主变压器风冷系统控制装置设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主变压器冷却系统可分为油浸自冷式、油浸风冷式、强迫油循环冷却方式三种,其中最常用的强迫油循环冷却方式又分为强油循环风冷却和强油循环水冷却。现有的强油循环风冷却系统控制装置一般都采用传统的继电式控制装置,这种传统的控制装置逻辑控制功能低下、无通讯和保护功能、自动化水平低,已不能适应变电所综合自动化与变电所无人值班的要求。
     本文从工程应用实际要求出发,以西门子S7-200系列PLC为控制核心,配合TI公司的MSP430单片机,设计了一种稳定可靠的变压器风冷系统控制装置。该装置不但具有比传统继电式控制装置更多的智能控制功能,而且带有符合电力103规约(IEC 60870-5-103:1997)的通讯接口和远程监控平台。装置在对变压器风冷系统控制逻辑进行完善和改进的基础上,实现了冷却器电源电压和风扇电流的实时测量和故障判定,以及远程工作模式设定和告警功能。装置采用的远程监控平台由于采用了通用的103规约接口,可以集成到变电站综合自动化系统中,使监控人员的操作更方便。
     变压器风冷系统控制装置设计中充分考虑装置的稳定性和可靠性,从装置机箱结构设计、电源系统设计、器件选型、电路板设计以及软件结构设计等方面提高装置的抗干扰能力和恶劣气候适应能力。装置通过了严格的高低温试验和抗干扰试验,还设计了结构合理,安装维护方便的机箱,使装置成为一款能够适应电力系统恶劣运行环境、功能完善、操作界面友好的产品,并已经在电力系统中进行试运行。
Main transformer cooling system may be classified into three classes: oil-impregnated automatic cooling; oil-impregnated air blast cooling; forced oil circulation cooling. One of the most commonly used is forced oil circulation cooling, which can be classified into two types: forced oil cooling with circulating water; forced oil cooling with circulating wind. The existing forced oil cooling with circulating wind system control devices are generally traditional relay-control devices. These traditional relay-control devices have low logic control function, low level of automation, no communications and no protection function. They can not satisfy the requirements of unattended or integrated automatic substation.
     For practical application requirements, the goal of this paper is to design a stable and reliable transformer cooling system control devices, with Siemens S7-200 Series PLC for the control of the core and the TI MSP430. The device has more intelligent control function than the traditional relay-control device, and also has communications interface and remote monitoring platform with the Statute of Power 103 (IEC 60870-5-103:1997). On the basis of refining and improving the transformer air blast cooling system control logic, this device can achieve real-time measurement of the voltage of Cooler Power and current of fans,as well as the function of remote mode seting and alarming. Installations in the remote monitoring platform use a common interface to the Statute 103, and can be integrated into the substation automation system, so that the monitoring operation is more convenient.
     The deisign of transformer coolant system use fan fully considerated the stability and relability of the equipment. To raise the anti-interference ability of the system, several methods were proposed, such as good machine cabinet, high precision power supply system, carefully choosen of chips used in the design, best design of circuit board and software, and so on. The system passed strict high & low temprature tests and anti-interruption tests. The system also designed a borad container, which make it easy to do installation or maintenance work. All of these make the equipment to be a product can adapt the extremely poor operation enviroment of electrical system, with perfect function and friendly Operator Interface. The deisign of transformer coolant system use fan is testing in electric power system.
