植物病原拮抗细菌的发酵条件作用机制及定殖规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用稀释分离法从杭州近郊大棚蔬菜地根围土壤中共获得细菌菌株409枚,通过继代平皿对峙实验筛选出对Fusarium oxysporum f.sp.cucumerinum和Fusarium graminirum等多种植物病原菌有稳定拮抗作用的菌株ZJY-1、ZJY-13和ZJY-116。催芽实验和室内盆栽测定结果表明除ZJY-13外其余2个菌株均不会抑制种子的萌发且都具有明显的防病效果。引入田间小区后2个生防菌能有效防治黄瓜枯萎病和大麦赤霉病,显著降低病害的发生程度。此外,菌株ZJY-116有明显的促生作用,经ZJY-116种子处理的黄瓜种子播种后出苗早,幼根长而粗壮,子叶肥厚,黄瓜的平均单株产量以及果实均重都较健康对照高。
     根据常规的形态学观察、生理生化测定和16Sr DNA序列的同源性分析,生防菌株ZJY-1和ZJY-116分别被鉴定为短短芽孢杆菌(Brevibacillus brevis)及枯草芽孢杆菌(Bacillus subtilis)。基因库中两菌株的登陆号分别为AY897210和AY897211。
     摇瓶发酵实验结果表明玉米粉和麸皮是菌株ZJY-1和ZJY-116筛选所得的最佳碳源和氮源,且当玉米粉为30g L~(-1)、浮皮为10g L~(-1)时菌株的生物量达到最大。最适合ZJY-1发酵的优化条件为:温度30℃、pH 7左右、供氧充足;最适ZJY-116发酵的优化条件为:温度32℃、pH 7-7.5、氧气对发酵的影响不大。菌株ZJY-1主要通过产生能够抑制菌丝正常生长以及分生孢子萌发的抗菌代谢产物达到抑制病原菌的目的。最适合抗菌代谢物质产生的碳源为葡萄糖,氮源为明胶,向培养液中添加0.2%甘露醇可大大促进该物质的产生。
     为研究两株拮抗细菌的定殖规律,将具有GFP荧光和氯霉素抗性的重组质粒pRP22-GFP,采用原生质体高频转化法,成功地导入生防菌Brevibacilluts brevis ZJY-1和Bacillus subtilis ZJY-116中,得到荧光标记菌株ZJY-1G和ZJY-116G。用这些标记菌株处理黄瓜种子及喷雾大麦穗部,通过平板稀释分离定期回收转化子,研究了GFP标记菌株在黄瓜根围和田间大麦穗部的定殖规律。结果表明,不论是在室内岔栽还是田间小区条件下,在黄瓜整个生育期两株生防菌株均能在根围稳定有效地定殖,并随着黄瓜盛花期和盛果期出现
409 strains of bacteria were obtained by isolating rhizosphere soil of protected vegetable fields near the HangZhou city. After repetitive co-culture on PDA plates, the strain ZJY-1 , ZJY-13 and ZJY-116 were screened for their stable antagonist toward Fusarium oxysporum f.sp. cucumerinum. Fusarium graminirum and other plant pathogens. The results of germination tests and pot trails showed that neither of the strain ZJY-1 and ZJY-116 could restrain germination of cucumber seed except ZJY-13. moreover, both strains could control plant diseases effectively. After introduced into the field, both biocontrol agents (BCA) gave significant protection against Fusarium wilt of cucumber and Fusarium head blight of barley (FHB), the diseases rate were reduced significantly, furthermore, ZJY-116 could also promote the growth of plant, the BCA-treated cucumber seeds germinated earlier, the young root is sturdier, and the cotyledon is more healthy than the check.The two strains were identified as Brevihacillus brevis and Bacillus suhtilis respectively by morphological, biochemical and physiological characteristics, as well as the 16 Sr DNA sequence analysis (The GenBank accession number of two BCA is AY897210 and AY897211 respectively).Fermentation experiments showed that cornmeal and wheat bran are the most suitable for strain ZJY-1 and ZJY-116 to grow, and the ultimate bioasis was achieved when the cornmeal is 30g L~(-1) and the wheat bran is 10g L~(-1). The optimized condition for ZJY-1 was the temperature at 30℃, pH 7 and the oxygen was abundantthe optimized condition for ZJY-116 was the temperature at 32℃. pH 7-7.5, the quantity of oxygen was not important.
