离子化条件下采用正离子检测方式灵敏度较高;(2)一级全扫描质谱中只检测到准分子离子[M+H]~+,没有出现多聚体离子或其他加合离子,也没有出现明显的热裂解碎片离子;(3)化学键断裂主要集中在碱性氮原子附近,α键裂解只发生在较长的烷基侧链,没有出现脱去N-甲基的碎片离子;(4)碎片离子主要来源于一个键的断裂。也能检测到由两个键断裂所形成的碎片离子,但相应的离子强度较弱;(5)结构中苯乙基部分未发生变化的化合物,在二级全扫描质谱中的基峰离子为含有苯乙基部分的碎片离子;这部分结构如果发生改变,则基峰离子为含有苯乙腈部分的碎片离子;(6)发生N-去甲基反应和N-去烷基反应生成的代谢产物,均出现脱去异丙基自由基的碎片离子。以上质谱断裂规律可作为判断依据,由维拉帕米代谢产物的多级质谱碎片离子,确定其结构中的苯乙腈部分、苯乙基部分和N-烷基部分是否发生变化,以推测代谢产物的化学结构。
     采用LC/MS~n方法首次研究了维拉帕米在微生物模型中的代谢情况。发现维
    
    维拉帕米代谢的微生物模型研究
    拉帕米在短刺小克银汉霉AS 3.153微生物模型中代谢广泛,共生成23种代谢产
    物。综合分析每种代谢产物的准分子离子、多级碎片离子和色谱保留时间,并与
    维拉帕米及制备的5种代谢产物对照品进行比较,鉴定代谢产物的化学结构分别
    为口一去甲基代谢产物(VMI一VM3),N-去甲基代谢产物(VM4),双去甲基代
    谢产物(VMS一VMS),N-去烷基代谢产物(VMg和VM10),N-去烷基后单去
    甲基代谢产物(VMll和 VM12),单去甲基代谢产物的硫酸结合物(VM13一
    VM 15)和双去甲基代谢产物的硫酸结合物(VM16~VM23)。维拉帕米在微生
    物模型中主要经历4种代谢途径,包括:O一去甲基、N-去甲基、N-去烷基和硫酸
    结合。上述途径还可能发生交又,生成次级代谢产物。
    二、维拉帕米在哺乳动物体内的代谢研究
     在有关文献报道的基石出上,采用LC侧Sn方法研究了维拉帕米在人、比格犬
    和大鼠体内的代谢情况。
     健康受试者口服盐酸维拉帕米80 mg后,收集不同时间的血浆样品和尿样进
    行分析,共发现了28种代谢产物。其中9种为已知代谢产物,巧种为首次发现
    的代谢产物,还有4种代谢产物为文献中尚未确定结合物类型的H相代谢产物,
    本文确定了它们的化学结构。维拉帕米在人体内代谢生成O-去甲基代谢产物
     (VMI~VM3和VM24),N-去甲基代谢产物(VM4),双去甲基代谢产物
     (VMS、VM7、VMS和VM25),N-去烷基代谢产物(VMg和VM10),N-去烷
    基后单去甲基或双去甲基代谢产物(VM 11、VM12和VM26),O一去甲基代谢产
    物的葡萄糖醛酸结合物(VM27一VM35)和O-去甲基代谢产物的硫酸结合物
    (VM 15、VM20、VM36一vM38)。综合以上研究结果,维拉帕米在人体内有5
    种主要代谢途径,包括:0一去甲基、N-去甲基、N-去烷基、葡萄糖醛酸结合及硫
    酸结合,而且这些代谢途径还可能发生交叉,生成次级代谢产物。比格犬与人体
    内的代谢情况相似,只缺少了1种O一去甲基代谢产物(VM24)和3种硫酸结合
    物(VMZO、VM36和VM38)。
     在大鼠体内发现了5种人和比格犬体内未检测到的代谢产物,分别是22,30-
    O一双去甲基维拉帕米(VM6)、32一口一去甲基子人去甲基维拉帕米( VM39)以及它
    们的葡萄糖醛酸结合物(VM41和VM42)和32一O-去甲基维拉帕米的葡萄糖醛
    酸结合物(VM40),均为首次发现。
    三、维拉帕米在微生物模型和哺乳动物体内的代谢产物比较
     维拉帕米在短刺小克银汉霉AS 3.153微生物模型和哺乳动物(包括人、比
    格犬和大鼠)体内都进行了广泛代谢,分别生
Verapamil was used as a structural probe to compare the similarities and differences between microbial models and mammals on drug metabolism, and to investigate the feasibility to partly replace mammals by microbial models in drug metabolism studies. Microbial microsomes were prepared using ultracentrifuge method, and in vitro incubation proved that the phase I metabolic reactions in microbial models were catalyzed by CYP450 en2ymes, which was the material base at subcellular level of the abilities of microbial models to mimic mammalian metabolism of drug. The generality of using microbial models to prepare drug metabolites was indicated by the preparation of the metabolites of naproxen and tolbutamide.
