利用多时相MODIS数据提取中国水稻种植面积和长势信息
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是中国最重要的粮食作物之一。获取大范围的水稻种植空间分布、面积和产量信息对指导水稻生产、合理分配水资源,以及监测大气环境变化等具有重要的意义。由于农业生产具有覆盖面积大、季节性强、区域差异大、单位面积的经济效益低等特点,通过地面调查方法获取每年的农作物种植信息,不论在技术方面还是在经济可承受性方面都是一件非常困难的事情,而利用遥感技术则是解决这个问题的可行且有效的方法。与常规的统计方法相比,应用遥感方法获取作物种植信息具有它独特的优势。由于遥感具有覆盖面大、短时间内可重复观测,以及成本相对较低等特点,并与地理信息系统和全球定位系统相结合,不仅可以提取农作物种植面积,而且可实现空间分布的准确定位,全面地监测农作物的整个生长发育过程。研究利用EOS-MODIS数据空间覆盖面大和时间分辨率高的优势,选取覆盖中国范围的数据,实现对全国范围水稻种植和生长信息的提取。研究目标是解决水稻遥感估产中最关键的技术问题,为实施大面积水稻遥感估产提供理论与试验依据。研究的主要内容包括:中国水稻遥感信息获取区划、水稻关键生长发育期识别、水稻种植空间分布和面积信息提取,以及水稻生长发育状况分析等4个在大尺度水稻遥感估产中最关键的部分。具体内容如下:
     首先,研究对研究的选题、国内外的研究进展、拟采用的技术处理方法进行简单的介绍,主要阐述了研究的背景、意义和选题依据。研究对国内外在遥感估产方面已经开展过的课题项目,以及过去研究中采用的技术处理方法进行简要概括,总结了前人在相关研究中已经取得的研究成果和仍然存在的需要进一步解决的问题,为研究目标的实现和可能取得的创新提供帮助。然后,研究对各个具体部分分别采取的技术处理方法和技术路线,以及所需要的数据进行说明,并对研究目标实现的具体步骤进行了总体设计,为研究的开展提供了指导。
     研究详细地介绍了各个部分的具体内容、采用的具体处理方法和得出的主要结论。其中,在中国水稻遥感信息获取区划的研究中,研究以全国水稻种植区为对象,通过分析并选取对遥感技术信息获取有重要影响的因素,主要包括耕作制度、地形因素、种植结构和大气噪声等,采用恰当的区划指标,利用定性和定量相结合的分析方法进行区划。根据耕作制度的差异把全国分为4个水稻遥感信息获取区,再根据地形、种植结构和大气噪声等因素对遥感信息获取的影响分成19个亚区。区划结果对水稻遥感信息获取时选择合适的遥感获取方式、恰当的空间分辨率与时相的遥感图像,以及对遥感信息提取结果准确度的验证等提供参考。
     在水稻关键生长发育期识别的研究中,研究以2005年的多时相MODIS数据为例,提取全国范围内的水稻关键生长发育期。首先,利用傅立叶低通滤波和小波低通滤波平滑处理后的时间序列EVI(Enhanced Vegetation Index),然后根据水稻在移栽期、分蘖初期、抽穗期和成熟期的EVI变化特征,分别对各个生长发育期进行识别。通过将利用MODIS数据识别的结果与当年气象台站的地面观测数据进行比较,各个生长发育期的提取结果的误差绝大部分在±16天以内,经过F检验表明利用MODIS提取的结果与地面观测数据在0.05水平下具有显著的一致性。研究中的提取方法可以被用于其他年份的水稻生长发育期识别,而且根据其他作物的生长发育特点,也可能被用于识别其他作物的生长发育期。
     在水稻种植空间分布和面积信息提取的研究中,探讨了提取中国水稻种植空间分布及其种植面积信息的方法。研究利用覆盖面积大、高时间分辨率、低成本的MODIS数据,实现了对整个中国范围的全面覆盖。研究识别稻田的依据是根据在灌水移栽期有水的特征来提取水稻。通过分析对陆地比较敏感的MODIS前7个波段反射率的特点,确定对植被和土壤湿度敏感波段,用来构建植被指数和土壤水敏感指数以扩大感兴趣地物与其背景的差异。在选取的典型试验样区内,根据稻田在灌水移栽期所表现出的特有的光谱特征,得出判断水稻的判别条件。根据识别水稻的判别条件,并按照单季稻、早稻和晚稻生长期的差异得出2000-2007年全国单季稻、早稻和晚稻的空间分布状况和面积统计数据,然后对利用MODIS数据识别的结果与各年的农业统计数据进行比较,分析利用MODIS数据提取水稻的面积精度。为了验证识别结果在空间位置上准确性,研究选取了4个具有代表性的试验样区,对利用MODIS数据提取的结果与利用中等空间分辨率的遥感图像的分类结果进行叠加分析,检验其在空间位置上的匹配性。结果表明:研究中利用MODIS数据提取水稻的算法是有效的;提取结果的精度取决于水稻与其他地物的混合程度,混合像元中水稻的纯度越高,那么提取结果的精度就越高;云覆盖对最终的分类结果的精度也会产生很大的影响,在多云的地区,云覆盖成为光学传感器应用的一个重要的限制因素。
     在水稻生长发育状况分析研究中,探讨了对水稻长势进行定量化分析的方法。研究突破了过去的研究仅得出的与往年同时期或者同一时期不同地区相比较的好、持平、差等定性分析结论。研究以2005年数据为例,通过在典型试验区建立水稻植被指数与其生物物理参数的关系模型,反演出水稻在不同时期的LAI和FPAR。试验结果表明EVI反演水稻生物物理参数的效果比NDVI更好。因此,研究最终选择EVI作为反演水稻生物物理参数的依据。根据对水稻生长发育期的识别结果,从而得出全国单季稻、早稻和晚稻的生长季的开始和结束日期,并在像素水平上识别水稻的生长季,通过时间序列EVI反演各个时期的LAI和FPAR,再进一步通过光能利用效率模型(LUE模型)得到各个时期的NPP,最后得出单季稻、早稻和晚稻在整个生长季内的生物量,实现对长势的定量化分析,并为进一步的单产分析提供参考依据。
     最后,研究总结了以上各个部分得出的主要结论和取得的创新,并展望了在将来的工作中仍需要进一步解决的问题。