    To monitor the colonization of two biocontrol agents, Brevibacillus brevis ZJY-1and Bacillus subtilis ZJY-116 in the environment, a green fluorescent protein (GFP)expression and chloramphenicol resistant plasmid pRP22-GFP was constructed andsuccessfully transformed into the BCA by high frequency transformation of their protoplastsand the stable transformants ZJY-1 G and ZJY-116G were obtained. Survival and colonizationof the Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 strains in therhizosphere of cucumber and on spikes of barley were observed by periodically retrievethe GFP-tagged strains based on the selective markers above. The results in pot trials and plotexperiments showed that the both strains successfully colonized the rhizosphere ofcucumber during the whole growing season and the higher colonization level wasobserved during anthesis and fruition stage, even after the plant dead, the GFP-taggedstrain could maintained a high population, with 2.71 × 10~4CFU g-1 root soil and 1.97× 10~4CFU g-1 root soil of each strain in the pot 12 months later. Tracking the bacterialstrains introduced on the spikes of barley found that the two strains showed goodsurvival on both infected and healthy spikes in the field. When the BCA wereinoculated at 6.8 × 107CFU ml-1 during mid-anthesis, these bacterial strains stillmaintained a numerical level (×l05cfu grain-1 of barley) that could be detected untilthe spikes matured(37d later) and the bacteria population fluctuated relatively to therain events.By analyzing the population of major microorganisms, the activities of enzyme, as well as DGGE fingerprint of soil sample introduced with biocontrol agents, the effent of two strains on soil ecosystems have been studied in pot experiments, and the primary environmental security evaluation was made. Results showed that introduced BCA transiently changed the bacteria population, but the influence gradually vanished with the plant grow further. The fungi population in the BCA-introduced soil was almost always lower than that in the check, but the discrepancy was not remarkable. The reason for this maybe that introduced bacteria compete micro-niches and nutrition with the indigenous microorganisms. There was a little effect of introduced strains on the actinomyces, but the effect was less remarkable than that of shift of growing season.
    The influence of two BCA on the tested enzymes in the soil was diverse, except hydrogen peroxidase, the urease, fructosidase and dehydrogenase was affected to some extent. Study showed that the activities of three enzymes were generally higher than that of check during the plant growing season, the fertility level increased as a result, maybe that was the reason why the two BCA, especially ZJY-116 could promoting the growth of plant significantly Results also testified that the activities of soil enzymes would fluctuate closely related with the growing stage of plant. Generally, the activities increased when the plant grow well, the root exudates metabolites and the content of organic substances in soil was high. However, the activities decreased when the population of microflora were reduced after the plants were removed and the content of organic substances was low.The DGGE fingerprint analysis showed the effect of introduced BCA on microbial activity and population structure of resident microorganisms in soil during plant growing season were more pronounced than effects due to the inoculants. After introduced with BCA, there was no evident difference between the DGGE fingerprint of the soil sample obtained at different growing stage and that of check soil sample treated