    1. The metabolism of verapamil in the microbial model
    Thirteen fungus were used to evaluate the abilities to biotransform verapamil, Cunninghamella blakesleeana AS 3.153 gave the best biotransformation yield at 92.6% and produced various metabolites of verapamil, so it was chosen as the model microorganism for further investigation. In order to isolate major metabolites of verapamil in sufficient quantities for structural elucidation, the biotransformation of verapamil by C. blakesleeana AS 3.153 was carried out on preparative scale according to the optimization experiments (initial medium pH 6.5, substrate concentration 0.75 mg/mL, biotransformation time 72 h). Five major metabolites were isolated by the semipreparative HPLC and identified by NMR and ESI-MS. They were 30-0-demethyl-verapamil, 20-O-demethyl-verapamil, N-demethyl-verapamil, N-methyl-4-(3,4-dimethoxyphenyl)-4-cyano-5-methyl-hexylamine and N-methyl-2-(3,4-dimethoxyphenyl)ethyl amine, which could be used as reference substances in verapamil metabolism studies.
    Using multi-stage ion trap mass spectrometric analysis, the characteristic fragment ions of verapamil and its metabolites were obtained. There was a basic nitrogen in their chemical structures, so they were all sensitive in ESI positive-ion mode. Most of the abundant fragment ions originated from single bond cleaves near the nitrogen. The metabolites with unchanged phenylethyl moiety gave the base ion including the phenylethyl moiety, whereas the metabolites with changed phenylethyl moiety showed the base ion including the phenylacetonitrile moiety. The N-demethylated or N-dealkylated metabolites gave the fragment ion formed by the loss of isopropyl group in MS/MS spectra.
    Metabolites of verapamil in the microbial model of C. blakesleeana AS 3.153 were
    
    
    
    investigated by LC/MSn method. A total of 23 metabolites were found and identified by comparisons of their chromatographic behaviors, ESI-MS, and MS/MS spectra to those of verapamil and five isolated standards, including O-demethylated metabolites (VM1 -VM3), N-demethylated metabolites (VM4), di-demethylated metabolites (VM5 - VM8), iV-dealkylated metabolites (VM9 and VM10), N-dealkylated and demethylated metabolites (VM11 and VM12), sulfate conjugates of mono-demethylated metabolites (VM13 - VM15) and sulfate conjugates of di-demethylated metabolites (VM16 - VM23). The major metabolic pathways of verapamil in the microbial model were O-demethylation, N-demethylation, N-dealkylation and sulfate conjugation. Secondary metabolism via these pathways was also evidenced.
    2. The metabolism of verapamil in mammals
    Metabolites of verapamil in mammals (human, dog and rat) were investigated by LC/MSn method.
    A total of 28 metabolites were found in urine and plasma of healthy volunteers following single oral doses of 80 mg verapamil, among which 9 metabolites were known, 15 metabolites were novel, and 4 phase II metabolites were first gave definite structures. The metabolites of verapamil in human were O-demethylated metabolites (VM1 - VM3, VM24), N-demethylated metabolites (VM4), di-demethylated metabolites (VM5, VM7, VM8 and VM25), N-dealkylated metabolites (VM9 and VM10), TV-dealkylated and mono- or di-demethylated metabolites (VM111, VM12 and VM26), glucuronides of O-demethylated metabolites (VM27 - VM35), sulfate conjugates of O
引文
1. 钟大放.药物代谢.北京:中国医药科技出版社1996,1-14
    2. 宋振玉主编.药物代谢研究意义、方法、应用.北京:人民卫生出版社 1990,4-8
    3. 吴镭.药学科学前沿与发展方向.北京:中国医药科技出版社 2000,54-59
    4. Gibson GG, Skett P. Introduction to drug metabolism. New York: Chapman & Hall 1994, 1-34
    5. Portenoy PK, Thaler HT, Inturrisi CE, Friedlander K, Foley KM. The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clin Pharmacol Ther 1992, 51: 422-431
    6. Bezek S, Kukan M, Pool WF, Woolf TF. The effect of cytochrome P450 1A induction and inhibition on the disposition of the cognition activator tacrine in rat hepatic preparations. Xenobiotica 1996, 211:935-946
    7. Saville BA, Gray MR, Tam YK. Models of hepatic drug elimination. Drug Metab Rev 1992, 24: 49-88