引文
[1] Andersen. PC-Based Field Calculations for Electric Power Applications.IEEE Computer Applications in Power, 1989, 10
    [2] O.W. Andersen. Transformer Leakage Flux Program Based on the Finite Element Method.IEEE Trans. PAS, vol.92, Mar./Apr.1973
    [3] O.W.Andersen. Laplacian Electrostatic Field Calculations by Finite Elements with Automatic Grid Generation.IEEE Trans. PAS, vol.92, Sep./Oct.1973
    [4] O.W.Andersen. Finite Element Solution of Complex Potential Electric Fields.IEEE Trans. PAS, vol.96, July/Aug.1977
    [5] O.W.Andersen. Finite Element Solution of Skin Effect and Eddy Current Problems.IEEE Paper A77 616-6, Mexico City, July 1977
    [6] O.W.Andersen. Advanced Calculations of Magnetic Leakage Fields in Transformers.International Conference on Electrical Machines ICEM'98, Istanbul, Sep.1998
    [7] O.W.Andersen. Large Transformers for Power Electronic Loads.IEEE Transactions on Power Delivery 1997, Oct.1997
    [8] Z.Valkovic. Recent problems of transformer core design. Physica Scripta, March 1988, vol 24: 71-74
    [9] G.F.Mechler, R.S.Girgis. Calculation of spatial loss distribution in stacked power and distribution transformer cores. IEEE Transactions on Power Delivery, April 1998, vol 13:532-537
    [10] O.W.Andersen. Magnetic Leakage Fields in Rectifier Transformers. Intenrational Conference on Electrical Machines ICEM'94, Paris, Sep.1994, Conference Proceedings vol.3
    [11] O.W.Andersen. Inductance Coils with Sheet Windings and Iron Cores. International Conference on Electrical Machines ICEM'94, Paris, Sep.1994, Conference Proceedings vol.3
    [12] 梁振光,唐任远.大型电力变压器绕组的短路强度问题[J].变压器,2003, 40(8):9-12
    [13] 杨俊友.大型电力变压器低压引线漏磁场及局部过热研究[D].[哈尔滨工业大学博士学位论文].哈尔滨: 哈尔滨工业大学,1993
    [14] 李岩.大型电力变压器绕组电磁力和局部过热问题研究[D].[沈阳工业大学博士论文].沈阳: 沈阳工业大学,1995
    [15] 刘仁娇,李湘生.复杂绕组变压器优化设计方法[J].变压器,1995.07
    [16] 李湘生,陈天乔.变压器理论计算与优化设计[M].武汉:华中工学院出版社,1990.12
    [17] 金明.基于改进鲍威尔法的电力变压器优化设计[J].变压器,1999,36(10)
    [18] 樊叔维,汪国梁,谢卫.遗传算法在电力变压器优化设计中的应用研究[J],中国电机工程学报.1996,16
    [19] 焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1993
    [20] 丁梵林,振凯.一种新的电力变压器优化设计方法-改进正交试验法[J].变压器.1993.30
    [21] 崔立君,张茂鲁,张洪等.特种变压器理论与设计[M].北京:科学技术文献出版社,1996
    [22] 李营,鲍斌.从需求看微机保护的发展[J].继电器,2000, 28(10): 12-14
    [23] 葛耀中.自适应继电保护及其前景展望[J].继电器,1997, 21(9): 42-46
    [24] 贺 家 李 . 电 力 系 统 继 电 保 护 技 术 的 现 状 与 发 展 [J]. 中 国 电 力 , 1999, 32(10):38-40
    [25] 郭永基.可靠性工程原理[M].北京:清华大学出版社,2002, 90-101
    [26] 居滋培.可靠性工程[M].北京:原子能出版社,2002, 17-20
    [27] 罗飞路.变压器微机保护装置的研究:[硕士学位论文].长沙: 国防科学技术大学,2000, 44-49
    [28] 李奎,陆俭国.保护类继电器的可靠性指标及其验证试验理论分析.电工技术学报,1997, 6: 50-54
    [29] 汤卫东.硬件冗余技术及可靠性评价.广西民族学院学报,2003, 9(4): 63-67
    [30] 柯赫震.硬件和软件相结合提高微机保护抗干扰能力的措施.电气应用,2005, 24(5): 18-20
    [31] 李强.强迫油循环变压器冷却器控制箱的改造[J].变压器,1997(2):64-65
    [32] 陈德树主编.计算机继电保护原理与技术[M].武汉:华中理工大学出版社,1998, 9
    [33] 张顺林,丁强主编.微机保护在大型泵站的应用[J],继电器,2000(6):44-46
    [34] 邸倩倩.变压器冷却方式的发展[J],天津商学院学报,1999, 11,Vol.20,No.6
    [35] 李培乐.备用冷却器自起动故障的原因[J].变压器,1992(12): 60-61
    [36] 郑岩.大型电力变压器冷却系统的改造[J].变压器,1997(2): 34-35
    [37] 黄伟 . 变压器强迫油循环风冷却控制回路改造 [J]. 湖北电力 , 1998 (3):55-57
    [38] Birlasckaran S. The measurement of charge on single particles intransformer oil. IEEE TranSEI , 1991, 26(6):1094
    [39] 夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利电力出版社,1994
    [40] 宋斌,于萍 .变压器油状态监测的专家系统及其应用研究 [J].变压器,1998(12): 27-31
    [41] 严文群.变压器故障的色谱分析及判断[J].变压器,1998, 35(3):38-42
    [42] 杨启平 . 专家系统在变压器故障诊断中的应用 [J]. 变压器 , 1996, 33(6):35-38
    [43] 谢毓城.电力变压器手册.北京:机械工业出版社,2003, 45-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700