拮抗菌PY-1菌株的鉴定及对油菜菌核病防治潜能的评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌[Sclerotinia sclerotiorum(Lib.)de Bary]是一种世界性分布的重要植物病原真菌,在我国严重威胁油菜生产。利用有益微生物控制核盘菌是目前菌核病防治研究的重点方向。本研究分离到一株对核盘菌有显著拮抗活性的真菌PY-1菌株,并对其分类地位进行了鉴定、对其控制油菜菌核病生防效果进行了评估,对PY-1菌株产抗真菌物质(AFS,Antifungal substance)的条件进行了优化,初步明确了其所产AFS的特性,并对该AFS进行了初步分离纯化,结果如下:
     1.拮抗菌PY-1菌株的鉴定:根据形态学特征及ITS序列分析,鉴定PY-1菌株为草酸青霉菌(Penicillium oxalicum),在真菌界的分类地位上属于丝孢子真菌,丝孢纲,丝孢目,青霉属(Penicillium),而其有性代为子囊菌门,不整囊菌纲,散囊菌目,散囊菌属真菌。
     2.PY-1菌株对核盘菌作用机理:对峙培养试验表明PY-1菌株对核盘菌的菌丝有强烈的拮抗作用,抑菌面积达9.6cm~2,2个月后观察该抑菌面积仍不变。在20ml的PDA培养基中添加1ml的发酵液抑制核盘菌生长率为62.24%,其中1ml发酵液中的AFS相当于4μg纯的农利灵。另外研究还发现:PY-1菌株不能寄生菌核,对菌核的萌发没有明显的抑制作用,但可以降低菌核的产量。而且还可抑制核盘菌子囊孢子侵染油菜叶片。
     3.PY-1菌株的诱导抗病性:将PY-1菌株的孢子液(10~7个孢子/mL)和发酵液原液处理棉花根部后,分别在5d、7d、15d后接种炭疽病菌(Colletotrichum gossypii)的孢子(10~6个/ml),12d后统计发现:处理5d后接种病原菌,对照的病情指数为30.44,而孢子和发酵液处理的病情指数分别为16.13、14.50,相对防效分别达到47.02%、52.33%;处理7d后接种病原菌,对照的病情指数为22.95,而孢子和发酵液处理的病情指数分别为11.80、13.86,相对防效分别达到48.58%、39.65%;处理15d后接种病原菌,孢子液处理后的发病率仅为53%,其它两个处理发病率为100%。对照病情指数为25.40,孢子和发酵液处理的病情指数分别为8.40、16.64,相对防效分别达到66.92%、34.21%。结果表明PY-1菌株可诱导棉花对炭疽菌产生抗性。两种诱导因子相比较而言,孢子液的诱导作用更好一些。
     4.PY-1菌株对油菜菌核病的控制作用:(1)室内离体叶片接种试验表明:对照平均病斑直径较大为4.07±0.68cm,用PY-1孢子(10~7个孢子/mL)处理后叶片发病率为75%,平均病斑直径只有0.73~0.64cm。而用发酵液原液处理后,15片叶片中只有1片叶片发病,病斑直径为1cm。(2)盆栽试验结果表明:PY-1菌株的孢子和发酵液对菌核病都有很好的控制作用,只接种核盘菌的油菜植株发病叶片数多,而且病斑直径为2.80±0.5;经PY-1菌株10~7的孢子处理后只有2片叶片发病,而用发酵原液处理后只有1片叶片发病。(3)2007年田间试验结果表明PY-1菌株的孢子液(10~7个孢子/mL)和发酵液(稀释5倍)对菌核病都具有一定的防效,两个处理的病情指数要低于与对照处理病情指数,也较菌核净处理的低。PY-1菌株的孢子、发酵液以及菌核净的相对防效分别为52.65%、39.48%、31.04%。
     5.影响PY-1菌株产AFS因子的研究:(1)PY-1菌株AFS的产量与接种量、发酵温度、培养基的起始pH值有关,最适的接种量为0.2-0.4ml(10~7个孢子/mL!),最适的发酵温度为20℃,发酵最适的起始pH为4-5。研究还发现该菌对通气量要求不高,摇瓶中装30—100ml培养基都比较适宜AFS的产生。(2)以CMS为基本培养基进行了碳源、氮源的筛选,产生AFS最为适宜的碳源有蔗糖、甘露醇、甘油,最为适宜的氮源有精氨酸、花生饼粉、鱼粉。此外,PDB培养基适合PY-1菌株的生长和AFS的产生。(3)以PDB、CMS为基本培养基筛选到了最佳发酵培养基:KH_2PO_4,1.0g;MgSO_4.7H_2O,0.5g;CuSO_4.5H_2O,0.005g;KCL,0.5g;精氨酸,0.871g:蔗糖10.12g,蒸馏水至1000ml。同时还研究了该菌的发酵代谢过程的一些代谢参数的变化,如pH,总糖,还原糖,氨基氮,菌丝生物产量等,AFS的产量在发酵第3d即可达到最高值。
     6.PY-1菌株所产AFS的抗菌谱:抑菌谱测定试验结果表明PY-1菌株所产的AFS对多种重要的植物病原真菌(如稻瘟菌、灰霉菌等)的抑制作用较强,而对水稻纹枯病菌、草莓白绢病菌等病原菌没有拮抗作用,表明PY-1菌株所产生抗生物质是一种抗真菌物质,具有一定的选择性。
     7.PY-1菌株所产AFS的稳定性:将PY-1菌株的发酵液经高温(121℃)处理30min的时间后,仍有较高的抑菌活力,表明该AFS具耐高温特性。酸碱稳定性测定试验表明该AFS在pH3-12范围内抑菌率变化幅度为52.17%-25.6%,在酸性条件下比较稳定,在碱性条件下活性下降。将PY-1菌株发酵液的乙醚提取物经紫外线照射2h后,抑菌活性提高的幅度为58.6%。发酵液在室温存放一年后丧失抑菌活性。但在4℃存放一年后抑菌活性下降幅度为30.4%。表明PY-1菌株的AFS可在4℃长时间存放。
     8.PY-1菌株所产AFS初步鉴定:(1)八溶剂系统纸层析试验结果表明,PY-1菌株所产的AFS是一种脂溶性的化合物,属金色抗霉素类抗生物质。pH纸层析实验结果表明,PY-1菌株AFS在酸性区域和碱性区Rf值有两个高峰,可知该AFS可能为一两性抗生素类物质。
     9.PY-1菌株AFS的粗提取:(1)PY-1菌株发酵液粗提取物和菌丝提取物对核盘菌菌丝生长都有显著的抑制作用,表明PY-1菌株的AFS胞内胞外均有产生。用极性较弱的有机溶剂乙酸乙酯、氯仿、乙醚等提取后效果较好,表明该AFS极性较低。进一步研究表明最适提取比例为:发酵液:乙醚=4:3(V/V)。
     10.PY-1菌株AFS的分离和纯化:(1)通过薄层层析(TLC),在展开剂乙酸乙酯:甲醇:水=100:10:1中可分离到3种物质,Rf值分别约为0.16,0.76,0.89。经生物检测Rf值0.89的物质具有生物活性。(2)将经过TLC精制后的样品再利用高效液相色谱(HPLC)进行分离。经过HPLC两次分离,在流动相:甲醇:水=70:30;流速:0.8ml/min的条件下分离出两个活性峰a_1、a_2,保留时间分别为26.33min、32.12min。(3)将经过HPLC纯化得到的两个活性组分a_1、a_2的纯品,采用EI-MS测定了分子量,分别为274.2、326.1。