Paddy rice is one of the major staple crops in China. It is essential to get the spatial distribution, planting area and yield information of paddy rice at large scale for guiding rice production, regulating water use, and monitoring environmental changes. However, agricultural production has the characteristics of large coverage, frequent changes seasonally and regionally, and low benefit in per unit area, therefore, it is unfeasible to get the annual information through ground in situ measurement neither in the aspect of technical issues nor in the aspect of economic sustainability. Remote sensing technology is a feasible and efficient way to solve these problems. Compares with the traditional methods, remote sensing has its own advantages for acquiring planting information of crops. For remote sensing has the characteristics of large and frequent coverage, as well as its low costs, then it can get not only the area information, but also the accurate spatial position and the whole process of crop growth information associates with GIS and GPS. In the study, planting and growth information of paddy rice was extracted in all of China using EOS-MODIS data with large coverage and high spatial resolution. The goals of the study were to solve the most important technical problems in rice yield estimation using remote sensing technology, and provide theoretical and experimental bases for large-region rice yield estimation. The main contents of the study including regionalization of paddy rice information acquirement through remote sensing technology in China, detecting major growth stages of paddy rice, extracting the spatial distribution and area information, and getting growth information of paddy rice. The four above mentioned parts are the most important problems for rice yield estimation at large scale using remote sensing technology, so they were studied in detail in the study. Main content of each part is introduced as follows:
     Firstly, the dissertation gave a brief introduction of the topic, made a summarization of the precious studies, and described the methods in the study. The background, significance, and goals of the study were introduced, and a summary of the precious studies and the issues that need to be solved was made. It is helpful for the realization of the objectives and the potential innovation in the study. Then, detailed methods and the flowcharts were given for each part in the study; an introduction of the data used and an overall design for each step in the study were given as well.
