碳、碳化硅及过渡金属碳化物的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳、碳化硅及过渡金属碳化物等含碳材料一直是材料领域的研究热点,在吸附分离、电极材料、半导体、超导体、超硬耐磨材料等诸多领域有着极为广泛的应用。本论文以此为研究对象,在对上述含碳材料的制备、应用等方面的发展现状进行了充分调研的基础上,遵循自下而上的纳米材料合成方法,探索了简单易行、无毒环保且经济高效的制备策略,分别合成了碳化硅及过渡金属碳化物纳米材料、蜂窝状石墨化大孔碳材料及类石墨烯状碳薄膜等具有较高实用价值的纳米材料,在含碳材料的低温化制备等方面取得了较大的突破,主要工作内容概括如下:
     1.采用高压釜技术,以硅粉为硅源,葡萄糖或麦芽糖为碳源,镁粉为还原剂,在120℃时碘存在的条件下成功制备出3C-SiC纳米结构。产物为线状(>70%)和塔状碳化硅的混合纳米结构。TEM表明线状纳米结构是由平均直径约为60nm的碳化硅三角纳米片采取斜靠式相叠而成的,直径大约为25-100nm,长度约为几十微米,并呈现Z字形排列,而塔状纳米结构是由平均直径约为750nm的碳化硅纳米片以水平垒叠的方式形成的,呈现梯田状的边缘形状,从底部到顶端尺寸逐渐缩小,分析表明这些塔状结构为层状分布,单层的厚度约为40nm。两种纳米结构的堆叠方向均为[111]方向。本路线中碘的加入大大降低了合成体系的温度,起到了类似化学气相反应中传输剂的作用。此路线为制备3C-SiC纳米结构提供了一条经济有效且相对温和的合成方法,相比传统高温制备方法体现出明显的优势。受此启发,我们将此合成路线扩展到过渡金属碳化物的合成体系中,采取相应的金属氧化物作为金属源,成功合成了一系列碳化物材料(VC, WC, NbC, TiC),所合成材料具有较高的纯度,为碳化物材料的合成提供了新途径。
     2.通过简单的溶剂热方法,利用镁粉、乙醇镁和乙二醇的一步反应,在600℃下制备了较为规则的蜂窝状石墨化大孔碳材料,孔径约为500-800nin,孔洞的平均壁厚约为5nm, SEM照片显示出内部连通的孔道,并有部分孔洞出现坍塌。测试表明所制备的大孔碳材料比表面积达到54.3m2/g。通过对粗产物的详细表征我们推断反应中原位产生的MgO或MgCO3颗粒对大孔碳材料的形成起到了模板的作用。此合成方法简单易行,利于大规模制备,为多孔碳材料的工业化合成提供了新途径。同时,本路线在较低温度下实现了大孔碳材料的石墨化,对于碳材料的石墨化机理研究具有一定借鉴意义。同时,所制备的大孔碳材料表现出对刚果红的强劲吸附能力,显示出其在水处理领域的潜在应用前景。
     3.以金属镁为还原剂,利用六次甲基四胺的水热裂解反应,在500℃下制备了类石墨烯状碳薄膜材料,其厚度仅为约4nm。分析表明在反应过程中自发生成的氧化镁起到了原位自生模板的作用。同时,我们测试了类石墨烯状碳薄膜材料作为锂离子电池负极材料的电化学性能。实验结果表明,其首次放电比容量达到了1417mAh/g,但首次充电比容量仅为966mAh/g,首次充放电效率为68%,随着SEI膜的逐步形成和稳定,从第二圈以后充放电曲线几乎一致,充放电效率迅速升高,经过4次充放电循环后,充放电效率稳定在95%以上,经过60次充放电循环后其比容量仍高达550mAh/g,远远高于商业用负极石墨材料的理论数值(372mAh/g).并且我们测试了类石墨烯状碳薄膜材料在100mA/g-5000mA/g不同值的电流密度下的比容量及循环表现,发现该材料具有优异的倍率性能。较高的比容量和优异的倍率性能,使得所制备的类石墨烯状碳薄膜材料在动力电源用锂离子电池领域有着潜在的应用价值。
Carbonaceous materials, such as carbon, silicon carbide and transitional metal carbides, have been the research hot in the field of materials science owing to their extensive applications in absorption, electrode materials, semiconductors, superconductors and ultra-hard wear-resistant materials. Based on the full investigation on the current state of the above-mentioned carbonaceous materials, we select the carbonaceous materials as the research object in this thesis. Adopting the bottom-up synthetic methodology of nanomaterials, we explore easily accessible, environment-friendly and cost-effective synthetic routes and have successfully prepared carbonaceous materials including silicon carbide and transitional metal carbide nanomaterials, honeycomb-like graphitic macroporous carbon materials and graphene-like carbon films. Relatively big breakthroughs have been made in the aspects of low-temperature synthesis of carbonaceous materials. The main work contents are summarized as follows:
     1. Utilizing autoclave technology,3C-SiC nanostructure has been prepared at120℃in the existence of iodine using silicon powders as silicon sources, glucose or maltose as carbon sources and magnesium powders as reducing agent. The as-obtained3C-SiC sample is the mixtures of wire-like (over70%) and tower-shaped nanostructure. TEM analysis shows that the wire-like nanostructures which are about25-100nm in diameter and several tens of micrometers in length with a zigzag structure are formed by the leaning-type packing of triangular nanosheets with the average diameter of60nm. And the tower-shaped nanostructures are formed by the level-type packing of nanosheets with the average diameter of750nm and thickness of about40nm.The terrace-like side profiles of the tower-shaped nanostructures with a decreasing size from the bottom to the tip just reflect their layered structures and thickness of about40nm for single layer.The packing directions of both wire-like and tower-shaped nanostructures are along [111].The addition of iodine in this route decreased markedly the synthetic system temperature. The role of iodine was similar to transport agent of chemical vapor transport reaction.This synthetic route provides a cost-effective and relatively mild method for preparing3C-SiC nanostructures and exhibits obvious advantage over traditional high-temperature synthetic methods. Inspired by this methodology, we attempted to develop this synthetic route into the synthesis of transitional metal carbides. Via selecting corresponding metal oxides as metal sources, we have successfully synthesized a series of carbide materials (VC, WC, NbC, TiC) with high purity. Overall, this methodology provides new routes for synthesizing carbide materials.
