金属—有机骨架材料MIL-101对典型挥发性有机物(VOCs)的吸附性能及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯系物、醛酮等典型挥发性有机物(VOCs)可以造成严重的环境污染,并对人体健康产生巨大危害。金属有机骨架材料MIL-101具有超高比表面积以及巨大的孔体积,在气体吸附方面具有很大的应用潜力。本文在合成具有超高表面积和孔体积的MIL-101及测定其对典型VOCs的吸附等温线的基础上,研究了MIL-101对VOCs的吸附性能机理及水蒸气和甲苯对苯的竞争吸附。研究结果为金属有机骨架材料MIL-101吸附净化VOCs提供理论依据和技术支持。论文取得了一些有价值的成果:
     (1)MIL-101对丙酮及苯系物优秀的吸附性能,且丙酮及苯系物的饱和吸附体积与VOCs的分子横截面积之间存在负线性相关性。同时发现,MIL-101对进入其孔隙的VOCs分子的尺寸和形状具有选择性:丙酮、苯、甲苯、乙苯及对二甲苯以尺寸最小截面方式进入材料孔隙。间二甲苯和邻二甲苯以尺寸最大截面方式进入材料孔隙。二甲苯中甲基的排列方式及其空间位阻效应是决定它们进入MIL-101孔隙的重要因素。
     (2)水蒸气与苯在MIL-101上发生竞争吸附,导致苯在MIL-101上的吸附量随着相对湿度的增加而减小。在90%高湿度时,MIL-101对苯的吸附量保持在655 mg/g,是其在零湿度时饱和吸附量的68.6%,表明MIL-101在高湿度下仍能有效吸附净化VOCs。
     (3)苯与甲苯在MIL-101上发生竞争吸附,导致苯在MIL-101上的吸附量随着甲苯相对压力的增加而减小。二者的竞争吸附行为符合理想溶液吸附理论。在低相对压力时,苯和甲苯的互溶作用会影响理想溶液吸附理论拟合的准确度。
Volatile organic compounds (VOCs) existed in ambient environment may bring on serious environmental and health risks including photochemistry smog. Metal-organic frameworks (MOFs) MIL-101 with extremely large pore volume and high surface area, is a highly potential candidate as adsorbent on gas adsorption. Therefore, the excellent MIL-101 was hydrothermally synthesized in this paper to examine its adsorption performance for VOCs and the influences of molecular properties such as size and shape of VOCs. Meanwhile, the influences of competition adsorption of water vapor and toluene towards benzene on MIL-101 was also investigated. All studies in this paper was aimed to provide some theoretical basis and technical support for the sorption and removal of VOCs contamination. The main results are as follows:
     1. MIL-101 shows superior adsorption capacity for acetone and BTEX. Adsorption of VOCs on MIL-101 is captured by a pore filling mechanism, showing the size and shape selectivity of VOC molecules into MIL-101 pores. These proves to be a negative linear relationship between the volume adsorption capacity of VOCs and their molecular cross-sectional area. Mostly, VOC molecules, such as acetone, benzene, toluene, ethylbenzene and p-xylene, enter into MIL-101 pores with the plane having the minimum diameter. However, m-xylene and o-xylene enter into the MIL-101pores with the plane having the maximum diameter because the two methyl groups, existing in o-xylene and m-xylene with an angle, blocked the pores with diameters smaller than their lengths.
     2. Competition of benzene by water molecules was observed on the surface of MIL-101, which lead to the decreasing of benzene adsorption capacity on MIL-101 with the increasing of relative humidity. At a relative humidity of 90%, adsorption capacity of benzene on MIL-101 is of 655 mg/g (68.6% of the benzene adsorption capacity on MIL-101 without water molecules), which implies that MIL-101 is a excenlent adsorbent in the application of VOC removal at relatively high humidity.
     3. Competition between benzene and toluene was also observed when they adsorbed onto MIL-101 simultaneously, showing that adsorption of benzene on MIL-101 decreased with the increasing of toluene concentrations. This competitive behavior can be well described by the ideal adsorption solution theory. In addition, mutually dissolved interaction between benzene and toluene both at relatively low concentrations may occur and result in the deviation of the prediction of the ideal adsorption solution theory from the experimental data.