Sclerotinia sclerotiorum is a plant pathogenic fungus found inhibiting soil ubiquitously in many parts of the world. In China, this pathogen causes stem rot on oilseed rape (Brassica napus), and causes serious losses every year. Biological control is a useful alternative to chemical fungicides against Scleriotinia diseases. In this paper, a antagonistic fungus strain PY-1 which showed strong inhibition against S. sclerotiorum was screened out, and the taxonomy of PY-1 strain was identified. The potential for biological control of oilseed rape stem rot was evaluated, and the cultural conditions for the fermentation of antifungal substance (AFS) was optimized. The stability of AFS was examined under several conditions, the AFS also was extracted from fermentation liquid and partially separated and purified by HPLC, and two active components were primary identified. The main results were listed below.
     1. Identification of PY-1 strain: PY-1 strain was identified as Penicllium oxalicum based on the characteristics of the colony morphology, conidiophore, phialides and conidia, and the identification was confirmed with alignment of ITS sequence of PY-1 and that of other fungi on GneBank.
     2. The mechanism of antagonism on S. sclerotiorum by strain PY-1: Strain PY-1 showed strong inhibition to the mycelial growth of S. sclerotiorum on PDA plates. The inhibition zone could remain for more than two months. One milliliter of fermentation liquid in 19 ml PDA could inhibit the mycelial growth of 5. sclerotiorum significantly, the inhibition effect was 62.24 %. Comparing with Carbendazim, the relative activity of anti-fungal substance of PY-1 produced at the third day was about 4μg a.i. per millilitre. Strain PY-1 could neither parasitize the sclerotia of 5. sclerotiorum, and nor suppress the mycelial germination of the sclerotia, but it may slightly reduce the product of sclerotia in PDA plate。
     3. Biological control potential of oilseed rape stem rot: (1) Both spores and fermentation liquid of PY-1 could suppress the infection of S. sclerotiorum on detached oilseed rape leaves. With an application of 10~7 spores/ml on leaves, average diameter of lesion being 0.73±0.64 cm, the size of lesions were significantly reduced comparing to water-treated control with average size of 4.07±0.68cm, and only 75% tested leaves could be successfully induced to form lesions. Only one lesion on detached leaves was induced among 15 treated leaves with the undiluted fermentation liquid, and the lesion was 1.0 cm. (2) Both spores and fermentation liquid of PY-1 could suppress the infection of S. sclerotiorum on living oilseed rape plants. With an application of 107 spores/ml on plants, the average diameter of lesion was 0.73±0.64 cm, and only two leaves produced lesions in all of treated plants, while more leaves were infected and the average size of lesion was 2.80±0.5 cm in water-treated control. Only one leaf was induced to produce a lesion among all fermentation liquid-treated plants. (3) Field experiments in 2007 showed that strain PY-1 (including spores with a concentration of 1×10~7 spore/ml and 5 fold diluted fermentation liquid) could significantly suppress sclerotinia stem rot of rape seed, the relative biocontrol efficiency were 52.65 % and 39.48 % respectively, while the effect of dimathchlon was 31.04 %.
     4. Induced resistance of strain PY-1: Acquired resistance of cotton against Colletotrichum gossyoii was observed when treated cotton roots with spores (10~7spores /ml) and fermentation liquid of strain PY-1. If cotton plants were treated with spores 15 d ahead of inoculation of Colletotrichum gossyoii, the disease index was suppressed with a rate of 66.92%, however, only 34.21% was achieved with fermentation liquid.