     2. Via simple solvothermal method, honeycomb-like graphitic macroporous carbon materials was prepared at600℃by one-step reaction of magnesium powders, magnesium ethoxide and ethylene glycol. The diameter of pores is about500-800nm and the average thickness of pore walls is about5nm. SEM photos display interconnected cavity channels and a part of cavities collapsed. The as-prepared macroporous carbon materials exhibit high specific surface area of54.3m2/g. Through detailed characterization of untreated product we deduced that the in situ generated MgO or MgCO3particles played as template in the formation of macroporous carbon materials. This synthetic method is easily accessible to large-scale preparation and provides new routes for industrial fabrication of porous carbon materials. Moreover, this route achieves graphitization of macroporous carbon materials at low temperature, which provides certain lessons for studies on the graphitization mechanism of carbon materials. Moreover, the as-prepared macroporous carbon materials present superior adsorption capacity for Congo red dye, indicating potential applications in water treatment.
     3. Graphene-like carbon films with average thickness of about4nm were prepared at500℃via hydrothermal pyrolysis of hexamethylenetetramine using magnesium as reducing agent. The experiment results showed that the generated MgO acted as in situ template. Meanwhile, we measured the electrochemical properties of graphene-like carbon films as anode materials for Li-ion batteries. The measurement result showed that the first discharge and charge specific capacity was1417mAh/g and966mAh/g, selectively. The first charge-discharge efficiency was merely68%. However, with gradual formation and stabilization of SEI films, the charge-discharge curve was almost uniform since the second cycle and the charge-discharge efficiency increased markedly. After4charge-discharge cycles, the charge-discharge efficiency was stabilized at above95%. The specific capacity was550mAh/g after60charge-discharge cycles, which was higher than the theoretical value of commercial anode graphite materials. Moreover, the as-prepared carbon films exhibited excellent rate properties by measuring the specific capacity and cycle life of this graphene-like carbon films at different current density from100mA/g to5000mA/g. Overall, high specific capacity and excellent rate performance make the graphene-like carbon films applicable in Li-ion batteries.
引文
[1]Casady JB, Johnson RW, States of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review,Solid State Electron., 1996,39,1409.
    [2]Baliga BJ, Power Semiconductor Devices, PWS-Kent, Boston, MA,1996.
    [3]Treu M, Rupp R, Blaschitz P, Commercial SiC device processing:Status and requirements with respect to SiC based power devices,Superlattice Microstruct.,2006,40,380.
    [4]Sha JJ, Park JS, Hinoki T, Kohyama A, Bend stress relaxation of advanced SiC-based fibers and its prediction to tensile creep,Mech. Mater.,2007,39,175.
    [5]Mehregany M, Zorman CA, SiC MEMS:Opportunities and challenges for applications in harsh environments,Thin Solid Films,1999,355-356,518.
    [6]Djenkal D, Goeuriot D, Thevenot F, SiC-reinforcement of an Al2O3-γ AlON composite,J. Eur. Ceram. Soc.,2000,20,2585.
    [7]M"uller G, Kr"otz G, Niemann E, SiC for sensors and high-temperature electronics,Sens. Actuators A:Phys.,1994,43,259.
    [8]Dimitrijev S, Jamet P, Advances in SiC power MOSFET technology,Microelectron. Reliab.,2003,43,225.
    [9]李鹏.碳化硅等含硅纳米材料的溶剂热合成,山东大学,2008.
    [10]张荣,施洪涛,余是东,等,蓝光半导体碳化硅-材料、器件和工艺,固体电子学研究与进展,1996,2,94.
    [11]Peng X H, Nayak S K, Alizadeh A, Varanasi K K, Bhate N, Rowland L B, Kumar S K, First-Principles study of the effects of Polytype and size on energy gaps in SiC nanoclusters,J. Appl. Phys.,2007,102,024304.
    [12]莱利·斯米尔滕斯,碳化硅高温半导体,上海,上海科学技术出版社,1962.
    [13]Dai H J, Wong E W, Lu Y Z, Fan S S, Lieber C M, Synthesis and characterization of carbide nanorods, Nature,1995,375,769.
    [14]Han W Q, Fan S S, Li Q Q, Liang W J, Gu B L, Yu D P, Continuous synthesis and characterization of silicon carbide nanorods, Chem. Phys. Lett.,1997,65,374.
    [15]Kharlamov A I, Kirillova N V, Kaverina S N, Hollow silicon carbide nanostructures, Theor. Exp. Chem.,2002,38,237.
    [16]Sun XH, Li C P, Wong W K, Wong N B, Lee C S, Lee S T, Teo B K, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes, J. Am. Chem. Soc.,2002,124,14464.
    [17]Ye H, Titchenal N, Gogotsi Y, Ko F, SiC nanowires synthesized from electrospun nanofiber templates, Adv. Mater.,2005,17,1531.
    [18]Li Z J, Zhang J L, Meng A L, Guo J Z, Large-area highly-oriented SiC nanowire arrays:synthesis, raman, and photoluminescence properties, J. Phys. Chem. B, 2006,110,22382.
    [19]Romain L L, Ollivier M, Thiney V, Pluchery O C, Martin M, Silicon carbide nanotubes growth:an original approach, J. Phys. D:Appl. Phys.,2013,46, 092001.
    [20]Krishinarao RV, Godokhindi MM, Mukunda PGI, Chakraborty M, Direct pyrolysis of raw rice husks for maximization of silicon carbide whisker formation, J. Am. Ceram. Soc.,1991,74,2869.