    8. Barr J, Weir AJ, Brendel K, Sipes IG. Liver slices in dynamic organ culture Ⅰ: An alternative technique for the study of rat hepatic drug metabolism. Xenobiotica 1991, 21:331-339
    9. Ekins S. Past, present, and future applications of precision-cut liver slices for in vitro xenobiotie metabolism. Drug Metab Rev 1996, 28:591-623
    10. Maurel P. The use of adult human hepatocytes in primary culture and other in vitro systems to investigate drug metabolism in man. Adv Drug Deliv Rev 1996, 22:105-134
    11. Oldham HG, Standing P, Norman S J, Blake T J, Beattie I, Cox P J, Chenery RJ. Metabolism of temelastine (SK&F93944) in hepatocytes from rat, dog, cynomolgus monkey, and man. Drug Metab Dispos 1990, 15:146-152
    12. Wrighton SA, VandenBranden M, Stevens JC, Shipley LA, Ring BJ, Rettie AE, Cashman JR. In vitro methods for assessing human hepatic drug metabolism: their use in drug development. Drug Metab Dispos 1993, 25:453-484
    13. Poon GK, Wade J, Bloomer J, Clarke SE, Maltas J. Rapid screening of taxoi metabolites in human mierosomes by liquid chromatography/electrospray ionization-mass spectrometry. Rapid Commun Mass Spectrom 1996, 10:1165-1168
    14. Waterman MR. Heterologous expression of mammalian P450 enzymes. Adv Enzymol 1994, 68: 37-66
    15. Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae: systematic characterization and
    
    comparison with those of the rat. Biochem Pharmacol 1996, 51:1041-1050
    16.格拉泽,二介堂弘著,陈守文等译.微生物生物技术.北京:科学出版社 2002,371-374
    17. Smith RV, Rosazza JP. Microbial models of mammalian metabolism: aromatic hydroxylation. Arch Biochem Biophys 1974, 161:551-558
    18. Smith RV, Rosazza JP. Microbial models of mammalian metabolism. J Pharm Sci 1975, 64: 1737-1758
    19. Rosazza JP. Microbial transformations of bioactive compounds. United States: CRC Press 1982, 1-11
    20. Clark AM, Hufford CD. Use of microorganisms for the study of drug metabolism: an update. Med Res Rev 1991, 11:473-501
    21. Azerad R. Microbial models for drug metabolism. Adv Biochem Eng Biotech 1999, 63: 169-218
    22. Abourashed EA, Clark AM, Hufford CD. Microbial models of mammalian metabolism of xenobiotics: an updated review. Curr Med Chem 1999; 6:359-374
    23. Rao GP, Davis PJ. Microbial models of mammalian metabolism. Biotransformations of HP 749(besipirdine) using Cunninghamella elegans. Drug Metab Dispos 1997, 25:709-715
    24. Moody JD, Freeman JP, Cerniglia CE. Biotransformation of doxepin by Cunninghamella elegans. Drug Metab Dispos 1999, 27: 1157-1164
    25. Duhart BT, Zhang D, Deck J. Biotransformation of protriptyline by filamentous fungi and yeasts. Xenobiotica 1999; 29:733-746
    26. Moody JD, Zhang DL, Heinze TM, Cerniglia CE. Transformation of amoxapine by Cunninghamella elegans. Appl Environ Microbiol 2000, 66:3646-3649
    27. Zhang DL, Freeman JP, Sutherland JB, Walker AE, Yang YF, Cemiglia CE. Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans. Appl Environ Microbiol 1996, 62:798-803
    28. Hezari M, Davis PJ. Microbial models of mammalian metabolism: furosemide glucoside formation using the fungus Cunninghamella elegans. Drug Metab Dispos 1993, 21: 259-267
    29. Cerniglia CE, Freeman JP, Mitchum RK. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol 1982, 43: 1070-1075
    30. Chen TS, So L, White R. Microbial hydroxylation and glucuronidation of the angiotensin-Ⅱ (AⅡ) receptor antagonist MK-954. J Antibiot (Tokyo) 1993, 46: 131-134
    31. el-Sharkawy SH, Selim MI, Afifi MS. Microbial transformation of zearalenone to a zearalenone sulfate. Appl Environ Microbiol 1991, 57:549-552
    32.陈笑艳,黄海华,钟大放,李文,沙沂.普罗帕酮在中国健康受试者体内的羟基化代谢产
    
    物研究.药学学报 1999,34:776-781
    33. Huang HH, Chen XY, Zhong DF. Selective biotransformation of propafenone by Cunninghamella blakesleana. Asian J Drug Metab phamacokinet 2001, 1:37-43
    34.黄海华,崔洪霞,钟大放,杜宗敏.利用微生物转化模型研究苯丙哌林的代谢产物.中国药理学与毒理学杂志 2001,15:297-301
    35.黄海华,钟大放,王英.小克银汉霉对SFZ-47的代谢转化.药物生物技术 1997,4:158-163