引文
[1]WHO, Indoor air quality:Organic pollutants. Euro reports and studies No. 111 (1989).
    [2]D. Stoye, B. Marwald, W. Plehn, Paints and coatings,1. Introduction.,2006.
    [3]P. Wolkoff, C.K. Wilkins, P.A. Clausen, G.D. Nielsen, Organic compounds in office environments-sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air,16 (2006) 7-19.
    [4]J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Homer, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immun., 121 (2008)585-591.
    [5]H. Geiger, K.H. Becker, P. Wiesen, Effect of gasoline formulation on the formation of photosmog:a box model study. J. Air Waste Manag. Assoc.,53 (2003)425-433.
    [6]J.E. Cometto-Muniz, W.S. Cain, M.H. Abraham, Detection of single and mixed VOCs by smell and by sensory irritation. Indoor Air,14 (2004) 108-117.
    [7]A.E. Pouli, D.G. Hatzinikolaou, C. Piperi, A. Stavridou, M.C. Psallidopoulos, J.C. Stavrides, The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on lung epithelial cells. Free Radical Bio. Med.,34 (2003) 345-355.
    [8]G.R. Parmar, N.N. Rao, Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol.,39 (2009) 41-78.
    [9]V.R. Choudhary, K. Mantri, Adsorption of aromatic hydrocarbons on highly siliceous MCM-41. Langmuir,16 (2000) 7031-7037.
    [10]J. Pires, A. Carvalho, M.B. Carvalho, Adsorption of volatile organic compounds in Y zeolites and pillared clays. Micropor. Mesopor. Mat.,43 (2001) 277-287.
    [11]H.F. Cheng, M. Reinhard, Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environ. Sci. Technol.,40 (2006) 7694-7701.
    [12]P. Liu, C. Long, Q.F. Li, H.M. Qian, A.M. Li, Q.X. Zhang, Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin. J. Hazard. Mater.,166 (2009) 46-51.
    [13]D. Das, V. Gaur, N. Verma, Removal of volatile organic compound by activated carbon fiber. Carbon,42 (2004) 2949-2962.
    [14]M. Lordgooei, M.J. Rood, M.R. Abadi, Modeling effective diffusivity of volatile organic compounds in activated carbon fiber. Environ. Sci. Technol.,35 (2001) 613-619.
    [15]A. Aizpuru, L. Malhautier, J.C. Roux, J.L. Fanlo, Biofiltration of a mixture of volatile organic compounds on granular activated carbon. Biotechnol. Bioeng., 83 (2003) 479-488.
    [16]L. Pan, M.B. Sander, X.Y. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, Microporous metal organic materials:promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc., (2004) 1308-1309.
    [17]D. Saha, Z.B. Bao, F. Jia, S.G. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol.,44 (2010) 1820-1826.
    [18]C. Michel, B. Raveau, Oxygen intercalation in mixed-valence copper oxides related to the perovskites. Rev. Chim. Miner.,21 (1984) 407-425.
    [19]H.W. Kroto, The stability of the fullerenes C-24, C-28, C-32, C-36, C-50, C-60 and C-70. Nature,329 (1987) 529-531.
    [20]A.K. Cheetham, G. Ferey, T. Loiseau, Open-framework inorganic materials. Angew. Chem. Int. Edit.,38 (1999) 3268-3292.
    [21]J.M. Thomas, The bakerian lecture, new microcrystalline catalysts. Philos. T. Roy. Soc. A,333(1990)173-174.
    [22]A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev.,95 (1995) 559-614.
    [23]Y. Liu, W.M. Xuan, Y. Cui, Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater.,22(2010)4112-4135.
    [24]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science,295 (2002) 469-472.
    [25]P.M. Forster, J. Eckert, J.S. Chang, S.E. Park, G Ferey, A.K. Cheetham, Hydrogen adsorption in nanoporous Nickel(Ⅱ) phosphates. J. Am. Chem. Soc., 125(2003)1309-1312.