     5. Facts affecting the production of AFS of Strain PY-1: (1) Production of AFS of strain PY-1 was related with the inoculation quantity, fermentation temperature and primary pH value of medium. The optimum fermentation conditions for inoculation quantity for 0.2-0.4 ml of 1.5×10~7 spores/ml), and primary pH of medium ranged from 4 to 5, and fermentation temperature for 20℃were benefit for the high production of AFS. Furthermore, packaging volume of medium in flask which may influence the aerial condition did not effect the production of AFS significantly. (2) Effect of carbon sources and nitrogen sources on AFS production was studied using CMS medium as basic media. In the carbon source experiment, four (sucrose, glycerol, trehalose, mannitol) out of nine carbon source could be the most optimum by PY-1 for AFS production, and three nitrogen source including L-Arg、fish powder and peanut powder were the most optimum nitrogen source. PDB medium was suit for AFS production also. (3) The integrative condition of optimum medium and fermentation conditions for production of AFS of PY-1 strain were studied, and results showed that the optimal fermentation medium was KH_2PO_4,1.0g; MgSO_4.7H_2O,0.5g; CuSO_4.5H_2O,0.005g; KCL, 0.5g; L-Arg, 0.871g ; sugar, 10.12g. The pH value, reducing sugar and total sugar, ammoniacal nitrogen and biomass were changed during process of fermentation, and AFS production could y reach a peak on the 3rd day.
     6. The antagonism range of strain PY-1: Strain PY-1 showed significant suppressing the growth of many fungal pathogens, such as Alternaria alternata, Botrytis cinerea, Colletotrichum gloeosporhides, Gibberella zeae, Magnorpthe grisea, Monilinia laxa, and Verticillium dahilae. However, strain PY-1 did not show any effect the growth of Rhizoctonia solani and Sclerotium spp, and plant pathogenic bacteria.
     7. Some primary properties of AFS produced by strain PY-1: The extract from fermentation liquid with aether showed significant anti-fungal activity against S. clerotiorum, and was used as crude AFS for testing the stability under given conditions. The AFS was very stable to high temperature when treated with at 121℃for 30min, it was also acidic or alkaline-stable, the activity of AFS was not significantly reduced when treated in buffers with a wide range of pH values (3-12); and interestingly, the antagonistic activity was improved when treated with UV-irradiation.
     8. Primary identification of the AFS produced by strain PY-1: Paper chromatogram analysis indicated that the AFS produced by strain PY-1 was a fat-soluble and ambisextrous antibiotic.
     9. Primary separation of the AFS produced by strain PY-1: The AFS existed both in mycelial and fermentation liquid of strain PY-1 and could be extracted with aether and chloroform, suggesting that the AFS was a low polarity substance. The optium extract proportion for the extraction of AFS was 3/4 volume of ethyl acetate.
     10.Primary purification of the AFS produced by strain PY-1: (1) Three substances were separated from the AFS in solvent system (Ethyl acetate: methanol: H_2O=100:10:l) though TLC, and the substance with a Rf of 0.89 showed strong antagonistic activity. (2) The activity band on the thin lay were collected as crude sample of the AFS, and further separated with HPLC, and a second round separation with HPLC was carried out to obtain two active compounds a1 and a2 using a mobile phase of 70% methanol,30% double distilled H_2O. The retention time of al was 11.038 min, and that of a2 was 13.598 min with a flow rate of 0.8 ml min-1. (3) The molecular weights of a_1 and a_2 were examined with EI-MS, and the results showed that the molecular weight of a_1 and a_2 were 274.2 D and 326.1 D respectively.
引文
1. 艾力·吐热克,唐文华,赵震宇.草酸青霉菌(Po-41)发酵液对小麦病害的诱导抗性作用.新疆农业科学,2006,43(5):386-390