    36.黄海华,钟大放,王英.黑曲霉菌对SFZ-47的代谢转化.沈阳药科大学学报 1997,14:199-205
    37. Lee MS, Kems EH. LC/MS applications in drug development. Mass spectrom Rev 1999, 18: 187-279
    38.胡蓓,江骥.串联质谱在药品及其代谢产物分析中的应用.现代药理实验方法.张均田主编.北京:北京医科大学中国协和医科大学联合出版社 1998,1637-1642
    39. Oliveira EJ, Watson DG. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed Chromatogr 2000, 14:351-372
    40.李慧义,罗淑荣,周同惠.液相色谱-质谱联用技术及其在药物代谢研究中的应用.国外医学药学分册 1997,24:257-263
    41. Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed Chromatogr 2000, 14:422-429
    42. Niessen WMA, Tinke AP. Liquid chromatography-mass spectrometry general principles and instrumentation, J Chromatogr A 1995, 703:37-57
    43. Hoja H, Marquet P, Verneuil B. Applications of liquid chromatography-mass spectrometry in analytical toxicology. J Anal Toxicol 1997, 21:116-126
    44. Huang EC, Wachs T, Conboy JJ. Atmospheric pressure ionization mass spectrometry. Anal Chem 1990, 62: 713A-724A
    45. Niessen WMA. Advances in instrumentation in liquid chromatography-mass spectrometry and related liquid-introduction techniques. J Chromatogr A 1998, 794:407-435
    46. Pitt AR. Application of electrospray mass spectrometry in biology. Nat Prod Rep 1998, 15: 59-72
    47. Bruins AP. Mechanistic aspects of electrospray ionization, J Chromatogr A 1998, 794:345-357
    48. Gaskell SJ. Electrospray: principles and practice, J Mass Spectrm 1997, 32:677-688
    49.邸欣,钟大放.电喷雾质谱法的理论与实践.沈阳药科大学学报 1999,16:146-150
    50. Segura M, Ortuno J, Farre M, Pacifici R, Pichini S, Joglar J, Segura J, Torre R. Quantitative determination of paroxetine and its 4-hydroxy-3-methoxy metabolite in plasma by high-
    
    performance liquid chromatography/electrospray ion trap mass spectrometry: application to pharmacokinetic studies. Rapid Commun Mass Spectrom 2003, 17:1455-1461
    51. Jairaj M, Watson DG, Grant MH, Gray AI, Skellern GG. Comparative biotransformation of morphine, codeine and pholcodine in rat hepatocytes: identification of a novel metabolite of pholcodine. Xenobiotica 2002, 32:1093-1107
    52. Gu J, Zhong D, Chen X. Analysis of O-glucuronide conjugates in urine by electrospray ion trap mass spectrometry. Fresenius J Anal Chem 1999, 365:553-558
    53. Carroll DI, Dzidic I, Stillwell RN. Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatography-mass spectrometry-computer analytical system. Anal Chem 1975, 47:2369-2373
    54. Hsieh Y, Brisson JM, Ng K, White RE, Korfmacher WA. Direct simultaneous analysis of plasma samples for a drug discovery compound and its hydroxyl metabolite using mixedfunction column liquid chromatography-tandem mass spectrometry. Analyst 2001, 126: 2139-2143
    55. Sams MJ, Strutt PR, Barnes KA, Damant AP, Rose MD. Determination of dimetridazole, ronidazole and their common metabolite in poultry muscle and eggs by high performance liquid chromatography with UV detection and confirmatory analysis by atmospheric pressure chemical ionisation mass spectrometry. Analyst 1998, 123:2545-2549
    56. Koupai-Abyazani MR, Esaw B, Laviolette B. Etodolac in equine urine and serum: determination by high-performance liquid chromatography with ultraviolet detection, confirmation, and metabolite identification by atmospheric pressure ionization mass spectrometry. J Anal Toxicol 1999, 23:200-209
    57. Li L, Wang APL, Coulson LD. Continuous-flow matrix-assisted laser desorption ionization mass spectrometry. Anal Chem, 1993, 65:493-498
    58. Bres JC, Morvan F, Lefebvre I, Vasseur JJ, Pompon A, Imbach JL. Kinetics study of the biotransformation of an oligonucleotide prodrug in cells extract by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. J Chromatogr B Biomed Sci Appl 2001, 753:123-130
    59. Dehn DL, Claffey D J, Duncan MW, Ruth JA. Nicotine and cotinine adducts of a melanin intermediate demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Res Toxicol 2001, 14:275-279
    60. Dawson PH. Quadrupole mass spectrometry and its applications. American institute of physics, AIP-AVS classics series. Woodbury: AIP press 1994, 14-60