    [26]N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science,300 (2003) 1127-1129.
    [27]P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld, J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir,24 (2008) 7245-7250.
    [28]H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Crystal-structure of prussian blue-Fe4[Fe(Cn)6]3.xH2O. Inorg. Chem.,16 (1977) 2704-2710.
    [29]Y. Kinoshita, I. Matsubara, T. Higuchi, Y. Saito, The crystal structure of bis(Adiponitrilo)Copper(I) Nitrate. Bull. Chem. Soc. Jpn.,32 (1959) 1221-1226.
    [30]K.D. Berlin, G.B. Butler, The preparation and properties of tertiary and secondary phosphine oxides. Chem. Rev.,60 (1960) 243-260.
    [31]D.B Audrieth, Inorganic polymerization reactions Ⅲ. coordination polymerization. J. Chem. Educ,37 (1960) 134-135.
    [32]E.A. Tomic, Thermal stability of coordination polymers. J. Appl. Polym. Sci.,9 (1965) 3745-3746.
    [33]B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of 3 dimensionally linked rod-like segments. J. Am. Chem. Soc,111 (1989) 5962-5964.
    [34]B.F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3-D-linked molecular rods - a reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuZn (CN)4] and Cu[4,4',4",4'"-Tetracyanotetraphenylmethane] BF4.xC6H5NO2. J. Am. Chem. Soc.,112 (1990) 1546-1554.
    [35]O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework. Nature,378 (1995) 703-706.
    [36]H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature,402 (1999)276-279.
    [37]G. Ferey, C.M. Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science,309 (2005) 2040-2042.
    [38]H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature,427 (2004) 523-527.
    [39]H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science,329 (2010) 424-428.
    [40]H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal-organic frameworks:gas sorption isotherms for Zn(BDC) (BDC= 1,4-benzenedicarboxylate). J. Am. Chem. Soc.,120 (1998) 8571-8572.
    [41]Y. Aoyama, Functional organic zeolite analogues. Top Curr. Chem.,198 (1998) 131-161.
    [42]B. Moulton, M.J. Zaworotko, Coordination polymers:toward functional transition metal sustained materials and supermolecules. Curr. Opin. Solid St. M.,6(2002) 117-123.
    [43]Y.L. Liu, V.C. Kravtsov, R. Larsen, M. Eddaoudi, Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun., (2006) 1488-1490.
    [44]X.S. Wang, S.Q. Ma, D.F. Sun, S. Parkin, H.C. Zhou, A mesoporous metal-organic framework with permanent porosity. J. Am. Chem. Soc.,128 (2006) 16474-16475.
    [45]K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A.,103 (2006) 10186-10191.
    [46]M. Eddaoudi, H.L. Li, O.M. Yaghi, Highly porous and stable metal-organic frameworks:Structure design and sorption properties. J. Am. Chem. Soc.,122 (2000) 1391-1397.
    [47]A.P. Cote, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science,310 (2005) 1166-1170.
    [48]F. Gandara, A. Andres, B.G. Lor, E.G. Puebla, M. Iglesias, M.A. Monge, D.M. Proserpio, N. Snejko, A rare-earth MOF series:fascinating structure, efficient light emitters, and promising catalysts. Cryst. Growth Des.,8 (2008) 378-380.
    [49]A. Mantion, L. Massuger, P. Rabu, C. Palivan, L.B. McCusker, A. Taubert, Metal-peptide frameworks (MPFs):"Bioinspired" metal organic frameworks. J. Am. Chem. Soc.,130 (2008) 2517-2526.
    [50]S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 283(1999)1148-1150.
    [51]K.O. Kongshaug, H. Fjellvag, Synthesis and characterization of CPO-1; three-dimensional coordination polymers with 2,6-naphthalenedicarboxylate (ndc) ligands [M(ndc)(H2O)], M= Mn(Ⅱ), Zn(Ⅱ) or Cd(Ⅱ). Solid State Science, 4 (2002) 443-447.