    2. 白秀峰,何建勇.发酵工艺学.中国医药科技出版社,2001
    3. 陈志谊,许志刚,陆凡,刘永锋,陈毓.拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究.江苏农业学报,2000,16(3):148-152
    4. 陈志谊.微生物农药在植物病虫害防治中的应用及发展策略.江苏农业科学,2001,(4):39~42
    5. 蔡新忠,郑重,宋凤鸣.水杨酸对水稻幼苗抗瘟性的诱导作用.植物病理学报,1996,26(1):7~12
    6. 蔡新忠,郑重.水杨酸诱导水稻幼苗抗瘟性的生化机制.植物病理学报,1997,27(3)23,1~236
    7. 陈爱武,田新初,姜道宏,袁广丰,熊迎,万月娥,李国庆.花期使用盾壳霉控制油菜菌核病的防病增产研究.第12届国际油菜大会论文摘要集,武汉,2007,269
    8. 胡江春,薛德林,马成.新植物根际促生菌(PGPR)的研究与应用前景.应用生态学报,2004,11-15
    9. 胡俊,刘正坪,周洪友,丁俊,宋娟.向日葵菌核病生防放线菌的分离筛选及拮抗作用的初探.华北农学报,2006,21(1):296-299
    10. 廖晓兰,罗宽.油菜花上细菌的分离及其对菌核菌的拮抗作用.湖南农业大学学报.2000,16(4):296-298
    11. 刘大群,Neil A.Anderson,Linda L Kinkel.拮抗链霉菌防治马铃薯疮痴病的大田试验研究.植物病理学报,2000,30(3).:237-244
    12. 刘澄清,甘蓝型油菜的抗耐病性及其遗传效应研究.中国农业科学.1991,24(3):45—49
    13. 刘峰,慕卫,何茂华.植物系统获得抗病性研究进展及其在控制作物病害中的应用前景.中国农学通报.2003,19:94—96
    14. 李玉红,陈鹏,程智慧.草酸和BTH对黄瓜幼苗霜霉病抗性和胞间隙病程相关蛋白的诱导.植物病理学报,2006,36(3):238—243
    15. 李国庆,王道本,黄鸿章,周启.来源于佳木斯茄子上的核盘菌菌株多样性的研究.植物病理学报,1996,26:237-242
    16. 李季伦,张伟心,杨启瑞,许耀才,赵良启.微生物生理学.北京:北京农业大学出版社.1993,388-395
    17.林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社,2001
    18.林福呈,林维挺,陈卫良,李德葆.浙江农业大学学报,1998,24(6):591~594
    19.姜道宏,李国庆,付艳平,易先宏和王道本.盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究.植物病理学报,2000,30(1):60-65
    20.姜钰,董怀玉,徐秀德,刘志恒,樊慧梅.放线菌在植病生防中的研究进展.2005,25(5):329~331
    21.康丽华.木麻黄苗期接种弗兰克氏菌效应及其与营养元素的关系.林业科学研究,1994,7(2):129~132
    22.潘以楼,汪智渊,吴汉章.油菜菌核病对多菌灵的抗药性及其稳定性.江苏农业科学,1997,13:32-35
    23.彭霞葳,白自辉等.草酸青霉菌果胶霉诱导黄瓜抗星黑病研究.植物病理学报,2004,34(1):69-74.
    24.彭霞薇,谢响明,白志辉,张洪勋.草酸青霉BZH22002果胶酶系的纯化及其诱导抗病作用.应用与环境生物学报,2006,12(6):750~753
    25.邵红涛,许艳丽.具有生防能力的木霉菌(Trichoderma spp.)与两株大豆根腐病病原菌(Fusarium oxysporum、Rhizoctonia solani)对碳、磷、铁的竞争研究.黑龙江大学自然科学学报,2007,Vol24(1):26—29
    26.史贵清,孟水常,姚建业.高粱早衰原本是青霉颖枯病.山西农业,1997,(01):30-31
    27.沈寅初.井冈霉素研究开发25年.植物保护,1996,22(4):44-45
    28.王道本译.核盘菌论丛.北京农业大学出版,1986
    29.王未名,陈建爱,孙永堂.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治,1999,(3):142-143
    30.王生荣,朱克恭.植物系统获得抗病性研究进展.中国生态农业学报,2002,10(2):31—34
    31.韦善君,李国庆,姜道宏,王道本.黄色蠕形霉对棉花上几种病原菌拮抗作用的研究.华中农业大学学报,1999,8(1):16-19
    32.魏景超遗著(1979).真菌学鉴定手册.上海科学技术出版社出版
    33.杨新美.油菜菌核病Sclerotinia sclerotiorum在我国的寄主范围及生态特性的调查研究.植物病理学,1959,2:111-121
    34.姚建业,王石榴.山西省高粱的青霉颖枯病.植物病理学报,1995,25(3):221-226
    35.袁秀英,韩艳洁.锈寄生菌控制杨柴锈病的研究I锈寄生菌的形态鉴定及培养性状,内蒙古大学学报(自然科学版),1998,29(1):250—254
    36.郑爱萍,李平,王世全.水稻纹枯病强拮抗菌B34的分离与鉴定.植物病理学报,2003,33(1):81-85
    37.张丽华,党本元,周奕华,毛勇,张铁汉,曾君祉,王兰岚,陈正华.抗菌核病转基因油菜植株的获得.高技术通讯,1999,9(12):41-46
    38.张夕林,孙雪梅,张谷丰,易红娟,羌烨.油菜菌核病抗药性监测与综合治理技术的研究,农药科学与管理,2003,24(6)
    39.张龙翔,张庭芳,李令媛.生化试验方法和技术.北京:高等教育出版社,1997
    40.陈曾燮,刘兢,罗丹.生物化学实验.中国科学技术大学出版社,1994
    41. Adams P B and Ayers W A. Biological control of sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopatholog., 1982, 72:485-488
    42. Adams P B and Ayers W A. Ecology of Sclerotinia secies. Phytopathology, 1979, 69: 896-899
    43. Anagnostakis S L. Biological control of chestnut blight. Science. 1982, 215: 466-471.
    44. A.H.M. Bakker, and B. Schippers. Iron availability affects induction of systemic resistance to Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology. 1996, 85:149-155.
    45. A., Weber, F. J., and Whipps, J. M.The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol., 2001, 56: 58-68.
    46. .Anthony J. De Lucca and Thomas J. Walsh. Antifungal peptides:Novel therapeutic compounds against emerging pathogens. Antimicrobial Agents and Chemotherapy. Jan. 1999, 43 (1):1-11.
    47. Alfonso, C., Del Amo, F., Nuero, O M, Reyes, F. Physiological and biochemical studies on Fusarium oxsporum f. sp. Lycopersici race for its biocontrol by nonpathogenic fungi. FEMS Microbiology Letters. 1992, (99), 169-174
    48. Baker KF. Evolving concepts of biological Control of plant pathogens. Ann.Rev.Phytopathol. 1987, 26:67-85.
    49. .BAKER R. Diversity in biological control. Crop Protection, 1991, (10):85-94.