    61. Starcevic B, DiStefano E, Wang C, Catlin DH. Liquid chromatography-tandem mass
    
    spectrometry assay for human serum testosterone and trideuterated testosterone. J Chromatogr B 2003, 792:197-204
    62. Smith CJ, Wilson ID, Abou-Shakra F, Payne R, Parry TC, Sinclair P, Roberts DW. A comparison of the quantitative methods for the analysis of the platinum-containing anticancer drug [cis-[amminedichloro(2-methylpyridine)] platinum(Ⅱ)] (ZD0473) by HPLC coupled to either a triple quadrupole mass spectrometer or an inductively coupled plasma mass spectrometer. Anal Chem 2003, 75:1463-1469
    63. Vengurlekar SS, Heitkamp J, McCush F, Velagaleti PR, Brisson JH, Bramer SL. A sensitive LC-MS/MS assay for the determination of dextromethorphan and metabolites in human urine--application for drug interaction studies assessing potential CYP3A and CYP2D6 inhibition. J Pharm Biomed Anal 2002, 30:113-124
    64. de Jager AD, Hundt HK, Swart K J, Hundt AF, Els J. Extractionless and sensitive method for high-throughput quantitation of cetirizine in human plasma samples by liquid chromatographytandem mass spectrometry. J Chromatogr B 2002, 773:113-118
    65. Dawson M, Fryirs B, Kelly T, Keegan J, Mather LE. A rapid and sensitive high-performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry method for the quantitation of oxycodone in human plasma. J Chromatogr Sci 2002, 40:40-44
    66.宁永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社 2000,224-265
    67. Burlingame AL, Boyol RK, Gaskell SJ. Mass spectrometry. Anal Chem 1998, 70: 647R-716R
    68. Croubels S, De Baere S, De Backer P. Comparison of a liquid chromatographic method with ultraviolet and ion-trap tandem mass spectrometric detection for the simultaneous determination of sulfadiazine and trimethoprim in plasma from dogs. J Chromatogr B 2003, 788:167-178
    69.陈笑艳,钟大放,姜浩,顾景凯.电喷雾离子阱质谱法直接测定几种药物的葡萄糖苷酸型代谢物.药学学报1998,33:849-854
    70. Brown RS, Lennon JJ. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem, 1995, 67:1998-2009
    71. Whittal RM, Li L. High-resolution matrix-assisted laser desorption/ionization in a linear timeof-flight mass spectrometer. Anal Chem, 1995, 67:1950-1954
    72. Humeny A, Rodel F, Rodel C, Sauer R, Fuzesi L, Becker C, Efferth T. MDR1 single nucleotide polymorphism C3435T in normal colorectal tissue and colorectal carcinomas detected by MALDI-TOF mass spectrometry. Anticancer Res 2003, 23:2735-2740
    73. Fournier I, Day R, Salzet M. Direct analysis of neuropeptides by in situ MALDI-TOF mass
    
    spectrometry in the rat brain. Neuroendocrinol Lett 2003, 24:9-14
    74. Lankford SM, Bai SA. Determination of the stereochemical composition of the major metabolites of verapamil in dog urine with enantioselective liquid chromatographic techniques. J Chromatogr B Biomed Sci Appl 1995, 663:91-101
    75. McTavish D, Sorkin EM. Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs 1989, 38:19-76
    76. Brogden RN, Benfield P. Verapamil: a review of its pharmacological properties and therapeutic use in coronary artery disease. Drugs 1996, 51:792-819
    77. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine redistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981, 41:1967-1972
    78. Stein WD. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 1997, 77:545-590
    79. Toffoli G, Simone F, Corona G, Raschack M, Cappelletto B, GiganteM. Structure-activity relationship of verapamil analogs and reversal of multidrug resistance. Biochem Pharmacol 1995, 50:1245-1255
    80. Pennock GD, Dalton WS, Roeske WR. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J Natl Cancer Inst 1991, 83:105-110
    81. Miller TP, Grogan TM, Dalton WS, Spier CM, Scheper R J, Salmon SE. P-glycoprotein expression in malignant lymphoma and reversal of clinical drug-resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 1991, 9:17-24
    82. Ozols RF, Cunnion RE, Klecker RW. Verapamil and adriamycin in the treatment of drugresistant ovarian cancer patients. J Clin Oncol 1987, 5:641-647