with sterilized distilled water, while the discrepancy among the soil sample at different growth stages was even more evident. The results were consistent with the analysis of parallel exponent.The feasibility of applying multifunctional micro-communities in the environment was studied by treating the cucumber seeds with the two strains ZJY-1( Brevibacillus brevis) and ZJY-116 (Bacillus mbtilis) singly or mixed with a chlorpyrifos degradation strain DSPS (Alcaligenes faecali) . The results showed that two agents kept their function of disease suppression and plant growth- promoting in the mixture with DSP3. Simultaneously, the results of chlorpyrifos content detected periodically in the rhizosphere soil showed that the degradation rate of DSP3 in the rhizosphere was not negatively affected even in the mixture with the two agents. Generally, this report
    testified the feasibility of applying multifunctional microbial community in the environment.
引文
1.Buchanan RE and Gibbons NE.1984.伯杰细菌鉴定手册(第八版).科学出版社.
    2.柏建玲,王平,胡正嘉.1999.利用发光酶基因标记技术跟踪棉花根圈中的绿针假单胞菌PL9L.微生物学报,39 (1):43-47
    3.陈龙英.1995.桃树根癌病的生物防治.中国果树,1:8-10
    4.蔡燕飞,廖宗文,董春等.2002(4).番茄青枯病的土壤微生态防治研究.农业环境保护,21(5):417-420
    5.迟玉杰.杨谦.2002毛壳菌对植物病害的生物防治及存在的问题.农业系统科学与综合研究,18(3):215-218
    6.陈晓斌,张炳欣,楼兵干等.2001.运用生色基因标记黄瓜根围促生菌(PGPR)筛选菌株.微生物学报,41(3):287-292
    7.东秀珠.蔡妙英.2001.常见细菌系统鉴定手册.科学出版社
    8.董越梅,安千里,李久蒂,朱至清.2000.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖.应用与环境生物学报,6(1):61-65
    9.董春,曾宪铭,刘琼光.1999.利用无致病力青枯菌株防治番茄青枯病的研究.华南农业大学学报,20(4):1-4
    10.方玲.2000.有机氯农药降解细菌的分离筛选和应用研究.应用生态学报,11(2):249-252
    11.方中达.1998.植病研究方法(第三版).北京:中国农业出版社
    12.傅君芬,洪文澜.1998.165-235区间序列—一种分类及细菌鉴定的新方法.《国外医学》流行病学传染学分册,25(6):245-249
    13.关松荫等.1986.土壤酶及其研究方法.农业出版社
    14.龚平等.1997.菲和多效唑复合污染土壤的微生物生态毒理效应 中国环境科学,17(1):139-146
    15.郭道森,赵博光,高蓉.2001.利用愈伤组织验证细菌分离物B619与松材线虫病的关系.南京林业大学学报(自然科学版),25(5):71-74
    16.黄大昉.2001.农业微生物基因工程.北京:科学出版社
    17.洪渡.2003.益微增产菌在棉花生产上的应用初报.中国微生态学杂志,15(1):54
    18.何礼远,康耀卫.1990.利用青枯菌无毒菌株和荧光假单脆菌诱导花生产生抗病性.植物保护学报,17(2):1132-1151
    19.贺学礼,李生秀.1997.不同VA菌根真菌对玉米生长及抗旱性的影响.西北农业大学学报,27(6):49-53
    20.金冀生.1993.广谱增产菌在草苟上应用效果初报.闽东农业科技,4:32
    21.蒋建东,曹慧,张瑞福.2004.有机磷杀虫剂对韭菜害虫的防治效果及其农药降解细菌的降解研究.应用生态学报,15(8):1459-1462
    22.姜梅,牛世全,展惠英.2003.环境中降解有机氯农药的研究进展.应用生态学报,14 (6):1003-1006
    23.焦振泉,刘秀梅.2001.细菌分类与鉴定的新热点:16S-23S rDNA.微生物学通报,28(1):85-89
    24.刘乾开.1993.新农药手册.上海科技出版社.84—86
    25.鲁素芸.1993.植物病害生物防治学.北京:北京农业大学出版社
    26.李成云.冰核活性细菌的生物防治.云南农业科学,1997(3):45-46
    27.林福呈,陈振明,李德葆.1998.毛壳菌(Chaetomium)及其生防作用.生命科学探索与进 展:480-484.杭州大学出版社
    28.刘杏忠,刘文敏,张东升.1995.定殖大豆胞囊线虫的淡紫拟青霉生物学特性研究.中国生物防治,11(2):70-74
    29.吕泽勋,李久蒂,朱至清.2001.用绿色荧光蛋白基因(gfp)标记产酸雷伯氏菌SG-11研究其在水稻苗期根部的定植.农业生物技术学报,9 (1):13-18
    30.林茂松,沈素云.1994.厚壁孢子轮枝菌防治南方根结线虫研究初报.生物防治通讯,10(1):7-10
    31.楼兵干,张炳欣,Maarten Ryder.2001铜绿假单胞菌株在黄瓜和番茄根围的定植能力.浙江大学学报,27 (2):183-186
    32.梅汝鸿等.1989.增产菌.北京:农业出版社.
    33.梅汝鸿,徐维敏.1998.植物微生态学.北京:中国农业出版社
    34.潘超美,郭庆荣,邱桥姐等.2000.VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,9(4):304-306
    35.乔宏萍,宗兆锋.2002.用重寄生菌防治植物病害.中国生物防治,18(4):176-179
    36.任欣正.1994.植物病原细茵的分类和鉴定.北京:中国农业出版社
    37.史长青.1995.重金属污染对水稻土壤酶活性的影响。土壤通报,26 (1):34-35
    38.孙漫红,刘杏忠.1994.巴氏杆菌——一类新的有潜力的植物寄生线虫生防菌.生物防治通报,(4):178-182
    39.石延霞,李宝聚,杨秀芬等.2004.0.25%帕克素水剂防治番茄晚疫病的药效试验.中国蔬菜,2004 (6):31-32
    40.Sambrook J and Russell DW.2002.分子克隆实验指南(第三版).科学出版社
    41.孙秀山,封海胜,万书波,左学青.2001.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,27 (5):617-621
    42.王新,李培军,巩宗强.2001.固定化微生物降解土壤中菲和芘的研究.应用生态学报,12(4):636-638
    43.汪来发,杨宝君,李传道.2002.根结线虫生物防治研究进展.南京林业大学学报,26(1):64-68
    44.王玉菊,祁红英,郭建华.1995.植物土传病害的微生物防治研究进展.世界农业,1:37-39
    45.刑世雄,叶建如.1994.增产菌防治烟草根茎病害试验初报.福建农业科技,1:11-13
    46.严旭升.1988.土壤肥力研究方法.农业出版社.第一版.