     Subsequently, detailed introductions of the contents, methods and conclusions for each part in the study were given. In the study of regionalization of paddy rice information acquirement through remote sensing technology, major impacting factors, including rice farming systems, topography, planting structure and atmospheric noises, were analyzed and appropriate indices were chosen. Regionalization was executed by qualitative and quantitative analyses. Rice planting area in the whole country was divided into 4 regions by the difference of rice planting rotation, and subsequently divided 19 sub-regions by the differences of topography, land surface feature structure and atmospheric noise. It might provide useful information to the selection of remote sensing images with appropriate spatial resolution and date, as well as to the accuracy evaluation of the classification.
     In the study of major growth stages detection of paddy rice, phenological information of paddy rice in the whole country of China was extracted using multi-temporal MODIS data in 2005 as a case study. Firstly, time-series of MODIS-EVI (Enhanced Vegetation Index) was smoothed by Fourier and Wavelet low pass filtering, then the stages of transplanting, beginning of tillering, heading, and maturation were identified by their respective characteristics. The MODIS-derived results were compared with the statistics of meteorological observatories, most of the errors of the MODIS-derived results were within±16 days, and F test indicated that all of the results had significant consistency at the level of 0.05. The detecting methods could be used to extract rice growth stages in other years, and they might be able to extract the growth stage information of other crops according to their characteristics potentially.
     In the study of spatial distribution and area information extraction, spatial distribution and area information were extracted in all of China using MODIS data with large coverage, high temporal resolution, and low costs. The basis of rice classification in the study was relied on identifying the spectral characteristics of water in the "flooding and transplanting" period. Vegetation and soil moisture sensitive bands were selected by comparing the first 7 bands of MODIS that are sensitive to land surface, then they were used to calculate vegetation and water sensitive indices to amplify the differences between the regions of interest and the background. Spatial distribution and area information of single, early, and late rice in 2000-2007 were extracted by identifying the unique characteristic of rice fields in the "flooding and transplanting" period with the assistance of the growth period information. Areal accuracy of the MODIS-derived results was validated comparing with the agricultural statistics, and four typical test regions were selected to test the spatial matching by overlaying the results derived from MODIS data and the data with medium spatial resolution. Tests showed that the algorithms for rice identification in the study were effective; and the accuracy of the MODIS-derived results was relied on the purity of rice in the mixed pixels, the higher the purity is, the higher the accuracy of the results obtained; cloud contamination had big impacts on the results, therefore, optical sensors were seriously restricted in the regions with frequent clouds.
     In the study of growth status monitoring, methods of quantitative analyses were studied to break through the traditional methods, for the methods in the past only got the qualitative results of better, even, or worse than the former years or than other regions in the same period. Models were built to inverse the biophysical parameters of rice, including LAI and FPAR, by vegetation indices. Tests showed that EVI was superior to NDVI for getting the biophysical parameters. The growing seasons were identified at pixel level according to the results of the beginning date and end date for single, early and late rice, then LAI and FPAR were inversed by EVI for each period, and NPP was calculated by LUE (Light Use Efficiency) model, eventually, the results of biomass in the whole growing season for single, early, and late rice were calculated. The results could show the growth status of paddy rice, and might provide references for the analysis of the yield in per unit area.
     Eventually, a summary of the main conclusions and innovations in the study were made, and at the same time gave an expectation of the issues that need to be solved in the future.
引文
[1]Adams M L,Philpot W D,Norvell W A.Yellowness index:an application of spectral spring derivatives to estimate chlorosis of leaves in stressed vegetation[J].International Journal of Remote Sensing,1999,20:3663-3675.
    [2]Asrar G,Fuchs M,Kanemasu E T,et al.Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat[J].Agronomy Journal,1984,76:300-306.
    [3]Asrar G,Myneni R B,Choudhury B J.Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation:a modeling study[J].Remote Sensing of Environment,1992,41:85-103.
    [4]Asrar G,Myneni R,Kanemasu E T.Estimation of plant canopy attributes from spectral reflectance measurements.Theory and Application of Optical Remote Sensing[M].New York:Wiley,1989:252-295.
    [5]Bannari A,Asalhi H,Teillet P M.Transformed difference vegetation index (TDVI) for vegetation cover mapping[G].Geoscience and Remote Sensing Symposium,2002.IGARSS '02.2002 IEEE International,2002,5:3053-3055.