    83. Echizen H, Eichelbaum M. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clin Pharmacokinet 1986, 11:425-449
    84. Hamann SR, Blouin RA, McAllister RG. Clinical pharmacokinetics of verapamil. Clin Pharmacokinet 1984, 9:26-41
    85. Vogelgesang B, Echizen H, Schmidt E, Eichelbaum M. Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of L-and D-verapamil examined with a stable isotape technique. Br J Clin Pharmacol 1984, 18:733-740
    86. Eichelbaum M, Ende M, Remberg G, Schomerus M, Dengler HJ. The metabolism of dl[~(14)C] verapamil in man. Drug Metab Dispos 1979, 7:145-148
    87. Remberg G, Ende M, Eichelbaum M, Schomerus M. Mass spectrometric identification of dlverapamil metabolites. Arzneim-Forsch/Drug Res 1980, 30:398-401
    
    
    88. McIlhenny HM. Metabolism of [~(14)C] verapamil. J Med Chem 1971, 14:1178-1184
    89. Walles M, Thum T, Levsen K, Borlak J. Verapamil metabolism in distinct regions of the heart and in cultures of cardiomyocytes of adult rats. Drug Metab Dispos 2001, 29:761-768
    90. Neugebauer G. Comparative cardiovascular actions of verapamii and its major metabolites in the anesthetized dog. Cardiovasc Res 1978, 12:247-254
    91. Johnson KE, Balderston SM, Pieper JA, Mann DE, Reiter MJ. Electrophysiologic effects of verapamil metabolites in the isolated heart. J Cardiovasc Pharmacol 1991, 17:830-837
    92. Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M. Characterization of the major metabolites of verapamil as substrates and inhibitors of Pglycoprotein 1. J Pharmacol Exp Ther 2000, 293:376-382
    93. Haubermann K, Benz B, Gekeler V, Schumacher K, Eichelbaum M. Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human iymphoma cell lines. Eur J Clin Pharmacol 1990, 40:53-59
    94. Nelson WL, Olsen LD, Beitner DB, Pallow RJ. Regiochemistry and substrate stereoselectivity of O-demethylation of verapamil in the presence of the microsomal fraction from rat and human liver. Drug Metab Dispos 1988, 16:184-188
    95. Nelson WL, Olsen LD. Regiochemistry and enantioselectivity in the oxidative N-dealkylation of verapamil. Drug Metab Dispos 1988, 16:834-841
    96. Ayesh R, Kroemer H, Eichelbaum M, Smith RL. Metabolism ofverapamil in a family pedigree with deficient N-oxidation of trimethylamine. Br J Clin Pharmacol 1991, 31:693-696
    97. Kroemer HK, Echizen H, Heidemann H, Eichelbaum M. Predictability of the in vivo metabolism of verapamil from in vitro data: contribution of individual metabolic pathways and stereoselective aspects. J Pharmacol Exp Ther 1992, 260:1052-1057
    98. Tracy TS, Korzekwa KR, Gonzalez F J, Wainer IW. Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Br J Clin Pharmacol 1999, 47: 545-552
    99. Kroemer HK, Gautier JC, Beaune P, Hendrson C, Wolf CR, Eichelbaum M. Identification of P450 enzymes involved in metabolism of verapamii in humans. Naunyn-Schraiedeberg's Arch Pharmacol 1993,348:332-337
    100. Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn-Schmiedeberg's Arch Pharmacol 1995,353:116-121
    101. Fuhr U, Woodcock BG, Siewert M. Verapamil and drug metabolism by the cytochrome P450 isoform CYPlA2. Eur J Clin Pharmacol 1992, 42:463-464
    
    
    102. Mikus G, Eichelbaum M, Fischer C, Gumuika S, Klotz U, Kroemer HK. Interaction of verapamil and cimetidine: stereochemical aspects of drug metabolism, drug disposition and drug action. J Pharmacol Exp Ther 1990, 253:1042-1048
    103. Fromm MF, Busse D, Kroemer HK, Eichelbaum M. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996, 24:796-801
    104. Abernethy DR, Wainer IW, Anacleto AI. Verapamil metabolite exposure in older and younger men during steady-state oral verapamil administration. Drug Metab Dispos 2000, 28:760-765
    105. Stack RF, Rudewicz PJ. Comparison of thermospray and electrospray for the analysis of the conjugates of androgen receptor antagonist zanoterone. J Mass Spectrom 1995, 30:857-866
    106. Rudewicz P, Straub KM. Rapid structure elucidation of catecholamine conjugates with tandem mass spectrometry. Anal Chem 1986, 58:2928-2934
    107. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275