    [52]B.V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J.L. Jorda, H. Garcia, D. Ananias, L.D. Carlos, J. Rocha, Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Edit.,47 (2008) 1080-1083.
    [53]J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks:a new class of porous materials. Micropor. Mesopor. Mater.,73 (2004) 3-14.
    [54]P. Feng, X. Bu, G.D. Stucky, Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature,388(1997)735-741.
    [55]E.C. Yang, Y.L. Yang, Z.Y. Liu, K.S. Liu, X.Y. Wu, X.J. Zhao, Two unique antiferromagnetic 3D frameworks with unusual CuⅡ4 cluster and alternate CuⅡ4+ CuⅡ1 structural motif tuned by aromatic polycarboxylate coligand. Cryst. Eng. Comm,13(2011)2667-2673.
    [56]B. Yan, R. Ma, Z. Chu, L. Ding, Y. Long, L. Chen, X. Lu, F. Bao,2D Cationic metal-organic frameworks of Ag with mixed ligands (semi-rigid dipyridyl, 3-pmpmd, and diphosphine, dppe). J. Inorg. Organomet. Polym. Mater.,20 (2010) 809-815.
    [57]H.A. Habib, J. Sanchiz, C. Janiak, Magnetic and luminescence properties of Cu(Ⅱ), Cu(Ⅱ)4O4 core, and Cd(Ⅱ) mixed-ligand metal-organic frameworks constructed from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3, 5-tricarboxylate. Inorg. Chim. Acta.,362 (2009) 2452-2460.
    [58]J. Chen, S. Natarajan, J.M. Thomas, R.H. Jones, M.B. Hursthouse, A novel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt(II) center:CoPO4 · 0.5 C2H10N2. Angew. Chem. Int. Edit.,33 (1994) 639-640.
    [59]S. Natarajan, S. Neeraj, A. Choudhury, C.N.R. Rao, Three-dimensional open-framework cobalt(II) phosphates by novel routes. Inorg. Chem.,39 (2000) 1426-1433.
    [60]K.C. Szeto, C. Prestipino, C. Lamberti, A. Zecchina, S. Bordiga, M. Bjorgen, M. Tilset, K.P. Lillerud, Characterization of a new porous Pt-containing metal-organic framework containing potentially catalytically active sites:local electronic structure at the metal centers. Chem. Mater.,19 (2006) 211-220.
    [61]N. Guillou, Q. Gao, M. Nogues, R.E. Morris, M. Hervieu, G. Ferey, A.K. Cheetham, Zeolitic and magnetic properties of a 24-membered ring porous nickel(Ⅱ) phosphate, VSB-1. Comptes Rendus de l'Academie des Sciences-Series ⅡC Chemie,2 (1999) 387-392.
    [62]Z. Liang, M. Marshall, A.L. Chaffee, CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus Zeolite (13X). Energ. Fuel.,23 (2009) 2785-2789.
    [63]A.J. Matzger, H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature,427 (2004) 523-527.
    [64]K.L. Hou, F.Y. Bai, Y.H. Xing, J.L. Wang, Z. Shi, A novel family of 3D photoluminescent lanthanide-bta-flexible MOFs constructed from 1,2,4,5-benzene tetracarboxylic acid and different spanning of dicarboxylate acid ligands. Crystengcomm,13 (2011) 3884-3894.
    [65]H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J.R. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc.,131 (2009) 16000-16001.
    [66]G. Aromi, L.A. Barrios, O. Roubeau, P. Gamez, Triazoles and tetrazoles:Prime ligands to generate remarkable coordination materials. Coordin. Chem. Rev.,255 (2011)485-546.
    [67]A. Corma, H. Garcia, F.X. Llabres, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev.,110 (2010) 4606-4655.
    [68]O.M. Yaghi, K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A.,103 (2006) 10186-10191.
    [69]U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-organic frameworks-prospective industrial applications. J. Mater. Chem., 16 (2006) 626-636.
    [70]H.B. Xu, Z.M. Su, K.Z. Shao, Y.H. Zhao, Y. Xing, Y.C. Liang, H.J. Zhang, D.X. Zhu, A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate. Inorg. Chem. Commun.,7 (2004) 260-263.