    [21]Meng G W, Cui Z, Zhang L D, Phillipp F, Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing,J. Cryst. Growth,2000,209,801.
    [22]Wang D H, Xu D, Wang Q, Hao Y J, Jin G Q, Guo X Y, Tu K N, Periodically twinned SiC nanowires, Nanotechnology,2008,19,215602.
    [23]Wang F L, Zhang L Y, Zhang Y F, SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black, Nanoscale Res. Lett.,2009,4,153.
    [24]Luo X G, Ma W H, Zhou Y, Liu D C, Yang B, Synthesis and Photoluminescence Property of Silicon CarbideNanowires Via Carbothermic Reduction of Silica, Nanoscale Res. Lett.,2010,5,252.
    [25]Chen J, Shi Q, Xin L, A simple catalyst-free route for largescale synthesis of SiC nanowires, J. Alloys Compd,2011,509,6844.
    [26]Krishnan B, Thirumalai R V K G, Koshka Y, Substratedependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates,Cryst GrowthDes.,2011,11,538.
    [27]Yang W, Araki H, Hu Q, Ishikawa N, Suzuki H, Noda T, In situ growth of SiC nanowires on RS-SiC substrate(s), J. Cryst. Growth,2004,264,278.
    [28]Lin M, Loh KP, Boothroyd C, Du A Y, Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones, Appl. Phys. Lett.,2004,85,5388.
    [29]Zhang H F, Wang CM, Wang LS, Helical crystalline SiC/SiO2 coreshell nanowires, Nano Lett.,2002,2,941.
    [30]Wu R B, Zhou K, Wei J, Huang Y Z, Su F, Chen J J, Wang L Y, Growth of Tapered SiC Nanowires on Flexible Carbon Fabric:TowardField Emission Applications,J. Phys. Chem. C,2012,116,12940.
    [31]Lin L W, Synthesis and optical property of large-scale centimetres-long silicon carbidenanowires by catalyst-free CVD route under superatmospheric pressureconditions, Nanoscale,2011,3,1582.
    [32]Zhang D P, Alkhateeb A, Han H M, Mahmood H, Mcllroy D N, Silicon carbide nanosprings, Nano Lett.,2003,3,983.
    [33]Niu J, Wang J N, An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers, Eur. J. Inorg. Chem.,2007,25,4006.
    [34]Zhang H, Ding W Q, He K, Li M, Synthesis and Characterization of Crystalline Silicon CarbideNanoribbons, Nanoscale Res. Lett.,2010,5,1264.
    [35]Meng A L, Zhang M, Zhang J L, Li Z J, Synthesis and field emission properties of silicon carbide nanobelts with amedian ridge, CrystEngComm,2012,14, 6755.
    [36]Li G Y, Li X D, Chen Z D, Wang J, Wang H, Che R C, Large areas of centimeterslong SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route,J. Phys. Chem. C,2009,113,17655.
    [37]Pan J M, Lu Q B, Cheng X N, Yan X H, Zhang C H, Large-scale synthesis of SiC nanowires from polysiloxane andwood powder composites, Cryst. Res. Technol., 2012,47,1237.
    [38]Gao F M, Yang W Y, Wang H T, Fan Y, Xie Z P, An L N, Controlled Al-doped single-crystalline 6H-SiC nanowires,Cryrt. GrowthDes.,2008,8,1461.
    [39]Gao F M, Feng W, Wei G D, Zheng J J, Wang M F, Yang W Y, Triangular prism-shaped p-type 6H-SiC nanowires, CrystEngComm,2012,14,488.
    [40]Seeger T, Kohler-Redlich P, Ruhle M, Synthesis of nanometer-sized SiC whiskers in the Arc-discharge, Adv. Mater.,2000,12,279.
    [41]Liu X M, Yao K F, Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables, Nanotechnology,2005,16,2932.
    [42]Shi W S, Zheng Y F, Peng H Y, Wang N, Lee C S, Lee S T, Laser ablation synthesis and optical characterization of silicon carbide nanowires,J.Am. Ceram. Soc.,2000,83,3228.
    [43]Hou H L, Gao F M, Wei G D, Wang M F, Zheng J J, Tang B, Yang W Y, Electrospinning 3C-SiC Mesoporous Fibers with High Purities andWell-Controlled Structures, Cryst. Growth Des.,2012,12,536.
    [44]Harvey A L, Kenneth J B J, Electrospinning of beta silicon carbide nanofibers, Mater. Lett.,2009,63,2361.
    [45]Xie W, Mobus G, Zhang S W, Molten salt synthesis of silicon carbide nanorods using carbon nanotubes astemplates, J. Mater. Chem.,2011,21,18325.
    [46]Wu R B, Zhou K, Yang Z H, Qian X K, Wei J, Liu L, Huang Y Z, Kong L B, Wang L Y, Molten-salt-mediated synthesis of SiC nanowires formicrowave absorption applications, CrystEngComm,2013,15,570.
    [47]Wagner R S,Ellis W C, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett.,1964,4,89.
    [48]Liu Z,Srot V,Aken P A V, Yang J C, Ruhle M, Nanostructure characterization of iron catalyst assisted SiC nanowires, Microscopy and Microanalysis,2001,13, 754.
    [49]Wu R B, Yang G Y, Gao M X, Li B S, Chen J J, Zhai R, Pan Y, Growth of SiC nanowires from NiSi solution, Cryst. Growth Des.,2009,9,100.
    [50]Shen G Z, Bando Y, Ye C H, Liu B D, Golberg D, Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires, Nanotechnology, 2006,17,3468.
    [51]Wang H T, Xie Z P, Yang W Y, Fang J Y, An L N, Morphology control in the vapor-liquid-solid growth of SiC nanowires, Oyst. Growth Des.,2008,8,3893.
    [52]Deng S Z, Wu Z S, Zhou J, Xu N S, Chen J, Chen J, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Chem. Phys. Lett.,2002,356,511.