    50. Balasubramanian, G., Hanumegowda, U., Reddy, C. S. Secalonic Acid D Alters the Nature of and Inhibits the Binding of the Transcription Factors to the Phorbol 12-O-Tetradecanoate-13 Acetate-Response Element in the Developing Murine Secondary Palate. Toxicology and Applied Pharmacology. 2000, 169 (9): 142-150.
    51. Beatty-PH, Jensen-SE. Paenibacillus polymyxa produces fusaricidin-typeantifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology. 2002, 48(2):159-169
    52. Boland, G F, Hall, R. An index of plant hosts susceptible to Sclerotinia sclerotiorum. Can. J. Plant Pathol. 1994,(16):93-108
    53. BLAKEMAN J P. Microbial competition for nutrients and germination of fungal spores [J]. Ann App Biol, 1978, 89:151-155
    54. .Biswas-KK;Chitreswar-Sen;Sen-C. Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopathology. 2000, (53):290-295
    55..Brown-HL; Bruce-A; Staines-HJ. Assessment of the biocontrol potential of a Trichoderma viride isolate part II:protection against soft rot and basidiomycete decay. International Biodeterioration and Biodegradation. 1999,(44):225-231
    56.Bruce-A; Srinivasan-U:Staines-HJ; Highley-TL. Chitinase and laminarinase production in liquid culture by Trichoderma spp. and their role in biocontrol of wood decay fungi. International Biodeterioration and Biodegradation. 1995, (35):337-353
    57.Cal, A De, Pascual S., Larena, I., Melgarejo, P. Biological control of Fusarium oxysporum f. sp. lycopersici. Plant Pathology. 1995, (44):909-917
    58.Cal, A. De., Pascual, S., Melgarejo, P. Involvement of resistance induction by Penicillum oxalicum in the biocontrol of tomato wilt. Plant Pathology. 1997, (46):72-79
    
    62.Cal, A. De, Pascual, S., and Melgarejo, P. A rapid laboratory method for assessing the biological control of Penicillium oxalicum against Fusarium wilt of tomato. Plant Pathol. 1997, (46):699-707
    
    59.Cal, A. De, Garcia, L. R., Pascual, S., Melgarejo, P. Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato. Plant Pathology. 1999,(48):260-268
    
    60.Cal, A. De, Garcia, L. R., Melgarejio, P. Induced Resistance by Penicillium oxalicum Against Fusarium oxysporum f. sp. lycopersici: Histological Studies of Infected and Induced Tomato Stems. Phytopathology. 2000, (90):260-268
    
    61.Cessna, S. G., Sears V. E., Dickman M. B., and Low P S. Oxalic Acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000, (12):191 - 2200
    62.Chermin L S. Molecular cloning: structure analysis and expression in E.coli of a chitinase gene from E.agglomerans. Appl Environ Microbiol. 1997, (63):834-839
    63.Chet I. and Baker, R. Isolation and biocontrol potential of Trichoderma hamntum from soil naturally suppressive to Rhizoctonia solani. Phytopathology. 1981, (71):286-90 64.Cheng J, Jiang D, Yi X, Fu Y, Li G, Whipps JM. Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture.FEMS Microbiol Lett. 2003, 227(1):127-31.
    65.Cook, R. J. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 1993, (31):53-80.
    
    66.Couteaucdier Y. Competition for carbon in soil and rhizosphere, mechanism involved in biological control of Fusarium wilts. In: Tjamos EC, PapavizasAC, Cook RJ, eds. Biological control of p lant diseases[M ]. New York: Plenum Press, 1992,99 -104.
    67.Dekker, J. World Review of Pest Contro 1.1971, (100):9- 23.
    68..D Valois, K Fayad, T Barasubiye, M Garon, C Dery, R Brzezinski and C Beaulieu. Glucanolytic antinomycetes antagonistic to phytophthora fragariae var. rubs, the causal agent of raspberry root rot. Appl. Environ. Microbiol., 1996,162:1630-1635,
    69.de la Cruz, J.and A. Llobell. Purification and properties of a basic endo-}- 1,6-glucanase (BGN16.1) from the antagonistic fungus Trichoderma harzianum. Eur. J. Biochem. 1999, (265):145-151.
    70.dela Cruz, J.M. Rey, J. M. Lora, A. Hidalgo-Gallego, F. Dominguez, J. A. Pintor-Toro, A. Llobell, and T. Benitez. Carbon source control on p -glucanase, chitobiase and chitinase from Trichoderma harzianum. Arch. Microbiol. 1993, (159):316-322.
    71.DiPietro A, Lorito M and Hayes CK. Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 1993, (83):308-313.
    72.Emmert EAB, Handelsman J. Biocontrol of plant disease: a (gram-)positive perspective, FEMS. Microbiology Letters. 1999, (171):l-9.
    73.E C Eckwall and J L Schottel. Isolation and characterization of an antibiotic produced by the scab disease-suppressive Streptomyces diastatochromogenes strain PonSSII , Journal of Industrial Microbiology & Biotechnology. 1997, (9):220-225
    74.E 1 Abyard M S, EL-saved M A, EL-shanshoury A R. Towards the biological control of fungal and bacterial deseases of tomato using antagonistic Streptomyces spp. Plant and Soil. 1993, (149):185-195.
    
    75. Expert, J M., and Digat, B. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can. J. Microbiol., 1995, (41):685-691.
    
    76. Elad Y. Trichoderma harzianum T39 preparation for biocontrol of plant diseases control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium ful vum. Biocontrol Science and Technology. 2000a, (10):499-507.