    [71]W. Clegg, I.R. Little, B.P. Straughan, Zinc carboxylate complexes:structural characterisation of some binuclear and linear trinuclear complexes. J. Chem. Soc., Dalton Trans.,2 (1986) 1283-1288.
    [72]T. Friscic, L. Fabian, Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). Crystengcomm,11 (2009) 743-745.
    [73]C. Gerardin, M. In, L. Allouche, M. Haouas, F. Taulelle, In situ pH probing of hydrothermal solutions by NMR. Chem. Mater.,11 (1999) 1285-1292.
    [74]C. Serre, F. Millange, S. Surble, G. Ferey, A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Edit.,43 (2004) 6286-6289.
    [75]C. Livage, C. Egger, M. Nogues, G. Ferey, Hybrid open frameworks (MIL-n). Part 5-Synthesis and crystal structure of MIL-9:a new three-dimensional ferrimagnetic cobalt (II) carboxylate with a two-dimensional array of edge-sharing Co octahedra with 12-membered rings. J. Mater. Chem.,8 (1998) 2743-2747.
    [76]C. Livage, C. Egger, G. Ferey, Hybrid open networks (MIL-16):synthesis, crystal structure, and ferrimagnetism of Co4(OH)2(H2O)2(C4H4O4)3·2H2O, a new layered cobalt (Ⅱ) carboxylate with 14-membered ring channels. Chem. Mater., 11(1999)1546-1550.
    [77]C. Livage, C. Egger, G. Ferey, Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids:the example of cobalt (Ⅱ) succinate. Chem. Mater.,13 (2001) 410-414.
    [78]P.M. Forster, A.R. Burbank, C. Livage, G. Ferey, A.K. Cheetham, The role of temperature in the synthesis of hybrid inorganic-organic materials:the example of cobalt succinates. Chem. Commun., (2004) 368-369.
    [79]P.M. Forster, N. Stock, A.K. Cheetham, A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic-organic materials. Angew. Chem. Int. Edit.,44 (2005) 7608-7611.
    [80]Z.Q. Li, L.G Qiu, W. Wang, T. Xu, Y. Wu, X. Jiang, Fabrication of nanosheets of a fluorescent metal-organic framework [Zn(BDC)(H2O)]n (BDC=1,4-benzene dicarboxylate):ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun.,11 (2008) 1375-1377.
    [81]R. Vaidhyanathan, S. Natarajan, A.K. Cheetham, C.N.R. Rao, New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines. Chem. Mater.,11 (1999) 3636-3642.
    [82]Y.Q. Tian, Y.M. Zhao, Z.X. Chen, GN. Zhang, L.H. Weng, D.Y. Zhao, Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): Synthesis and crystal structures of zinc(Ⅱ) imidazolate polymers with zeolitic topologies. Chem.-Eur. J.,13 (2007) 4146-4154.
    [83]S. Bauer, T. Bein, N. Stock, High-throughput investigation and characterization of cobalt carboxy phosphonates. Inorg. Chem.,44 (2005) 5882-5889.
    [84]M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules:{[M2(4,4'-bpy)3 (NO3)4] center · xH2O}n (M= Co, Ni, Zn). Angew. Chem. Int. Edit.,36 (1997) 1725-1727.
    [85]J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc., 128(2006) 1304-1315.
    [86]U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-organic frameworks-prospective industrial applications. J. Mater. Chem., 16(2006)626-636.
    [87]M.A. Wong, A.G. Foy, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc.,128 (2006) 3494-3495.
    [88]H.W. Langmi, A. Walton, M.M. Al-Mamouri, S.R. Johnson, D. Book, J.D. Speight, P.P. Edwards, I. Gameson, P.A. Anderson, I.R. Harris, Hydrogen adsorption in zeolites A, X, Y and RHO. J. Alloy. Compd.,356 (2003) 710-715.
    [89]P. Benard, R. Chahine, Determination of the adsorption isotherms of hydrogen on activated carbons above the critical temperature of the adsorbate over wide temperature and pressure ranges. Langmuir,17 (2001) 1950-1955.