    [53]Yang G Z, Cui H, Sun Y, Gong L, Chen J, Jiang D, Wang C X, Simple catalyst-free method to the synthesis of β-SiC nanowires and their field emission properties,J. Phys. Chem. C,2009,113,15969.
    [54]Wu R B, Wu L L, Yang G Y, Pan Y, Chen J J, Zhai R, Lin J, Fabrication and photo luminescence of bicrystalline SiC nanobelts, J. Phys. D:Appl. Phys.,2007, 40,3697.
    [55]Du X W, Zhao X, Jia S L, Lu Y W, Li J J, Zhao N Q, Direct synthesis of SiC nanowires by multiple reaction VS growth, Mater. Sci. Eng. B,2007,136,72.
    [56]Park B, Ryu Y, Yong K, Growth and characterization of silicon carbide nanowires, Surf. Rev. Lett,2004,11,373.
    [57]Yang T H, Chen C H, Chatterjee A, Li H Y, Lo J T, Wu C T, Chen K H, Chen L C, Controlled growth of silicon carbide nanorods by rapid thermal process and their field emission properties, Chem. Phys. Lett.,2003,379,155.
    [58]Xing Y J, Hang Q L, Yan H F, Pan H Y, Xu J, Yu D P, Xi Z H, Xue Z Q, Feng S Q, Solid-liquid-solid (SLS) growth of coaxial nanocables:silicon carbide sheathed with silicon oxide, Chem. Phys. Lett.,2001,345,29.
    [59]Camacho E L, Fernandez M, Aleixandre C G, Tailormade SiC-based nanocables by the control of the methane concentration, J. Phys. D:Appl. Phys.,2009,42, 045302.
    [60]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A, Electric Field Effect in Atomically Thin Carbon Films, Science,2004,306,666.
    [61]Freeman C L, Claeyssens F, Allan N L, Harding J H, Graphitic Nanofilms as Precursors to Wurtzite Films:Theory, Phys. Rev. Lett.,2006,96,066102.
    [62]Claeyssens F, Freeman C L, Allan N L, Sun Y, Ashfold M N R, Harding J H, Growth of ZnO thin films-experiment and theory, J. Mater. Chem.,2005,15, 139.
    [63]Lin S S, Light-Emitting Two-Dimensional Ultrathin Silicon Carbide, J. Phys. Chem. C,2012,116,1951.
    [64]Lou X W, Archer L A, Yang Z C, Hollow Micro-/Nanostructures:Synthesis and Applications, Adv. Mater,2008,20,3987.
    [65]Zhang Y, Shi E W, Chen Z Z, Li X B, Xiao B, Large-scale fabrication of silicon carbide hollow spheres, J. Mater. Chem.,2006,16,4141.
    [66]Ye J K, Zhang S W, Lee W E, Novel low temperature synthesis and characterisation of hollow siliconcarbide spheres, Microporous Mesoporous Mater.,2012,152,25.
    [67]Hoffmann C, Biemelt T, Seifert A, Pinkert K, Gemming T, Spange S, Kaskel S, Polymer-derived nanoporous silicon carbide with monodisperse sphericalpores, J. Mater. Chem.,2012,22,24841.
    [68]Wang H, Yu J S, Li X D, Kim D P, Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template, Chem. Commun., 2004,2352.
    [69]Yuan X Y, Lu J W, Yan X B, Hu L T, Xue Q J, Preparation of ordered mesoporous silicon carbide monoliths via preceramicpolymer nanocasting, Microporous Mesoporous Mater.,2011,142,754.
    [70]Ji Z H, Han W J, Ye L, Jiang Y B, Li H, Zhao T, Synthesis and characterization of ordered mesoporous silicon carbide with highspecific surface area, Mater. Lett,2011,65,185.
    [71]Gao P C, Lei Y, Perez A F C, Rajoua K, Zitoun D, Favier F, New topotactic synthetic route to mesoporous silicon carbide, J. Mater. Chem.,2011,21,15798.
    [72]Neumann M, Noske R, Taubert A, Tiersch B, Strauch P, Highly structured, biomorphous β-SiC with high specific surface area fromEquisetaceae,J. Mater. Chem.,2012,22,9046.
    [73]Xi G C, Liu Y K, Liu X Y, Wang X Q, Qian Y T, Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures,J. Phys. Chem. B,2006, 110,14172.
    [74]Lu Q Y, Hu J Q, Tang K B, Qian Y T, Growth of SiC nanorods at low temperature,Appl. Phys. Lett.,1999,75,507.
    [75]Hu J Q, Lu Q Y, Tang K B, Deng B, Jiang R R, Qian Y T, Yu W C, Zhou G E, Liu X M, Wu J X, Synthesis and Characterization of SiC Nanowires through a Reduction-CarburizationRoute,J. Phys. Chem. B,2000,104,5251.
    [76]Shen G Z, Chen D, Tang K B, Qian Y T, Zhang S Y, Silicon carbide hollow nanospheres, nanowiresand coaxial nanowires,Chem. Phys. Lett.,2003,375,177.
    [77]Xi G C, He Y T, Wang C, Molecular Template Assisted Growth of Ultrathin Silicon Carbide Nanowireswith Strong Green Light Emission and Excellent Field-Emission Properties, Chem. Eur. J.,2010,16,5184.
    [78]Pang Q L, Xu L Q, Ju Z C, Xing Z, Yang L S, Hao Q, Qian Y T,3C-SiC nanowires and micro-scaled polyhedra:Synthesis, characterization andProperties,J. Alloys Compd,2010,501,60.
    [79]Li T, Xu L Q, Wang L C, Yang L S, Qian Y T, Synthesis and characterization of 3C and 2H-SiC nanocrystals starting from SiO2,C2H5OH and metallic Mg,J. Alloys Compd,2009,484,341.
    [80]Ju Z C, Xing Z, Guo C L, Yang L S, Xu L Q, Qian Y T, Sulfur-Assisted Approach for the Low-Temperature Synthesis of β-SiCNanowires,Eur J. Inorg. Chem., 2008,24,3883.