    
    77. ELAD Y. Biological control of foliar pathogens bymeans of Trichoderm a harzianum and potentialmodes of action. Crop Protection. 2000, (19):709 - 714.
    
    78.El-Tarabily-KA;Hardy-GE-St-J;Sivasithamparam-K:Hussein-AM;Kurtboke-DI. The potential for the biological control of cavity — spot disease of carrots, caused by Pythium coloratura, by streptomycete and non-streptomycete actinomycetes. New-Phytologist. 1997,137:3, 495-507.
    79.FS.Pullen,D.S.Richards,A.G.S.Swanson. On-Line Liquid chromatography coupled with high field NMR and mass apectrometry(LC-NMR-MS): a new technique for drug metabolite structure elucidation Journal of Pharmaceutical and Biomedical Analysis. 1997, (15):1903-1917
    80.Farrand SK, Wang CL and Hong S B. Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions, Plasmid, 1992, 28(3):201-212.
    81.Garcia-Lepe, R., Rodriguez, P, Cal, A De, Garcia-Olmedo, F., Melgarejo, P. Induced resistance against Fusarium wilt of tomato by Penicillium oxalicum is not associated to pathogenesis-related proteins. IOBC Bull. 1997, (21):123-127.
    82.Gintis, B O., Benson, D.M. Biological control of Phytophthora root rot of azalea with Penicillium oxalicum. Phytopathology. 1987, (77):1688
    83.Ghisalbert E L et al. Antifungal antibiotics produced by Trichoderma spp. Soil Biology &Biochem, 1991, 23 (11): 1011—1020.
    84.Gh isalbert E L et al. Antifungal metabolite from Trichoderma harz ianum. J. Natural Products, 1993, 56 (10): 1769- 1804.
    85.Gaffney T D, Friedrich L, and Vernooi J B. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 1993, (261):754-756.
    86.Ghisalberti, E. L., and G Y. Rowland. Antifungal metabolites from Trichoderma harzianum. Nat. Prod. 1993, 56:1799-1804.
    87.Godfrey SAC, Silby M W, Falloon P G, Mahanty H K. Biological control of Phytophthora megasperma var sojae, causal agent of Phytophthora rot of asparagus, by Pseudomonas aureofaciens PA147-2:a preliminary field trial. New Zeal and Journal of Crop and Horticultural Science. 2000,28:2, 97-103.
    88.Hande 1 sman, J., and E. V. Stabb. Biocontrol of soilborne plant pathogens. Plant Cell 1996, 8:1855-1869
    89.Gu. B G 1996. Production and uses of biopesticides in china. 1996, 332-334 in:Advances in Biological control of Plant Diseases,edited by Tang W H,Cook R J,and Rovira A,China Agriculture University Press,Beijing.
    90.Gerlagh, M., Goossen-van de Gejin, H. M., Hoogland, A. E., and Verreijken, P. F. G Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans -timing of application, concentration and quantity of conidial suspension of the mycoparasite. Eur. J. Plant Pathol, 2003, (109): 489-502
    91. Giczey G., Kerenyi Z., Fiilop,L and Hornok L. Expression of cmgl, an exo-6-l,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl. Environ. Microbiol., 2001, (67):865-871
    92.Godoy J, Steadman J R, and Dickman M B. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. Plant Pathol, 1990, (37):179-191.
    93.Gossen, B. D., Rimmer, S. R. and Holley, J. D. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Dis., 2001, 85: 1206-1209.
    94.Huang, H. C. Control of Sclerotinia wilt of sunflower hyperparasite. Can. J. Plant Pathol., 1980, 2: 26-32
    95.Huang H.C., Bremer E, Hynes R. K., Erickson R. S. Foliar application of fungal biocontrol agents for the control of white mold in dry bean caused by Sclerotinia sclerotiorum. Biol Control. 2000,18: 270-276.
    96.Hu X., Bidney D. L., Yalpani N., Duvick J. P., Crasta O., Folkerts O., and Lu G H.Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol., 2003,133:170-181.
    97.Haran, S.H Schickler, and I Chet.1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum.Microbiology 142:2321-2331.
    
    98.Harrison, L D, B. Teplow, M. Rinaldi, and G Strobel. Pseudomycins, a family of novel pep tides from Pseudomonas syringae possing broadspectrum antifungal activity. J. Gen. Microbiol. 1991,137:2857-2865.
    99.HARMEN G E. Myths and dogmas of biocontrol changes in percep tions derived from research on Trichoderm a harzianum T - 22. Plant Disease, 2000, 4:377 - 93.
    100.HOWELL C R. Mechanisms emp loyed by Tirchoderm a species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 2003, 87 (1): 4-10.
    101. Hjeljord, L., and A. Tronsmo. Trichoderma and Gliocladium in biocontrol: an overview. 1998,135-151. In C. P. Kubicek, and G E. Harman (ed.),Trichoderma and Gliocladium. Taylor&Francis, Ltd. London, United Kingdom.
    102.Howell CR, Stipanovic RD, and Lumsden RD. Antibiotic produced by strains of Gliocladium vireos and its relation to the biocontrol of cotton seeding disease. Biocontrol Sci. Technol, 1993. (3):435-42.
    103. Howie WJ and Suslow TV. Role of antibiotic biosynthesis in the inhibition of Pythium ultimun in the cotton spermosphere and rhizosphere by Pseddomonas fluorescens. Mol. Plant-Microbe Interact. 1991, (4):393-399.