    47.杨文博,冯波,佟树敏.1997.链霉菌S01菌株儿丁质酶对植物病原真菌的拮抗作用.微生物学通报,24(4):224-227
    48.杨合同,唐文华,M Ryderl.1999.木霉菌与植物病害的生物防治.山东科学,12(4):7-15
    49.朱南文,闵航,陈美慈等.1996.甲胺磷对土壤中磷酸酶和脱氢酶活性的影响.农村生态环境,12 (2):22-29
    50.张中鸽,彭于发,黄大昉等.1992.荧光93菌体和代谢物对全蚀病菌和小麦生长影响的初步研究.生物防治通报,8(3):125-128
    51.张新德,谢云清,王险峰.1995.增产菌在农业生产中的地位.现代化农业,4:1-2
    52.宗兆锋,杨之为,纽绪艳等.1996.非致病尖孢镰刀菌抗药菌株的诱导.西北农业学报,5(1):43-46
    53.张炳欣,张平,陈晓斌.2000.影响引入微生物根部定殖的因素.应用生态学报,11(6):951-953
    54. Anderson AS and Guerra D. 1985. Responses of bean to root colonization with pseudomonas putida in a hydrophonic system. Phytopathology. 75: 992-995
    55. Assmus B, Hutzler P, Kirchhof G et al. 1995. In situ localization of Azospirillum brasilense in the rhizasphere of wheat with fluorescently labeled, rRNA-targed oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61: 1013-1019
    56. Amann R, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
    57. Achouak W, Thiery JM, Roubaud P et al.2000. Impact of crop management on intraspecic diversity of Pseudomonas corrugata in bulk soil. FEMS Microbiol. Ecol. 31: 11-19
    58. Baudoin E, Benizri E and Guckert A.2001. Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. European J.Soil Biol.37: 85-93
    59. Baker R . 1990. An overview of current and future strategies and models for biological control. In: Hornby D ed. Biological control of soilborne plant pathogens. CAB International, Wallingford, United Kingdom. 375~388
    60. Bakker PAHM, Glandorf DCM, Viebahn M et al. 2002. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetyphloroglucinol on the microflora of field grown wheat. Antonie. van Leeuwenhoek. 81: 617-624
    61. Bassam BJ and Caetano-Anolles G. 1991. Fast and sensitive sliver staining of DNA in polyacrylamide gel. Ann. Biochem. 196: 80-83
    62. Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S. 1996. Induction of defence-related ultrastructure modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929
    63. Bolton HJ, Elliott LF, Papendick Rl et al. 1985. Soil microbial biomass and selected soil enzyme activities: effect of tertilization and cropping practices. Soil Biol. Biochem. 17: 297-302
    64. Bloemberg GV, O'Toole GA, Lugtenberg BJJ and Kolter R. 1997. Green (?)uorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63:4543-4551
    65. Brisbane PG and Rovia AD. 1988. Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescens pseudomonas. Plant pathol. 37: 104-111
    66. Baker CJ, Stavvely JR, Thomas CA et al. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology. 75:1148-1152
    67. Boopathi E and Sankara RK. 1999. A siderophore from Pseudomonas putida type Al :structural and biological characterization. Biochimica et Biophysica Acta. 1435: 30-40
    68. Bonsall RF, Weller DM and Thomashow LS.1997.Quantification of 2,4-diacetylphloroglucinol produced by fluorescent pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Envir. Microbiol. 63: 951-955
    69. Chermin LS.1997. Molecular cloning, structure analysis, and expression in E.coli of a chitinase gene from E. agglomerans. Appli. Environ. Microbiol. 63: 834-839
    70. Cheneby D, Philippot L, Hartmann A et al.2000. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol. Ecol. 34: 121-128
    71. Clegg CD, Ritz K and Griffiths BS.2000. %G C profiling and cross hybridization of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Appli. Soil Ecol.14: 125-134
    72. Chalce M, Tu Y, Euskirchen G et al. 1994. Green £uorescent protein as a marker for gene expression. Science. 261: 802-805
    73. Cook RJ, Thomashow LS, Welter DM et al. 1995. Molecular mechanisms for biological control of plant pathogens. Phytopathology. 31: 53-80
    74. Dupler M and Baker R. 1984. Survival of Pseudomonas putida, a biological control agent in soil. Phytopahtology. 74: 195-200
    75. Denton CS, Bardgett RD, Cook R et al.1999. Low amounts of root herbivory positively in-uence the rhizosphere microbial community in a temperate grassland soil. Soil Biol. Biochem. 31: 155-165
    76. De Weger LA, Dunbar P, Mtahaffee WF et al. 1991. Use of bioluminescence markers to detect Pseudomonas spp in the rhizosphere. Appl. Environ. Microbiol. 57: 3641-3644
    77. Devereux R and Willis SG. 1995. Amplification of ribosomal RNA sequences. Molecular Microbial Ecology Manual. Netherland: Kluwer Academic Publishers. 1:1-11
    78. Damiani G, Amedeo P, Bandi C et al. 1996. Bacteria identification by PCR-based techniques. Chapter 10, Microbial genome methods. CRC Press. 167-177
    79. Dick RP and Tabatabai MA. 1993. Significance and potential uses of soil enzymes. In: Metting F.B. (Ed.), Soil Microbial Ecology: Application in agriculture and Environmental Management. Marcel Dekker, New York: 95-125
    80. Drahos DJ, Hemming BC and McPherson S. 1986. Track ingrecombinant organisms in the environment: Bgatactosidase as a selectable nonantibiotic marker for fluorescent pseudomonads. Biol. Tech. 4: 439-444
    81. Duffy BK , Simon A , Weller DM . 1996. Combination of Trichoderma koning ii with fluorescent pseudomonads for control of take-off on wheat. Phytopathology. 86:188-194
    82. De Boer M , van der Sluis I , van Loon LC , et al. 1999. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. Eur J Plant Pathol. 105:201-210
    83. Duineveld BM, Rosado AS, van Elsas JD et al.l998.Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbiol. 64(12): 4952-4957
    84. Doyle JD and Stotzy G. 1993. Methods for the detection of changes in the microbial ecology of soil caused by the introduction of microorganisms. Microbial Rev. 2:63-72
    85. Elmer WH. 1995. Association between Mn-reducing root bacteria and NaCl applications in suppression of Fusarium crown and root rot of asparagus. Phytopathology. 85: 1464-1467