    [6]Baret F,Guyot G,Major D J.TSAVI:A Vegetation Index which minimizes Soil Brightness Effects on LAI and APAR Estimation[G].Proceedings of the 12th Canadian Symposium on Remote Sensing,Vancouver,Canada,1989,3:1355-1358.
    [7]Baret F,Guyot G.Potentials and limits of vegetation indices for LAI and APAR assessment[J].Remote Sensing of Environment,1991,35:161-173.
    [8]Barnett T L,Thompson D R.Large area relation of Landsat MSS and NOAA-6 AVHRR spectral data to wheat yields[J].Remote Sensing of Environment,1983,13:277-290.
    [9]Bastiaanssen W G M,AH S.A new crop yield forecasting model based on satellite measurements applied across the Indus Basin,Pakistan[J].Agriculture,Ecosystems and Environment,2003,94:321-340.
    [10]Broge N H,Hvidberg M,Hansen B U,et al.Analyses of spectral-biophysical relationships for a wheat canopy[G].Proceedings of the 3rd international airborne remote sensing conference and exhibition,Copenhagen,Denmark,July 7-10,1997 (vol.2).Ann Arbor,MI,USA:ERIM International,1997:373-379.
    [11]Broge N H,Leblanc E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sensing of Environment,2000,76:156-172.
    [12]Carfagna E,Gallego F J.Using remote sensing for agricultural statistics [J].International Statistical Review,2005,73 (3):389-404.
    [13]Casanova D,Epema G F,Goudriaan J.Monitoring rice reflectance at field level for estimating biomass and LAI[J].Field Crops Research,1998,55:83-92.
    [14]Chen J M.Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal application[J].Canadian Journal of Remote Sensing,1996,22(3):229-242.
    [15]Chen J,Jonsson P,Tamura M,et al.A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J].Remote Sensing of Environment,2004,91:332-344.
    [16]Chen X,Tan Z J,Schwartz M D,et al.Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China[J].International Journal of Biometeorology,2000,44:97-101.
    [17]Chen X,Xu C,Tan Z.An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China[J].International Journal of Biometeorology,2001,45(4):170-177.
    [18]Chhikara R S,Feiveson A H.Landsat-based large area crop acreage estimation — an experimental study,American Statistical Association[M].Proceedings of the Section on Survey Research Methods,1978:153-159.
    [19]Cihlar J.Identification of contaminated pixels in AVHRR composite images for studies of land biosphere[J].Remote Sensing of Environment,1996,56:149-153.
    [20]Clevers J G P W.A simplified approach for yield prediction of sugar beet based on optical remote sensing data[J].Remote Sensing of Environment,1997,61:221-228.
    [21]Clevers J G P W.The application of a weighted infrared-red vegetation index for estimating leaf area index by correction for soil moisture[J].Remote Sensing of Environment,1989,29:25-37.
    [22]Cooley J,Lewis P,Welch P.The finite Fourier transform[J].IEEE Transactions on Audio Electroacoustics,1969,17 (2):77-85.
    [23]Cooper P I.The absorption of solar radiation in solar stills[J].Solar Energy,1969,12:333-346.
    [24]Council for Economic Planning and Development.Taiwan Statistical Data Book 2006 [M].Taipei:Council for Economic Planning and Development,Executive Yuan,Taiwan,2006.
    [25]Crippen R E.Calculating the Vegetation Index Faster[J].Remote Sensing of Environment,1990,34:71-73.
    [26]Daughtry C S T,Gallo K P,Goward S N,et al.Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies [J].Remote Sensing of Environment,1992,39:141-152.
    [27]Defila C,Clot B.Phytophenological trends in Switzerland [J].International Journal of Biometeorology,2001,45:203-207.
    [28]Denier Van Der Gon H.Changes in CH4 emission from rice fields from 1960s to 1990s:1.Impacts of modern rice technology[J].Global Biogeochemical Cycles,2000,1:61-72.
    [29]Duchemin B,Goubicr J,Courrier G.Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data[J].Remote Sensing of Environment,1999,67:68-82.