    104.Jorgensen .L.N, Jensen. B, Smedegaard.V , Bion.a comound for disease control in cereal based on induced resistance. (J) Pest and disease,1997, 8:35-48
    105.Jiang, C. L., and L. H. Xu. Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunnan, China. Appl. Environ. Microbiol. 1996, 62:249-253
    106Jones D.A., Gordon, A. H., and Bacon J.S. D. Co-operative action by endo- and exo-6-(l, 3)-glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum. Biochem. J, 1974,140: 47-55.
    107. Keller N. P., Nesbitt C., Sarr B., Phillips T. D., and Burow G B. pH regulation of Sterigmatocystin and Aflatoxin Biosynthesis in Aspergillus spp. Phytopathology. 1997, 87:643-648.
    108.Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A. Oxalate decarboxylase from Collybia velutipes Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol. Chem. 2000, 275: 230-7238.
    109. Kim, H. S., and Diers, B. W. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci., 2000, 40: 55-61.
    110. Knudsen, G R., Eschen, D. J., Dandurand, L. M., and Bin, L. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harazianum. Plant Dis., 1991, 75: 466-470.
    111.Kohn L M, Stasovski E, Carbone I, Royer J and Anderson J B. Mycelial Incompatibility and Molecular Markers Identify Genetic Variability in Field Populations of Sclerotinia sclerotiorum. Phytopathology, 1991, 81: 480-485.
    112.Keel, C,Wirthner P H, Oberhansli, T H.,Voisard C,Burger U, Haas D.&Defago, G Pseudomonads as antagonists of plant pathogens in the rhizosphere:role of the antibiotic 2,4- diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis ,1990,9: 327-342.
    113. Kloepper J W, Leong T,Teintze M. Enhanced plant growth by siderphones produced by plant growth promoting rhizobacteria. Nature, 1980,286 :885-886
    114. K C Ehrlich, L S Lee, A Ciegler and M S Palmgren , Secalonic acid D: natural contaminant of corn dust. Appl Environ Microbiol. 1982,44(4): 1007-1008
    115.K Kawai, T Nakamaru, Y Maebayashi, Y Nozawa, and M Yamazaki.Inhibition by secalonic acid D of oxidative phosphorylation and Ca2+-induced swelling in mitochondria isolated from rat livers. Appl Environ Microbiol. 1983,46(4): 793-796
    116.Klich, M. A, A. R. Lax, and J. M. Bland. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycotpathology. 1991, 116:77-80.
    117 Koch. E. Evaluation of commercial products for microbial control of soil-brone plant diseases. Criop Protection. 1999,18:119-125.
    118.Kull L S, Pedersen W L, Palmquist, D and Hartman G L. Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Dis. 2004, 88:325-332
    119.Ladha J K,Bbarraquio W L, and Watanabe I. Isolation and Identification of Nitrogen fixing enterobacter cloaeae and Klebsiella planticola associated with rice plants. Can. J. Microbioll. 1983, 29:1301-1308.
    120. Latoud C.,F Peypoux, and G Michel. Action of iturin A, an antifungal antibiotic from Bacillus subtilis on the yeast Saccharomyces cerevisiae.Modification of membrane permeability and lipid composition. J. Antibiot. 1987,40:1588-1595.
    121. Lee C H, Kim B C, Hyun J W, Suh C, Kim Y A, Lim. and C. S. Kim. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia.I.Taxonomy, production, isolation, and biological activityJ.Antibiot. 1994, 4:1402-1405.
    122.Larena I, Sabuquillo P, Melgarejo P, De CalA. Biocontrol of fusarium and verticillium wilt of tomato by Penicillium oxalicum under green2 house and field conditions. J Phytopathol, 2003,151: 507-512
    123.Lim Y, J W Suh,S Kim, B Hyun, C Kim, C H. Lee. Cepacidine A. a novel antifungal antibiotic produced by Pseudomonas cepacia. II.Physico-chemical properties and structure elucidation. J. Antibiot. 2001, 47: 406-1416.
    124.Liu L, Kloepper J W, Tuzun S. Induction of systemic resistance in cucumber by plant growth-promotin rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization. Phytopathology. 1995, 85:1064-68.
    125. Levy, E., Gough, F. J, Berlin, K D, Guiana, P W.&Smith, J, T.Campbell W A. Anew species of Coniothyrium parasitic on sclerotia. Mycologia, 1947, 39:90-195.
    126.Loper, J E.Role of fluorescent siderophore in biological control of pythlum ultlmum by a Pseudomonas fluorescents strain. Phytopathology. 1988, 8:166-172
    127.Loper J E, M D Henkels. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 1997, 63:99-105.
    128 Li, G. Q, Wei S. J, Jiang D.H, & Huang, H. C. Control of sclerotinia stem rot of canola by aerial application of coniothyium minitans. In: Young cS, Hughes KJd, Eds. Proceedings of Sclerotinia 2001-The XI International Sclerotinia Workshop, York 8~(th)-12~(th) July 2001, York, England: Central Science Laboratory, York, England. 2001, 97-98:147
    129 Li, G. Q., Huang, H. C, and Acharya, S. N. Sensitivity of Ulocladium atrum, Coniothyrium minitans and Sclerotinia sclerotiorum to benomyl and vinclozolin. Can. J. Bota. 2002, 80: 892-898.
    130..Li, G. Q., Huang, H. C., and Acharya, S. N. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum by Coniothyrium minitans. Biocon. Sci. Technol., 2003a, 13: 495-505.