    [90]B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures. Carbon,43 (2005) 2209-2214.
    [91]S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey, Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc.,127 (2005) 13519-13521.
    [92]A.C. Sudik, A.R. Millward, N.W. Ockwig, A.P. Cote, J. Kim, O.M. Yaghi, Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc.,127(2005)7110-7118.
    [93]H. Hayashi, A.P. Cote, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Zeolite a imidazolate frameworks. Nat. Mater.,6 (2007) 501-506.
    [94]H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc.,129 (2007) 5314-5315.
    [95]D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases. P. Natl. Acad. Sci. USA,105 (2008) 11623-11627.
    [96]J.W. Yoon, S.H. Jhung, Y.K. Hwang, S.M. Humphrey, P.T. Wood, J.S. Chang, Gas-sorption selectivity of CUK-1:a porous coordination solid made of cobalt(Ⅱ) and pyridine-2,4-dicarboxylic acid. Adv. Mater.,19 (2007) 1830-1834.
    [97]W.M. Qiao, L.C. Li, Q.F. Zha, Preparation of a pitch-based activated carbon with a high specific surface area. J. Mater. Sci.,32 (1997) 4447-4453.
    [98]C.Y. Huang, M. Song, Z.Y Gu, H.F. Wang, X.P. Yan, Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Environ. Sci. Technol.,45 (2011) 4490-4496.
    [99]Z.Y. Gu, X.P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Edit.,49 (2010) 1477-1480.
    [100]P. Chowdhury, C. Bikkina, S. Gumma, Gas adsorption properties of the chromium-based metal organic framework MIL-101. J. Phys. Chem. C,113 (2009)6616-6621.
    [101]F. Qu, L.Z. Zhu, K. Yang, Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). J. Hazard. Mater.,170 (2009) 7-12.
    [102]M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.H. Lee, J.S. Chang, S.H. Jhung, G. Ferey, Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Edit.,45 (2006)8227-8231.
    [103]S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Ferey, J.S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater.,19 (2007) 121-124.
    [104]A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Catalytic properties of MIL-101. Chem. Commun., (2008) 4192-4194.
    [105]N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A. Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal.,257 (2008) 315-323.
    [106]P. Kusgens, M. Rose, I. Senkovska, H. Frode, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption. Micropor. Mesopor. Mater.,120 (2009) 325-330.
    [107]K. Kaneko, N. Kosugi, H. Kuroda, Characterization of iron oxide-dispersed activated carbon fibres with Fe K-edge XANES and EXAFS and with water adsorption. Chem. Soc.,85 (1989) 869-881.
    [108]Y.W. Li, R.T. Yang, Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. Aiche. J.,54 (2008) 269-279.
    [109]Y.K. Hwang, D.Y. Hong, J.S. Chang, H. Seo, M. Yoon, J. Kim, S.H. Jhung, C. Serre, G. Ferey, Selective sulfoxidation of aryl sulfides by coordinatively unsarurated metal centers in chromium carboxylate MIL-101. Appl. Catal. A-Gen.,358 (2009) 249-253.
    [110]N.V. Maksimchuk, K.A. Kovalenko, S.S. Arzumanov, Y.A. Chesalov, M.S. Melgunov, A.G. Stepanov, V.P. Fedin, O.A. Kholdeeva, Hybrid polyoxotungstate/MIL-101 materials:synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg. Chem.,49 (2010) 2920-2930.
    [111]C.E. Webster, R.S. Drago, M.C. Zerner, Molecular dimensions for adsorptives. J. Am. Chem. Soc.,120 (1998) 5509-5516.
    [112]D. Ramirez, S.Y. Qi, M.J. Rood, Equilibrium and heat of adsorption for organic vapors and activated carbons. Environ. Sci. Technol.,139 (2005) 5864-5871.
    [113]J.H. Kim, S.J. Lee, M.B. Kim, J.J. Lee, C.H. Lee, Sorption equilibrium and thermal regeneration of acetone and toluene vapors on an activated carbon. Ind. Eng. Chem. Res.,46 (2007) 4584-4594.