    86. Elizabeth AB , Emmert and Handelsman J . 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett. 171:1-9
    87. Emmert EA and Handelsman J. 1999. Bilcontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9
    88. Edwards SG. and Seddon B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. Appl. Microbiol. 91: 652-659.
    89. Eberl L, Schulze R, Ammendola A et al. 1997. Use of green (?)uorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Lett. 149: 77-83
    90. Fromin N, Achouak W, Thiery JM et al.2001. The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol.Ecol.37: 21-29
    91. Fang CW, Radosevich M and Fuhrmann JJ.2001 .Characterization of rhizosphere microbial community structure in five similar grass species using FAME and B1OLOG analyses. Soil Biol. Biochem.33: 679-682
    92. Farrand SK, Wang CL, Hong SB et al. 1992. Deletion derivatives of pAgK 84 and their use in the analysis of Agrobacterium plasmid functions. Plasmid. 28(3): 201-212
    93. Fry NK, Wanvick S, Saunders NA et al. 1991. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J. Gen. Microbiol. 137: 1215-1222
    94. Garcia-Martinez J, Acinas SG, Ant6n Al et al.1999. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Meth. 36: 55-64
    95. Gulledge J, Ahmad A and Steudler PA.2001. Family and genus-level 16SrRNA -targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appli. Environ. Microbiol. 67(10): 4726-4733
    96. Glandorf DCM, Brand 1, Bakker PAHM et al. 1992. Stability of rifampicin resistance as marker for root colonization studies of Pseudomonas putida in the field. Plant Soil. 147: 135-142
    97. Gilbert GS, Handelsman J and Park JL. 1994. Root camouflage and disease control. Phytopathology. 84: 222-225
    98. Garland JL and Mills AL. 1991. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization. Appli. Environ. Microbiol. 57: 2351-2359
    99. Griffiths BS, Ritz K, Ebblewhite N et al. 1999.Soil microbial community structure: effects of substrate loading rates. Soil Biol. Biochem.31: 145-153
    100. Guetsky R , Shtienberg D , Elad Y , et al. 2001. Combining Biocontrol agents to Reduce the Variability of Biological control. Phytophology. 91: 621-627
    101. Gao GL, Terefework Z, Chen WX et al.2001. Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China. J. Biotech. 91: 155-168
    102. Glandorf DCM, Verheggen P, Jansen T et al. 2001. Effect of genetically modified pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appli. Environ. Microbiol. 67(8): 3371-3378
    103.Grayston SJ, Wang S, Campball CD et al. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30 (3): 369-378
    104. Hoflich G. 1999. Colonization and growth promotion of non-legumes by Rhizobium bacteria. Proceedings of the 8th International Symposium on Microbial Ecology.
    105. Harris AR and Adkins PG. 1999. Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. Biol. Control. 15: 10-18
    106. Hesselsoe M, Brandt KK and Sorensen J. 2001. Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiol. Ecol. 38(2-3): 87-95
    107. Howie WJ, Cook RJ and Weller DM. 1987. Effect of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology. 77: 286-292
    108. Hack SK, Garchow H, Odelson DA et al. 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacteria communities. Appli. Environ. Microbiol. 2483-2493
    109. Hill GT, Mitkowski NA, Aldrich-Wolfe L et al.2000.Methods for assessing the composition and diversity of soil microbial communities. Appli. Soil Ecol.15: 25-26
    110. Howell CR and Stipanovic RD. 1983. Gliovirin, a new antibiotic from Gliocladiumvirens, and its role in the biological control of Pythium ultimum. Can. J. Microbiol. 29: 321-324
    111. Howie WJ and Suslow TV. 1991. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 4: 393-399
    112. Handelsman J and Stabb EV. 1996. Biocontrol of soilborne plant pathogens. Plant Cell. 8: 1855-1869
    113. Heyndrickx M, Vauterin L and Vandamme P. 1996. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J. Microbiol Meth. 26: 247-259
    114. Insam H. 1997. A new set of substrates proposed for community characterization in environmental samples.
    115. lbekwe AM. and Kennedy AC.1998.Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Eco1.26: 151-163
    116. Inbar J, Menendez A and Chet L. 1996. Hyphal interaction between Trichoderma Harzianum and Sclerotinia Sclerotiorum and its role in biological control. Soil Biol. Biochem. 28 (6): 57-763
    117. Jenkinson DS. 1976. The effects of biocidal treatments on metabolism in soil: IV. The decomposition of fumigated organisms in soil. Soil Biol. Biochem. 8: 203-208
    118. 114. Janisiewicz WJ and Bors B . 1995. Development of a microbial community of bacterial and yeast antagonists to control wound -invading postharvest pathogens of fruits. Appll Environ Microb. 61: 3261-3267
    119. Jones DA and Kerr A. 1989. Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K.84, for biological control of crown gall. Plant Dis. 73: 15-21
    120. Jetiyanon K and Kloepper JW. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control. 24: 285-291
    121. Jordan D, Kremer RJ, Stanley L et al. 1995. An evaluation of microbial methods as indicators of soil quality in long-term cropping practices in historical fields. Biol Fertil. Soils. 19: 297-308
    122. Kerr A. 1980. Biological control of crown gall through production of agrocin 84. Plant Dis. 64:25-30
    123. Khan N1. 1998. Biological control of SCAB of Wheat incited by Gibberella zeae. Page 45-46 in: [Proc] 1998 National Fusarium Head Blight Forum.