    [81]Xi G C, Peng Y Y, Wan S M, Li T W, Yu W C, Qian Y T, Lithium-Assisted Synthesis and Characterization of Crystalline 3C-SiC Nanobelts,J. Phys. Chem. B,2004,108,20102.
    [82]Dong C, Zou G F, Liu E K, Xi B J, Huang T, Qian Y T, Synthesis of Kelp-Like Crystallineβ-SiC Nanobelts and their ApicalGrowth Mechanism, J. Am. Ceram. Soc.,2007,90,653.
    [83]Hu J Q, Lu Q Y, Tang K B, Qian Y T, Zhou G E, Liu X M, Wu J X, A New Rapid Reduction-Carbonization Route toNanocrystallineβ-SiC,Chew. Mater.,1999,11, 2369.
    [84]Ying Y C, Gu Y L, Li Z F, Gu H Z, Cheng L Y, Qian Y T, A simple route to nanocrystalline silicon carbide,J. Solid State Chem.,2004,177,4163.
    [85]Zou G F, Dong C, Xiong K, Li H, Jiang C L, Qian Y T, Low-temperature solvothermal route to 2H-SiC nanoflakes,Appl. Phys. Lett,2006,88,071913.
    [86]Li P, Xu L Q, Qian Y T, Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires,Cryst. Growth Des.,2008,8,2431.
    [87]Ju Z C, Xu L Q, Pang Q L, Xing Z, Ma X J, Qian Y T, The synthesis of nanostructured SiC fromwaste plastics and silicon powder,Nanotechnology,2009, 20,355604.
    [88]Xi G C, Yu S J, Zhang R, Zhang M, Ma D K, Qian Y T, Crystalline Silicon Carbide Nanoparticles Encapsulated in Branched Wavelike CarbonNanotubes: Synthesis and Optical Properties,J.Phys. Chem. B,2005,109,13200.
    [89]Ju Z C, Ma X C, Fan N, Li P, Xu L Q, Qian Y T, High-yield synthesis of single-crystalline 3C-SiC nanowiresby a facile autoclave route,Mater. Lett.,2007, 61,3913.
    [90]Stroms E K,The Refractory Carbides, Refractory Materials Series, NewYork, Academic Press,1967.
    [91]Nagai M, Miyao T, Tuboi T, Hydrodesulfurization of dibenzothiophene onalumina-supported molybdenum nitride,Catal.Lett.,1993,18,9.
    [92]Woo Y-C, Kang H-J, Kim DJ,Formation of TiC particleduring carbothermal reduction ofTiO2,Eur.Ceram.Soc,2007,27,719.
    [93]Lei M, Zhao HZ, Yang H, Song B, Tang W H, Synthesis of transitionmetal carbide nanoparticles through melamine and metaloxides, Eur.Ceram. Soc.,2008, 28,1671.
    [94]Fitzsimmons M, Sarin V K, Development of CVD WC-Cocoatings,Surf. Coat.Technol.,2001,137,158.
    [95]Norin L, Jansson U, Carlsson J-O, Chemical vapour deposition ofmolybdenum carbides using C6o as a carbon souvce,Thin Solid Films,1997,293,133.
    [96]Tsuchida T, Kakuta T, MA-SHS of NbC and NbB2 in airfrom the Nb/B/C powder mixtures, Eur. Ceram. Soc.,2007,27,527.
    [97]Contreras L, Turrillas X, Vaughan GBM, Kvick A, Rodriguez MA, Time-resolved XRD study of TiC-TiB2 composites obtained by SHS, Acta Mater., 2004,52,4783.
    [98]Patel P, Seok K I, Kumta PN, Nanocomposites of silicon/titaniumcarbide synthesized using high-energy mechanical milling for use asanodes in lithium-ion batteries,Mater.Sci. Eng. B,2005,116,347.
    [99]Arceo L D B, Orozco E, Leon H M, Gonzalez E P, Guerrero F L, Febles V G, Nanostructures obtainedfrom a mechanically alloyed and heat treated molybdenumcarbide, J. Alloys Compd.,2007,434-435,799.
    [100]Sunil B R, Sivaprahasam D, Subasri R, Microwave sintering ofnanocrystalline WC-12Co:Challenges and perspectives, Int. J. Refract.Met. Hard Mater.,2010, 28,180.
    [101]Golkar G, Zebarjad SM, Khaki J V, Optimizing the ignitionbehavior of microwave-combustion synthesized Al2O3/TiC compositeusing Taguchi robust design method, J. Alloys Compd.,2009,487,751.
    [102]Ma J H, Wu M N, Du Y H, Chen S Q, Li G X, Hu J B,Synthesis of nanocrystalline titanium carbide with a new convenient routeat low temperature and its thermal stability,Mater. Sci. Eng. B,2008,153,96.
    [103]Ma J H, Wu M N, Du Y H, Chen S Q, Jin W, Fu L, Yang Q Y, Wen A F, Formation of nanocrystallineniobium carbide (NbC) with a convenient route at low temperature, J.Alloys Compd.,2009,475,415.
    [104]Ma J H, Wu M N, Du Y H, Chen S Q,Ye J, Jin L L, Low temperature synthesis of vanadium carbide (VC),Mater. Lett.,2009,63,905.
    [105]Geim A K, Novoselov K S, The rise of graphene, Nature Mater.,2007,6,183.
    [106]Li X, Cai W, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Junq I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science,2009,324,1312.
    [107]Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotech.,2010,5,574.
    [108]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A D, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science,2006,312, 1191.
    [109]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007,45,1558.
    [110]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K, Fine Structure Constant Defines Visual Transparency of Graphene, Science,2008,320,1308.
    [111]Xia F N, Mueller T, Lin Y M, Garcia A V, Avouris P, Ultrafast graphene photodetector, Nature Nanotech.,2009,4,839.
    [112]Mueller T, Xia F N, Avouris P, Graphene photodetectors for high-speed optical communications, Nature Photonics,2010,4,297.