    108. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes Ⅰ: evidence for its hemoprotein nature. J Biol Chem 1964, 239:2370-2378
    109. Zhang D, Yang Y, Leakey JE, Cerniglia CE. Phase Ⅰ and phase Ⅱ enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 1996, 138: 221-226
    110. Faber BW, Schonewille AB. Constitutive and inducible hydroxylase activities involved in the degradation of naphthalene by Cunninghamella elegans. Appl Microbiol Biotechnol 2001, 55: 486-491
    111. Cerniglia CE, Hebert RL, Szaniszlo PJ, Gibson DT. Fungal transformation of naphthalene. Arch Microbiol 1978, 117:135-143
    112. Kunic B, Makovec T, Breskvar K. Comparison of two monooxygenase systems with cytochrome P450 in filamentous fungus Rhizopus nigricans. Eur J Physiol 2000, 439 (suppl): R107-R108
    113. Brink JM, Hondel CA, Gorcom RF. Optimization of the benzoate-inducible benzoate phydroxylase cytochrome P450 enzyme system in Aspergillus niger. Appl Microbiol Biotechnol 1996, 46:360-364
    114. Cerniglia CE, Gibson DT. Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch Biochem Biophys 1978, 186: 121-127
    115. Williams PA, Cosine J, Sridhar V, Johnson EF, McRee DE. Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J Inorg Biochem 2000, 81:183-190
    116. Yadav JS, Lopert JC. Cloning and Characterization of the cytochrome P450 oxidoreductase
    
    gene from the zygomycete fungus Cunninghamella. Biochem Biophys Res Commun 2000, 268: 345-353
    117. Gibson M, Soper CJ, Parfitt RT, Sewell GJ. Studies on the mechanism of microbial Ndemethylation of codeine by cell-free extracts for Cunninghamella bainieri. Enzyme Microb Technol 1984, 6: 471-475
    118.冷欣夫,邱星辉.细胞色素P450酶系的结构,功能与应用前景.北京:科学出版社2001.172-181
    119. Ghosh DK, Dutta D, Samanta TB. Microsomal Benzo(a)pyrene hydroxylase in Aspergillus ochraceus TS: assay and characterization of the enzyme system. Biochem Biophys Res Commun 1983, 113:497-505
    120. Brink HM, Gorcom RF, Hondel CA, Punt PJ. Cytochrome P450 enzyme systems in fungi. Fungal Genetics Biology 1998, 23:1-17
    121. Bhatagnar RK, Ahmed S, Kohli KK. Induction of polysubstrate monooxygenase and aflatoxin production by phenobarbitone in Aspergillus parasiticus. Biophys Res Commun 1982, 104: 1287-1292
    122. Dutta D, Ghosh DK, Mishra AK. Induction of a Benzo(a)pyrene hydroxylase in Aspergillus ochraceus TS: evidence for multiple forms of cytochrome P450. Biochem Biophys Res Commun 1983, 115:692-699
    123. Brogden RN, Pinder RM, Sawyer PR. Naproxen: a review of its pharmacological properties and therapeutic efficacy and use. Drugs 1975, 9:326-363
    124. Todd PA, Clissold SP. Naproxen: a reappraisal of its pharmacology, and therapeutic use in rheumatic diseases and pain states. Drugs 1990, 411:91-137
    125. Pini LA, Bertolotti M, Trenti T. Disposition of naproxen after oral administration during and between migraine attacks. Headache 1993, 33:191-194
    126. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet 1997, 32:268-293
    127. Vree TB, Biggelaar-Martea M, Corrien PW. Pharmacokinetics of naproxen, its metabolite Odesmethylnaproxen, and their acyl glucuronides in humans. Biopharm Drug Dispos 1993, 14: 491-502
    128. Niazi S, Alam M, Ahmad SI. Dose dependent pharmacokinetics of naproxen in man. Biopharm Drug Dispos 1996, 17:355-361
    129. Runkel R, Forchielli E, Boost G. Naproxen - metabolism, excretion and comparative pharmacokintics. Scand J Rheumatol 1973, 2 (suppl): 29-36
    130. Sidelmann UG, Bjomsdottir I, Shockcor JP, Hansen SH, Lindon JC, Nicholson JK. Directly
    
    coupled HPLC-NMR and HPLC-MS approaches for the rapid characterization of drug metabolites in urine: application to the human metabolism of naproxen. J Pharm Biomed Anal 2001, 24:569-579
    131. Sugawara Y, Fujihara M, Miura Y, Hayashida K, Takahashi T. Studies on the fate of naproxen. Ⅱ: Metabolic fate in various animals and man. Chem Pharm Bull (Tokyo) 1978, 26:3312-3321
    132. Faed M. Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev 1984, 15:1213-1249