    131 Li, G.Q., Huang, H.C., Miao, H.J., Erickson, R.S., Jiang, D.H. and Xiao, Y.N. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur. J. Plant Pathol., 2006,114.
    132.Lumsden R D. Sclerotinia sclerotiorum infection of bean and the production of c ellulase. Phytopathology. 1968, 59:653-657
    133.Lumsden R D. Histology and Physiology of pathogenesis in plant disease caused by Sclerotinia species. Phytopathology, 1979, 69(8): 890-896.
    134.Marten-P;Smalla-K: Berg-G Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology. 2000, 89:3,463-471.
    135.Mathivanan-N; Srinivasan-K: Chelliah-S, Field evaluation of Trichoderma viride Pers. ex. S. F. Gray and Pseudomonas fluorescens.Nigula against foliar diseases of groundnut and sunflower. Journal of BiologicalControl. 2000,14:31-34.
    136. Maurhofer M, Keel C, Hass D. Pyoluteorin production by fluorescens strain CHAD is involved in the suppression of Pythium damping-off of cress but not cucumber. European Journal Plant Pathology. 1994,100:221-32.
    137.Machide K., Trifonov L. S., Ayer W. A., Lu Z. X., Laroche A., Huang H.C., Cheng K. J., and Zantige J. L. 3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans . Phytochemistry, 2001, 58(1):173-177
    138.Mandel Q, Baker R. Mechanisms involved in biological control of Fusarium wilt on cucumberwith strains of non - pathogenic Fusarium oxysporum. Phytopathology, 1991, 81: 462 - 469.
    
    139. McLoughlin, T. J., Quinn, J. P., Bettermann, A., Bookland, R. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Applied and environmental Microbiology. 1992, 58:1760-1763.
    140.McQuilken M P,Whipps J M, Production, survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Eur J Plant Pathol. 1995,101:101-110
    141. McQuilken, M.P., Gemmell, J. and Hill, R.A. Antifungal metabolites produced by the mycoparasite Coniothyrium minitans. In: SAC Crop Sci. Rep. 1998, pp. 19-21.
    142.McQuilken, M. P., Gemmell, J., and Whipps, J. M. Some nutrional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Biocon. Sci. Technol., 2002,12: 443-454.
    143 I L Gonzalez, J E Sylvester, I F Smith, D Stambolian R D Schmickel. Ribosomal RNA gene sequences and hominoid phylogeny. Molecular Biology and Evolution, 1999, 7:203-219.
    144. Powers T O ,Todd T C, Burnell AM. The rDNA internal transcribed spacer region as taxonomic marker for nematods. Nematol. 1997, 29:441-450.
    145.Schippers B ,Bakker AW,Backker PA. 1987. Interactions of delete2rious and beneficial rhizosphere microoganisms. AnnuRevPhytopathol ,25 :339-358
    146. Scher F M, Baker R. Effect of Pseudomonas and a synthesis iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology. 1982, 72:1576-1583.
    147.Simon, A K, Sivasithamparan.Pathogen suppression a case study of Gaeumannomyces gramlnlsvar. tritici in soil. Soil Biol. Biochem. 1989, 21:331-337.
    148.Sivasithamparam K Gh isalbert E I. Secondary metabo lism in T richod erm a and Gliocladium T richod erm a and Glioclad ium. Vo l 1: Basic bio logy, taxonomy and genet ics. London:Taylo r & F rancis L td, 1998,139— 190.
    149.Van Dijk KV, Nelson E B. Fatty acids uptake and beta-oxidation by Enterobacter cloacaeisnecessary for seed rot suppression of Pythiumm ultimum. Phytopathology. 1997°, 87:100-102.
    
    150.Van Dijk KV, Nelson E B. Inactivation of seed exudates stimulants of Pythiumm ultimum sporangium germination by biocontrol strain of Enterobacter cloacaeand other seed-associated bacteria. Soil Boil and Biochem. 1997b, 29: 31-355.
    151.V I Zvenigorodskii, B V Tyaglov, T A Voeikova. Isolation of Components of the Peptide Antibiotic Virginiamycin and Breeding of Their Producer, Streptomyces virginiae Applied Biochemistry and Microbiology. 2001, 37: 260-266.
    152.Venancio, S. A., George, L. G, James, E. S., James, R. S., and Kent, M. E. Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci., 2001,41:180-188
    153.Woo SL, Scala F, Ruocco M, Lorito M. The molecular biology of the interactions between Trichoderm a spp. , Phytopathogic fungi, and Plants. Phytopathol. , 2006, 96:181-185
    154.Walid F, Frank W, Bernhard V, Wolfgang A, Heinrich B. Isolation and identification of N-mercapto-4-formylcarbostyril, an antibiotic produced by Pseudomonas fluorescens. Phytochemistry. 2001, 58:1297-1303
    155.Whipps J.M., and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res., 1992, 96(11): 897-907.
    156.Whipps, J M. Davies, K. G. Biocontrol of plant pathogens and nematodes by microorganisms. In: (Gurr, G and Wratten, S. D. eds) Measures of Success in Biological Control. Dordrecht: Kluwer Academic Publishers, 2000, 231 ~ 269.
    157.Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y.Characterization of debilitation -associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. Journal of General Virology, 2006, 87: 241-249.
    158. Zhou, T, and Reeleder, R. D. Selection of Epicoccum purpurascens for tolerance to fungicides and improved biocontrol of Sclerotinia sclerotiorum. Can. J. Microbiol., 1990, 36: 754-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700