    124. Koch E. 1999. Evaluation of commercial products for microbial control of soil-borne plant diseases. Crop Protect. 18: 119-125
    125. Kloepper J W and Beauchamp CJ. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38: 1219-1232
    126. Knox OGG, Killham K and Leifert C. 2000. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Appl. soil Ecol. 15: 227-231
    127. Kraus J and Loper JE. 1995. Characterization of a genomic region required for production of the antibiotic pyoteorin by the biological control agent pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61: 849-854
    128. Kloepper JW, Rodriguez-Ubana R, Zehnder GW et al. 1999. Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Austral. Plan. Pathol. 28: 21-26
    129. Katarina HS, Olsson PA and Erland B. 2002. Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonization. FEMS Microbiol. Ecol. 40: 223-231
    130. Kloepper JW, Leong J, Teintze M et al. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 286: 885-886
    131. Keel C, Schnider V, maurhofer M et al. 1992. Suppression of root diaeases by Pseudomonas fluoresce CHAO:importanceof the bacteria secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe interact. 5: 4-13
    132. Kulkarni AR , Soppimath KS , Dave AM , et al. 2000. Solubility study of hazardous Pesticide (chlorpyrifos) by gas chromatography. J Hazard Mater. 80:9-13
    133. Kent AD and Triplett EW. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol. 56:211-36.
    134. Ludwig W, Bauer SH, Bauer M et al. 1997. Detection and in situ identification of representative of a widely distributed new bacterial phylum. FEMS Microbiol Lett. 153: 181-190
    135. Lottmann J, Heuer H, de Vries J et al. 2000. Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol. Ecol. 33:41-49
    136. Lei LG and Lei AA. 1996. Use of green £uorescent protein to monitor survival of genetically engineered bacteria in aquatic environments. Appl. Environ. Microbiol. 62: 3486-3488
    137. Lewis JA and Lumsden RD. 2001.Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protect. 20: 49-56
    138. Liu WT, Marsh TL, Cheng H, and Forney LJ. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16Sr RNA. Appl. Environ. Microbiol. 63(11): 4516-4522
    139. Muyzer G.1999. DGGE/TGGE a method for identifying genes from natural ecosystem. Curr. Opin. Microbiol. 2: 317-322
    140. Mawdsley JL and Burns RG. 1994. Inoculation of plants with Flavobacterium P25 results in altered rhizosphere enzyme activities. Soil Biol. Biochem. 26: 871-882
    141. M ' Piga P, Belanger RR, Paulitz TC, et al. Increased resistance to Fusarium oxysporumf. sp. Radicis- lycopersici in tomato plants treated with the endophytic bacterium pseudomonas fluorescens strain 63-28. Physiol. Mol. Plant Pathol. 50: 301-320
    142. Moter A and G6bel UB.2000. Fluorescence in situ hybeidization(FlSH) for direct visualization of microorganisms. J. Microbiol. Meth. 41(2): 85-112
    143. Maurhofer M, Hase C, Meuwly P et al. 1994. Induction of systemic resistance of tobacco necrosis virus by the root-colonizing pseudomonas fluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology. 88: 139-146
    144. Munnecke DM and Hsieh DPH. 1974. Microbial Decontamination of Parathion and p-nitrophenol in Aqueous Media. Appl Environ Microb. 28: 21-27
    145. Mao W , Lewis JA , Hebbar PK , et al. 1997. Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis. 81:450-454
    146. Maurhofer M, Keel C, Hass D et al. 1994. Pyoluteorin production by Pseudomonas fluorescens strain CHAO is involved in the suppression of pythium damping-off of cress but not cucumber. Eur. J. Plant Pathology. 100: 221-232
    147. Maurhofer M, Keel C, Schnider U et al. 1992. Influesce of enhanced antibiotic production in pseudomonas fluorescens strain CHAO on it disease suppressive capacity. Phytopathology. 82: 190-195
    148. Marc O, Philippe J, Philippe T et al. 2001. The pyoverdin of Pseudomonas fluorescens BTP2, a novel structural type. Tetrahedron Lett. 42: 5849-5851
    149. Mckeen CD, Reilly CC and Pusey PL. 1986. Production and partial characterization of antifungal substances anatagonistic to monlinia fructicola from Bacillus subtilis Phytopathology. 76: 136-139
    150. Muyer G, De Waal EC, Uitterlinder AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16SrRNA. 65: 3518-3525
    151. Marschner P, Yang CH, Lieberei R et al. 2001. Soil and plant specific effect on bacteria community composition in the rhizosphere. Soil Biol. Biochem. 33: 1437-1445
    152. Neilands JB. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715-731
    153.Natsch A, Keel C, Hebecker N et al. 1997. Influence of biocontrol strain Pseudomonas fluorescens CHAO. and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol. Ecol. 23: 341-352
    154. Notz R, Maurhofer M, Schnider KU et al. 2001.Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHAO in the rhizosphere. Phytopathology. 91: 873-881
    155. Odum EP. 1969. The strategy of ecosystem development. Science. 164: 262-270