    133. Mortensen RW, Corcoran O, Comett C, Sidelmann UG, Troke J, Lindon JC, Nicholson JK, Hansen SH. LC-~1H NMR used for determination of the elution order of S-naproxen glucurorfide isomers in two isocratic reversed-phase LC-systems. J Pharm Biomed Anal 2001, 24:477-485
    134. Kiang CH, Lee C, Kushinsky S. Isolation and identification of 6-desmethylnaproxen sulfate as a new metabolite of naproxen in human plasma. Drug Metab Dispos 1989, 17:43-48
    135. Jaggi R, Addison RS, King AR, Suthers BD, Dickinson RG. Conjugation of desmethylnaproxen in the rat-a novel acyl glucuronide-sulfate diconjugate as a major biliary metabolite. Drug Metab Dispos 2002, 30: 161-166
    136. Newlands AJ, Smith DA, Jones BC. Metabolism of nonsteroidal anti-inflammatory drugs by cytochrome P450 2C. Br J Clin Pharmacol 1992, 34: 152P
    137. Miners JO, Coulter S, Tukey RH. Cytochrome P450 1A2 and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 1996, 51: 1003-1008
    138. el-Sayed KA. Microbial models of mammalian metabolism: microbial transformation of naproxen. Pharmazie 2000, 55:934-936
    139. Kraemer-Schafhalter A, Domenek S, Boehling H, Feichtenhofer S, Griengl H, Voss H. Optimization of the hydroxylation of 2-cyclopentylbenzoxazole with Cunninghamella blakesleeana DSMZ 1906. Appl Microbiol Biotechnol 2000, 53:266-271
    140. Kecskemeti V, Bagi Z, Pacher P, Posa I, Kocsis E, Koltai MZ. New trends in the development of oral antidiabetic drugs. Curr Med Chem 2002, 9:53-71
    141. Hoy M, Olsen HL, Bokvist K, Buschard K, Barg S, Rorsman P, Gromada J. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J Physiol 2000, 527:109-120
    142. Peart GF, Boutagy J, Shenfield GM. Lack of relation ship between tolbutamide metabolism and debrisoquine oxidation phenotype. Eur J Clin Pharmacol 1987, 33:397-402
    143. Toon S, Holt BL, Mullins FGP, Khan A. Effects of cimetidine, ranitidine and omeprazole on
    
    tolbutamide pharmacokinetics. J Pharm Pharmacol 1995, 47:85-88
    144. Tassaneeyakul W, Veronese ME, Birkett DJ. Co-regulation of phenytoin and tolbutamide metabolism in humans. Br J Clin Pharmacol 1992, 34:494-498
    145. Thomas RC, Ikeda GJ. The metabolic fate of tolbutamide in man and in the rat. J Med Chem 1966, 9:507-510
    146. Gross AS, Bridge S, Shenfield GM. Pharmacokinetics of tolbutamide in ethnic Chinese. Br J Clin Pharmacol 1999, 47:151-156
    147. Relling MV, Aoyama T, Gonzalez FJ, Meyer UA. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990, 252: 442-447
    148. Veronese ME, McManus ME, Laupattarakasem P, Miners JO, Birkett DJ. Tolbutamide hydroxylation by human, rabbit and rat liver microsomes and by purified forms of cytochrome P-450. Drug Metab Dispos 1990, 18:356-361
    149. Miners JO, Birkett DJ. Cytochrome P450 2C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998, 45:525-538
    150. Veronese ME, Miners JO, Randles D, Gregov D, Birkett DJ. Validation of the tolbutamide metabolic ratio for population screening using sulphaphenazole to produce model phenotypic poor metabolisers. Clin Pharmacol Ther 1990, 47:403-411
    151. Page MA, Boutagy JS, Shenfield GM. A screening test for slow metabolisers of tolbutamide. Br J Clin Pharmacol 1991, 31:649-654
    152. Palamanda J, Feng WW, Lin CC, Nomeir AA. Stimulation of tolbutamide hydroxylation by acetone and acetonitrile in human liver microsomes and in a cytochrome P-450 2C9-reconstituted system. Drug Metab Dispos 2000, 28:38-43
    153. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Relative quantities of catalytically active CYP 2C9 and 2C19 in human liver microsomes: application of the relative activity factor approach. J Pharm Sci 1998, 87:845-853
    154.孟娟如.大白鼠颈静脉及肝门静脉持久性导管术及其应用.药学学报 1987,22:326-329
    155. Han YH, Chung SJ, Shim CK. Canalicular membrane transport is primarily responsible for the difference in hepatobiliary excretion of triethylmethylammonium and tributylmethylammonim in rats. Drug Metab Dispos 1999, 27:872-879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700