    [114]M.E. Ramos, P.R. Bonelli, A.L. Cukierman, M.M.L.R. Carrott, P.J.M. Carrott, Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. J. Hazard. Mater.,177 (2010) 175-182.
    [115]Z. Li, Z.X. Zhao, X.M. Li, S.S. Huang, Q.B. Xia, Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res.,50 (2011) 2254-2261.
    [116]M.P.M. Nicolau, P.S. Barcia, J.M. Gallegos, J.A.C. Silva, A.E. Rodrigues, B.L Chen, Single- and multicomponent vapor-phase adsorption of xylene isomers and ethylbenzene in a microporous metal-organic framework. J. Phys. Chem. C, 113(2009) 13173-13179.
    [117]D.N. Dybtsev, H. Chun, K. Kim, Rigid and flexible:a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Edit.,43 (2004) 5033-5036.
    [118]Z.Y. Gu, D.Q. Jiang, H.F. Wang, X.Y. Cui, X.P. Yan, Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks. J. Phys. Chem. C,114 (2010) 311-316.
    [119]V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P.A. Jacobs, G.V. Baron, J.F.M. Denayer, Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. J. Am. Chem. Soc., 130(2008)7110-7118.
    [120]J.S. Lee, S.H. Jhung, Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96:an unusual increase of adsorption capacity with temperature. Micropor. Mesopor. Mater.,129 (2010) 274-277.
    [121]M.M. Dubinin, E.D. Zaverina, V.V. Serpinsky, The sorption of water vapour by active carbon. Chem. Soc., (1955) 1760-1766.
    [122]高华生,叶芸春,空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响.环境科学学报,22(2002)194-198.
    [123]M.P. Cal, M.J. Rood, S.M. Larson, Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation & Purification,10 (1996) 117-121.
    [124]R.H. Bradley, M.W. Smith, A. Andreu, M. Falco, Surface studies of novel hydrophobic active carbons. Appl. Surf. Sci.,257 (2011) 2912-2919.
    [125]M.S. Chou, J.H. Chiou, Modeling effects of moisture on adsorption capacity of activated carbon for VOCs. J. Environ. Eng.-ASCE,123 (1997) 437-443.
    [126]A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption. Aiche. J.,11(1965)121-127.
    [127]M. Sakuth, J. Meyer, J. Gmehling, Measurement and prediction of binary adsorption equilibria of vapors on dealuminated Y-zeolites (DAY). Chem. Eng. Process.,37 (1998) 267-277.
    [128]P.M. Mathias, R. Kumar, J.D. Moyer, J.M. Schork, S.R. Srinivasan, S.R. Auvil, O. Talu, Correlation of multicomponent gas adsorption by the dual-site langmuir model application to nitrogen/oxygen adsorption on 5A-zeolite. Ind. Eng. Chem. Res.,35 (1996) 2477-2483.
    [129]M.A. Lillo-Rodenas, A.J. Fletcher, K.M. Thomas, D. Cazorla-Amoros, A. Linares-Solano, Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon,44 (2006) 1455-1463.
    [130]Y.X. Li, J.Y. Chen, Y.H. Sun, Adsorption of multicomponent volatile organic compounds on semi-coke. Carbon,46 (2008) 858-863.
    [131]D. Subramanian, J.A. Ritter, Equilibrium theory for solvent vapor recovery by pressure swing adsorption:analytical solution for process performance. Chem. Eng. Sci.,52 (1997) 3147-3160.
    [132]D.W. Jung, D.A. Yang, J. Kim, W.S. Ahn, Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Trans.,39 (2010) 2883-2887.
    [133]H. Yang, S. Orefuwa, A. Goudy, Study of mechanochemical synthesis in the formation of the metal-organic framework Cu3(BTC)2 for hydrogen storage. Micropor. Mesopor. Mater., In Press, Corrected Proof (2011).
    [134]Y. Yoo, Z.P. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Micropor. Mesopor. Mater.,123 (2009) 100-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700