    156. Osburn RM, Milner JL, Oplinger ES et al. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79: 551-556
    157. Philip H . 1991. Handbook of Environmental Fate and Exposure Data for organic Chemical. New York: Lewis Press .132~144
    158. Pierre U. 2000. Sustainable agriculture and chenical control: opponents or components of the same strategy. Crop Prot. 19: 831-836
    159. Piilai SD, Josephson KL, Baiky RL et al. 1991. Rapid method for processing soil samp les for polymerasechain reaction amplification of specific gene sequences. Appl. Environ. Microbiol. 57: 2283-2286
    160. Paulitz TC and Loper JE. 1991. Lack of a role for fluorescent siderophore production in the biological control of Phytium damping-off of cucumber by a strain of Pseudomonas putica. Phytopathology. 81:930-935
    161. Palys T, Najamura LK and Cohan FM.1997.Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Intern. J. Systemat. Bacteriol. 47(4): 1145-1156
    162. Pierson III LS and Thomashow LS. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from pseudomonas aureofaciens 30-84. Mol. Plant-Microbe Interact. 5: 330-339
    163. Pierson EA and Weller DM. 1994. Use of mixtures of fluorescent pseudomonads to suppress take-off and improve the growth of wheat. Phytopathology. 84: 940-947
    164. Park JL, Rand RE, Joy AE et al. 1991. Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. Fluorescens to seed. Plant Dis. 75: 987-992
    165. Pierson III LS and Pierson EA.. 1996. Phenazin antibiotic production in P. aureofaciens: Role in rhizosphere ecology and pathogen suppression. FEMS Microbiol. Ecol. 136: 101-108
    166. Robson GD.1995. Choline- and acetylcholine-induced changes in the morphology of Fusarium graminearum: evidence for the involvement of the choline transport system and acetylcholinesterase. Microbiol. 141: 1309-1314
    167. Rondon MR, August PR, Bettermann AD et al. 2000. Cloning the soil meta genome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. (6): 2541-2547
    168. Reimman C, Beyeler M, Latifi A et al. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanidemand lipase. Mol. Microbiol. 24: 309-319
    169. Raupach GS and Kloepper JW . 1998. Mixtures of plant promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 88: 1158~1164
    170. Ranyard L, Nazaret S, Gourbiere F et al.2000. A soil microscale study to reveal the heterogeneity of Hg(Ⅱ) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol. Eco1.31: 107-115
    171. Ryder MH, Pankhurst CE, Rovira AD et al. 1994. Detection of introduced bacteria in the rhizosphere using marker genes and DNA probes. in "Molecular Ecology of Rhizosphere Microorganisms" Eds F. O'Gara, D.N. Dowling and B. Boesten. VCH Publishers, Weinheim, Germany pp: 29-47
    172. Ramos HJO, Roncato-Maccari LDB, Souza EM et al. 2002. Monitoring Azospirillum- wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotech. 97: 243-252
    173. Raaijmakers JM, Van der Sluisl, Koster M et al. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent pseudomonas spp. Can. J. Microbiol. 41:126-135
    174. Raaijmakers JM and Weller DM. 1998. Natural plant protection by Pseudomonas spp. in take-all decline soils. Plant-Microbe Interact. 11: 144-192
    175. Schippers B. 1993. Exploitation of microbial mechanisms to promote plant health and plant growth. Phytopathology. 21: 275-279
    176. Sparling GP. 1995. The substrate induced respiration method. In: Alefk K., Nannipieri P. eds., Methods in applied soil microbiology and biochemistry. London: Academic Press. 397-404
    177. Steffan RJ and Atlas RMD. 1988. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54: 2185-2191
    178. Saetre P and Bath E.2000.Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol. Biochem. 32:909-917
    179. Stach JEM, Bathe S and Clapp JP.2000. PCR-SSCP comparison of 16SrRNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol. Ecol. 36(2-3): 139-151
    180. Schipper B, Bakker A and Wand Bakker PH. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effects of cropping practices. Ann. Rev. Phytopathol. 25: 339-358
    181.Shing C and Cohen SN. 1979. High Frequency Transformation of Bacillus subtilis Protoplasts by Plasmid DNA. Molec. Gen. Genet. 168: 111-115
    182. Smith KP and Goodman RM. 1999. Host varaiation for interactions with beneficial plant-associated microbe. Annu. Rev. Phytopahtol. 37:473-491
    183. Spedding TA, Hamel C, Mehuys GR and Madramootoo CA. 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 36: 499-512
    184. Steer J. and Harris JA.2000. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32: 869-878
    185. Stabb EV, Jacobson LM and Handeisman J. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 60:4404-4412
    186. Sessitsch A, Reiter B, Pfeifer U et al.2002. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes- specific PCR of 16S rRNA genes. FEMS Microbiol. Ecol. 39: 23-32
    187. Serino L. Reimmann C, Visca P et al. 1997. Biosynthesis of pyoehelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol. 179: 248-257