    [113]Lee J, Kim J, Hyeon T, Recent Progress in the Synthesis of Porous Carbon Materials, Adv. Mater.,2006,18,2073.
    [114]Zhang F, Wang K X, Li G D, Chen J S, Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance, Electrochem. Commun.,2009,11,130.
    [115]Xia Y D, Walker G S, Grant D M, Mokaya R, Hydrogen Storage in High Surface Area Carbons:Experimental Demonstration of the Effects of Nitrogen Doping,J. Am. Chem. Soc.,2009,131,16493.
    [116]Xia Y D, Mokaya R, Walker G S, Zhu Y Q, Superior CO2 Adsorption Capacity on N-doped, High-Surface-Area, Microporous Carbons Templated from Zeolite, Adv. Energy Mater,2011,1,678.
    [117]Ma Z X, Kyotani T, Tomita A, Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite, Chem. Commun.,2000, 2365.
    [118]Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A, Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure, Chem. Mater.,2001,13,4413.
    [119]Hou P X, Orikasa H, Yamazaki T, Matsuoka K, Tomita A, Setoyama N, Fukushima Y, Kyotani T, Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption, Chem. Mater,2005,17,5187.
    [120]Lee J, Kim J, Lee Y, Yoon S, Oh S M, Hyeon T, Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites,Chem. Mater,2004,16,3323.
    [121]Lukens W W, Stucky G D, Synthesis of Mesoporous Carbon Foams Templated by Organic Colloids,Chem. Mater,2002,14,1665.
    [122]Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, J. Am. Chem. Soc.,2000,122,10712.
    [123]Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature,2001,412,169.
    [124]Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y, A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly, Chem. Mater., 2006,18,4447.
    [125]Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y, A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3?d Bicontinuous Cubic Structure, J. Am. Chem. Soc., 2005,127,13508.
    [126]Zakhidov A A, Baughman R H, Iqbal Z, Cui C X, Khayrullin I, Dantas S O, Marti I, Ralchenko V G, Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths,Science,1998,282,897.
    [127]Kang S, Yu J S, Kruk M, Jaroniec M, Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties,Chem. Commun.,2002,1670.
    [128]Yu J S, Kang S, Yoon S B, Chai G, Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter, J. Am. Chem. Soc.,2002,124,9382.
    [129]Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E, Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell, J. Phys. Chem.B,2004,108,7074.
    [130]Yu J S, Yoon S B, Chai G S, Ordered uniform porous carbon by carbonization of sugars, Carbon,2001,39,1442.
    [131]Lei Z B, Zhang Y G, Wang H, Ke Y X, Li J M, Li F Q, Xing J Y, Fabrication of well-ordered macroporous active carbon with a microporous framework, J. Mater. Chem.,2001,11,1975.
    [132]Su F B, Zhao X S, Wang Y, Zeng J H, Zhou Z C, Lee J Y, Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications, J. Phys. Chem. B,2005,109, 20200.
    [133]Chai G S, ShinI S, Yu J S, Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells, Adv. Mater.,2004,16,2057.
    [134]Baumann T F, Satcher J H, Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons, Chem. Mater.,2003,15,3745.
    [135]Adelhelm P, Hu Y S, Chuenhom L, Antnietti M, Smarsly B M, Maier J, Generation of Hierarchical Meso-and Macroporous Carbon from Mesophase Pitch by Spinodal Decomposition using Polymer Templates, Adv. Mater.,2007, 19,4012.
    [1]Powell J A, Matus L G, Kuczmarski M A, Growth and Characterization of Cubic SiC Single-Crystal Films on Si, J. Electrochem. Soc.,1987,134,1558.
    [2]FisselA, Schroter B,Richter W, Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy, Appl.Phys. Lett.,1995,66, 3182.
    [3]Feng Z C, Mascarenhas A J, Choyke W J,Powell J A, Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si, J. Appl. Phys.,1988,64, 3176.
    [4]Cao F L,Sun H, Theoretical study on the possibility of using silicon carbide nanotubes as dehydrogenation catalysts for ammonia-borane,RSC Adv.,2012,2, 7561.
    [5]Li Z M, Zhou W C, Lei T M, Luo F, Huang Y X,Cao Q X, Microwave dielectric properties of SiC(B) solid solution powder prepared by sol-gel,J. Alloys Compd.,2009,475,506.
    [6]Zhao D L, Luo F,Zhou W C, Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen,J. Alloys Compd.,2010,490, 190.
    [7]Kudrenko E, Roddatis V, Zhokhov A,Zverkova I, Khodos I, Emelchenko G, Morphology of SiC nanowires grown on the surface of carbon fibers,RSC Adv.,2012,2,4913.
    [8]Zhang Y F, Tang H, Wang N, Yu D P, Lee C S, Bello I,Lee S T, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett.,1998,72,1835.
    [9]Niu J J,Wang J N, An Approach to the Synthesis of Silicon Carbide Nanowires by Simple Thermal Evaporation of Ferrocene onto Silicon Wafers, Eur. J. Inorg. Chem.,2007,25,4006.
    [10]Meng G W, Cui Z, Zhang L D,Phillip F, Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles,J. Cryst. Growth,2000,209,801.
    [11]Narayan J, Raghunathan R, Chowdhury R,Jagannadham K, Mechanism of combustion synthesis of silicon carbide, J. Appl. Phys.,1994,75,7252.
    [12]Bao K Y, Liu S Z, Shi L, Xiong S L, Li J, Hu X B, Cao J,Qian Y T, GaN taper rods:Solid-phase synthesis, crystal defects, and optical properties,J. Solid State Chem.,2008,181,1634.
    [13]Wang L C, Zhang J H, Xu L Q, Qian Y T, Honeycomb-like graphitic ordered macroporous carbon prepared by pyrolysis of ammonium bicarbonate, Mater. Res. Bull.,2011,46,1703.
    [14]Bai Z C, Ju Z C, Wang L C, Sun B, Sun C H, Xu L Q, Qian Y T, Fe3BO5@carbon core-shell urchin-like structures prepared via a one-step co-pyrolysis method,Mater. Lett.,2011,65,2479.
    [15]Chen B, Yang L S, Heng H, Chen J Z, Zhang L F, Xu L Q, Qian Y T, Yang J, Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals,J. Solid State Chem.,2012,194,219.
    [16]Xi G C, Peng Y Y, Wan S M, Li T W, Yu W C, Qian Y T, Lithium-Assisted Synthesis and Characterization of Crystalline 3C-SiC Nanobelts,J.Phys. Chem. B,2004,108,20102.
    [17]Lu Q Y, Hu J Q, Tang K B, Qian Y T, Zhou G E, Liu X M, Zu J S, Growth of SiC nanorods at low temperature, Appl. Phys. Lett.,1999,75,507.
    [18]Ju Z C, Xu L Q, Pang Q L, Xing Z, Ma X J, Qian Y T, The synthesis of nanostructured SiC from waste plastics and silicon powder,Nanotechnology,2009, 20,355604.
    [19]Li T, Xu L Q, Wang L C, Yang L S, Qian Y T, Synthesis and characterization of 3C and 2H-SiC nanocrystals starting from SiO2, C2H5OH and metallic Mg,J. Alloys Compd.,2009,484,341.
    [20]Li P, Xu L Q, Qian Y T, Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires,Cryst. Growth Des.,2008,8,2431.
    [21]Ju Z C, Xing Z, Guo C L, Yang L S, Zu L Q, Qian Y T, Sulfur-Assisted Approach for the Low-Temperature Synthesis of β-SiC Nanowires,Eur.J.Inorg. Chem.,2008,24,3883.
    [22]Wang J F, Ji S Y, Mimura K, Sato Y, Song S H, Yamane H, Shimada M,Isshiki M, Growth of β-FeSi2 single crystals by the chemical vapor transport method, Phys. Stat. Sol. (a),2004,201,2905.
    [23]ChichibuS, Shishikura M, Ino J,Matsumoto S, Electrical and optical properties of CuAlSe2 grown by iodine chemical vapor transport, J. Appl. Phys.,1991,70, 1648.
    [24]Arora S K, Patel D H,Agarwal M K, Electrical and optical behaviour of vapour-grown SnS2 crystals,J.Mater. Sci.,1994,29,3979.
    [25]Xu F, Xie Y, Zhang X, Zhang S Y,Shi L, A benzene-thermal metathesis route to pure metastable rocksalt GaN, New J. Chem.,2003,27,565.
    [26]Li F X, Fu L, Ma X J, Sun C H, Wang L C, Guo C L,Qian Y T, Additive-Assisted Nitridation to Synthesize Si3N4 Nanomaterials at a Low Temperature, J. Am. Ceram. Soc.,2009,92,517.
    [27]Wang C R, Tang K B, Yang Q, Shen G Z, Hai B, An C H, Zuo J,Qian Y T, Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method,J. Solid State Chem.,2001,160,50.
    [28]Ju Z C, Ma X C, Fan N, Li P, Xu L Q,Qian Y T, High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route,Mater. Lett.,2007, 61,3913.
    [29]Xu W J, Xu Y, Sun X Y, Liu Y Q, Wu D,Sun Y H, Fabrication of tower like β-SiC by sol-gel and carbothermal reduction processing, New Carbon Mater.,2006,21, 167.
    [30]Niu J J,Wang J N, A Simple Route to Synthesize Scales of Aligned Single-crystalline SiC Nanowires Arrays with Very Small Diameter and Optical Properties,J.Phys. Chem.B,2007,111,4368.
    [31]Hu P G, Liu Y Q, Wang X B, Fu L,Zhu D B, Tower-like structure of ZnO nanocolumns, Chem. Comm.,2003,11,1304.
    [32]Shen G Z, Bando Y S,Golberg D, Self-Assembled Hierarchical Single-Crystalline β-SiC Nanoarchitectures, Cryst. GrowthDes.,2007,1,35.
    [33]Wang Z, Qian X F, Yin J,Zhu Z K, Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route, Langmuir,2004, 20, 3441.
    [34]Grzegory I, Bockowski M, Lucznik B, Krukowski S, Wroblewski M,Porowski S, MRS Internet J. Nitride Semicond.Res.,1996,1,20.
    [35]Bockowski M, Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure, Cryst. Res. Technol.,2001,36,771.
    [1]Wang DW, Li F, Liu M, Lu GQ, Cheng HM,3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage, Angew. Chem. Int. Ed,2008,47,373.
    [2]Hu YS, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J, Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability, Adv. Funct.Mater.,2007,17,1873.
    [3]Lei ZB, Xiao Y, Dang LQ, You WS, Hu GS, Zhang J, Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure, Chem. Mater.,2007,19,477.
    [4]Maldonado-Hodar FJ, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y, Catalytic Graphitization of Carbon Aerogels by Transition Metals, Langmuir,2000, 16,4367.
    [5]Zhou Z, Yan Q, Su F, Zhao XS, Replicating novel carbon nanostructures with 3D macroporous silica template, J. Mater. Chem.,2005,15,2569.
    [6]Onyestyak G, Valyon J, Papp K, Novel biomorphous zeolite/carbon composite having honeycomb structure,Mater. Sci. Eng.A,2005,412,48.
    [7]Fang ZG, Li CS, Sun HY, Zhang HT, Zhang JS, The electromagnetic characteristics of carbon foams, Carbon,2007,45,2873.
    [8]Ejima H, Iwata T, Yoshie N, Morphology-Retaining Carbonization ofHoneycomb-Patterned Hyperbranched Poly(phenylene vinylene) Film, Macromolecules,2008,41,9846.
    [9]Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K, Carbon foams prepared from polyimide using urethane foam template,Carbon,2004,42, 497.
    [10]Zhao J, Yang L, Li F, Yu R, Jin C, Structural evolution in the graphitization process of activated carbon by high-pressure sintering,Carbon,2009,47,744.