    188. Schwieger F and Tebbe CC.2000. Effect of field inoculation with sinorhizobium melilot-linking 16SrRNA gene based SSCP community profiles to the diversity of cultivated isolates. Appli. Environ. Microbiol. 66(8): 3556-3565
    189. Torsvik VL. 1980. Isolation of bacterial DNAfrom soil. Soil Biol. Biochem. 12:15-21
    190. Tiedje JM, Asuming-Brempong S, Nusslein K et al. 1999.0pening the black box of soil microbial diversity. Appli. Soil Ecol. 13: 109-122
    191. Turner JT and Backman PA. 1991. Factors relating to peanut yield increase after seed treat with Bacillus subtilis. Plant Dis. 75: 347-353
    192. Tsai Y and Rochelle. 2001. Extraction of nucleic acids from environmental samples. In: Rochelle (eds.): Environmental Molecular Microbiology: protocols and Applications. Horizon press, Wymorham, England, pp: 14-41
    193.Taina P, Laura P and Jarkko H.2001. Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol. Biochem.33: 697-699
    194. Teske A, Sigalevich P, Cohen Y et al.1996.Mocecular identification of bacteria from a co-culture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appli. Environ. Microbiol. 62(11): 4210-4215
    195. van Vuurde JWL. 1991. Immunofluorescent colony staining (1FC) and immunofluorescent cell staining as tools for the study of rhizosphere bacteria. IOB CoWPRS Bulletin X IV. 8: 215-222
    196. VanLoon LC, Bakker P and pieterse CM. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483
    197. Van Elsas JD, Duarte GF, Keijzer-Wolters A and Smit E. 2000. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J. Microbiol. Meth. 43: 133-151
    198. van Dijk KV and Nelson EB. 1997. Fatty acids uptake and beta-oxidation by Enterobacter cloacae is necessary for seed rot suppression of Pythium ultimum. Phytopathology. 87: 100-102
    199. Van Peer R, Niemann GJ and Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp strain WCS 417r. Phytopathnology. 81: 728-734
    200. Van peer R and Schippers B. 1992. Lipopolycaccharides of plant-growth promoting Pseudomonas spp. strain WCS417r in carnation to Fusarium wilt. Appli. Microbiol. 13: 60-71
    201. Viswanathan R and Samiyappan R. 1999. Identification of antifungal chitinase from sugarcane. ICAR News. 5: 1-2
    202. van Elsas JD, Trevors JT, Jain D et al. 1992. Survival of, and root colonization by, alginate encapsulated Pseudomonas fluorescens cells following introduction into soil. Biol. Fertil. Soil. 14: 14-22
    203. Veena MS and van Vuurde JWL. 2002. Indirect immunofluorescence colony staining method for detecting bacterial pathogens of tomato. J. Microbiol. Meth. 49: 11-17
    204. Waid JS. 1999. Does soil biodiversity depend upon metabiotic activity and influences. Appl Soil Ecol. 13: 151-158
    205. Weller DM. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407
    206. Wagner WC. 1999. Sustainable agriculture: how to sustain a production system in a changing environment. Intern. J. Parasitol. 29:1-5
    207. Whiteley AS and Bailey MJ. 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appli. Environ. Microbiol. 66: 2400-2407
    208. Weller DM and Cook RJ. 1983. Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology. 73: 463-469
    209. West AW, Grant WD and Sparling GP. 1987. Use of ergosterol, diaminopimelic acid and glucosamine content of soils to monitor changes in microbial population. Soil Biol. Biochem. 19:607-612
    210. Wilhlte SE, Lumsden RD and Straney D C. 1994. Mutational analysis of gliotoxin production by the biocontrol fungus Gilocladium viens in relation to suppression of Pythium damping-off. Phytopathology. 84: 816-821
    211. Winstanley C, Morgan JAW, Pickup RW et al. 1991. Use of a xyle marker gene to monitor survival of recombi2nant Pseudomonas putida populations in lake water by culture on nonselective media. Appl. Environ. Microbiol. 57: 1905-1913
    212. Wenderoth DF, Reber HH, Whittaker RH. 1972. Development and comparison of methods to estimate the catabolic versatility of evolution and measurement of species diversity. Taxan. 21:213-251
    213. Weissburg, W. G., Barns, S. M. 1991. 16s ribosomal DNA amplification for phylogenntic study. J Bacterial. 173:697-703
    214. Xu GW and Gross DC. 1986. Selection of fluorescent Pseudomonads antagonistic to Erwinia caratovora and suppressive of potato seed piece decay. Phytopathology. 76: 414-422
    215.Zdor RE and Anderson AJ. 1992. Influence of root colonizing bacteria on the defence responses in bean. Plant Soil. 140: 99-107
    216. Zelles L and Alee K. 1995. In: ALEF K, NANNIPIERI P. Methods in applied soil microbiology and biochemistry. London: Academic Press, 422-439
    217. Zhou J, Bruns MA and Tiedje JM.1996. DNA recovery from soils of diverse composition. Appli. Environ. Microbiol. 62:312-322
    218. Zarda B, Hahn D, Chatzinotas A et al. 1997. Analysis of bacteria community structure in bulk soil by in situ hybridization. Arch Microbiol. 168: 185-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700