    [11]Sevilla M, Fuertes AB, Catalytic graphitization of templated mesoporous carbons,Carbon,2006,44,468.
    [12]Xia BY, Wang JN, Wang XX, Niu JJ, Sheng ZM, Hu MR, Yu QC, Synthesis and Application of Graphitic Carbon with High Surface Area, Adv. Funct.Mater.,2008,18,1790.
    [13]Shi L, Gu YL, Chen LY, Yang ZH, Ma JH, Qian YT, Preparation of graphite sheets via dechlorination of hexachlorobutadiene, Inorg. Chem. Commun.,2004, 7,744.
    [14]Li HB, Zhu YC, Mao ZH, Gu J, Zhang JH, Qian YT, Synthesis and characterization of carbon fibrils formed by stacking graphite sheets of nanometer thickness, Carbon,2009,47,328.
    [15]Kong QH, Zhang JH, Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene, Polym. Degrad. Stabil.,2007,92,2005.
    [16]Wang LC, Zhang J H, Xu L Q, Qian Y T, Honeycomb-like graphitic ordered macroporous carbon prepared bypyrolysis of ammonium bicarbonate, Mater. Res. Bull.,2011,46,1703.
    [17]Shi L, Lin HL, Bao KY, Cao J, Qian YT, Controlled Growth of Carbon Spheres Through the Mg-Reduction Route, Nanoscale Res. Lett.,2010,5,20.
    [18]Zhang JH, Du J, Qian Y T, Xiong S L, Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene, Mater. Res. Bull.,2010,45,15.
    [19]Foy D, Demazeau G, Florian P, Massiot D, Labruge're C, Goglio G, Modulationof the crystallinity of hydrogenated nitrogen-rich graphitic carbon nitrides,J. Solid StateChem.,2009,182,165.
    [20]Park JY, Levenspiel O, The crackling core model for the reaction of solid particles,Chem. Eng. Sci.,1975,30,1207.
    [21]Schulmeyer WV, Ortner HM, Mechanisms of the hydrogen reduction of molybdenum oxides, Int. J. Refrac. Met. Hard Mater,2002,20,261.
    [22]Wrobel R, Arabczyk W, Solid-Gas Reaction with Adsorption as the Rate Limiting Step, J. Phys. Chem.A,2006,110,9219.
    [23]Xu L Q, Zhan J H, Hu J Q, Bando Y, Yuan X L, Sekiguchi T, Mitome M, Golberg D, High-Yield Synthesis of Rhombohedral Boron Nitride TriangularNanoplates, Adv. Mater.,2007,19,2141.
    [24]Mattia D, Ban HH, Gogotsi Y, Wetting of CVD Carbon Films by Polar and Nonpolar Liquids and Implications for Carbon Nanopipes, Langmuir,2006,22, 1789.
    [25]Cai W Q, Yu J G, Cheng B, Su B L, Jaroniec M, Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment, J. Phys. Chem. C,2009,113,14739.
    [1]Geim A K,Novoselov K S, The rise of graphene,Nature Mater,2007,6,183.
    [2]Lee C G, Wei X D, Kysar J W, Hone J, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,Science,2008,321,385.
    [3]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A, Electric Field Effect in Atomically Thin Carbon Films,Science,2004,306,666.
    [4]Scott B J, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L, Electromechanical Resonators from Graphene Sheets,Science,2007,315,490.
    [5]Stoller M D, Park S, Zhu Y, An J,Ruoff R S, Graphene-Based Ultracapacitors,Nano Lett.,2008,8,3498.
    [6]Claire B, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N,Heer W A, Electronic Confinement and Coherence in Patterned Epitaxial Graphene,Science,2006,312,1191.
    [7]Sasha S, Dikin DA, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S, Graphene-based composite materials,Nature, 2006,442,282.
    [8]Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,Nature,2009,458,872.
    [9]Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E G, Dai H J, Highly conducting graphene sheets and Langmuir-Blodgett films,Nature Nanotech,2008, 3,538.
    [10]Wang H L, Robinson J T, Li X L, Dai H J, Solvothermal Reduction of Chemically Exfoliated Graphene Sheets,Am. Chem. Soc.,2009,131,9910.
    [11]Choucair M, Thordarson P, Stride J A, Gram-scale production of graphene based on solvothermal synthesis and sonication,Nature Nanotech.,2009,4,30.
    [12]Zhang W X, Cui J C, Tao C A, Wu Y G, Li Z P, Ma L, Wen Y Q, Li G T, A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach,Ang. Chem. Int. Ed.,2009,48,5864.
    [13]Wang L C, Zhang J H, Xu L Q, Qian Y T, Honeycomb-like graphitic ordered macroporous carbon prepared by pyrolysis of ammonium bicarbonate,Mater. Res. Bull,2011,46,1703.
    [14]Winter M,Brodd R J, What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev.,2004,104,4245.
    [15]Armand M,Tarascon J M, Building better batteries,Nature,2008,451,652.
    [16]Wang F, Zhao M S, Song X P, The improved electrochemical performance of SnSb-based alloy anode materials for Li-ion batteries,J.Alloys Compd,2009, 472,55.
    [17]AboulaichA, Mouyane M, Robert F, Lippens P E, Olivier-Fourcade J, Willmann P, Jumas J C, New Sn-based composites as anode materials for Li-ion batteries,J. Power Sour.,2007,174,1224.
    [18]Wang X Y, Wen Z Y, Liu Y, Xu X G, Lin J, Preparation and characterization of a new nanosized silicon-nickel-graphite composite as anode material for lithium ion batteries,J. Power Sour.,2009,189,121.
    [19]Xiang J Y, Tu J P, Zhang L, Zhou Y, Wang X L, Shi S J, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries,Electrochimica Acta,2010,55,1820.
    [20]Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,Nature,2000,407,496.
    [21]Sun Q,Fu ZW, Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries,Electrochimica Acta,2008,54,403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700