    [30]Duffie J A,Beckman W A.Solar Engineering of Thermal Processes[M].New York:Wiley,1980:762.
    [31]Elvidge C D,Chen Z.Comparison of broad-band and narrowband red and near-infrared vegetation indices[J].Remote Sensing of Environment,1995,54:38-48.
    [32]Fang H,Wu B,Liu H,et al.Using NOAA AVHRR and Landsat TM to estimate rice area year-by-year[J].International Journal of Remote Sensing,1998,19(3):521-525.
    [33]Fensholt R,Sandholt I.Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment[J].Remote Sensing of Environment,2003,87(1):111-121.
    [34]Field C B,Randerson J T,Malmstrom C M.Global net primary production:combining ecology and remote sensing[J].Remote Sensing of Environment,1995,51:74-88.
    [35]Fischer A.A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters [J].Remote sensing of environment,1994,48(2):220-230.
    [36]Frohlich C,Brusa R W.Solar radiation and its variation in time[J].Solar Physics,1981,74:209-215.
    [37]Frouin R,Pinker R T.Estimating photosynthetically active radiation (PAR) at the Earth's surface from satellite observation [J].Remote Sensing of Environment,1995,51:98-107.
    [38]Gallego F J.Stratified sampling of satellite images with a systematic grid of points[J].Journal of Photogrammetry and Remote Sensing,2005,59:369-376.
    [39]Gallo K P,Flesch T K.Large-area crop monitoring with the NOAA AVHRR:Estimating the silking stage of corn development[J].Remote Sensing of Environment,1989,27: 73-80.
    [40]Gao B C.NDWI — A normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.
    [41]Gates D M.Biophysical Ecology[M].New York:Springer-Verlag,1980:96-146.
    [42]Gillian L G,John F M,Jerry M,et al.Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil[J].Remote Sensing of Environment,2008,112:576-587.
    [43]Groten S M E.NDVI-crop monitoring and early yield assessment of Burkina Faso[J].International Journal of Remote Sensing,1993,14(8):1495-1515.
    [44]Hayes M J,Decker W L.Using satellite and real-time weather data to predict maize production[J].International Journal of Biometeorology,1998,42(1):10-15.
    [45]Hong S Y,Lee K S,Rim S K,et al.Estimation of rice field area using two-date Landsat TM images[G].IEEE International Geoscience and Remote Sensing Symposium,1999,6(2):732-734.
    [46]Huete A R,Didan K,Miura T,et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J].Remote Sensing of Environment,2002,83:195-213.
    [47]Huete A R,Liu H Q,Batchily K,et al.A comparison of vegetation indices global set of TM images for EOS-MODIS[J].Remote Sensing of Environment,1997,59:440-451.
    [48]Huete A R.A soil-adjusted vegetation index (SAVI)[J].Remote Sensing of Environment,1988,25:295-309.
    [49]Inoue Y,Moran M S,Horie T.Analysis of spectral measurements in paddy field for predicting rice growth and yield based on simple crop simulation model[J].Plant Production Science,1998,1:269-279.
    [50]Jonsson P,Eklundh L.Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1832.
    [51]Jordan C F.Derivation of leaf area index from quality measurements of light on the forest floor[J].Ecology,1969,50:663-666.
    [52]Justice C O,Townshend J R G,Holben B N,et al.Analysis of the phenology of global vegetation using meteorological satellite data[J].International Journal of Remote Sensing,1985,6(8):1271-1318.
    [53]Kaufman Y J,Tanre D.Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J].Geoscience and Remote Sensing,1992,30(2):261-270.
    [54]Kim M S,Daughtry C S T,Chappelle E W,et al.The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (APAR)[G].Proceedings of the 6th international symposium on physical measurements and signatures in remote sensing,1994:299-306.
    [55]Kimes D S,Markham B L,Tucker C J.Temporal relationships between spectral response and agronomic variables of a corn canopy[J].Remote Sensing of Environment,1981,11(5):401-411.
    [56]Kiniry J R,Bean B,Xie Y,et al.Maize yield potential:critical processes and simulation modeling in a high-yielding environment[J].Agricultural Systems,2004,82:45-56.
    [57]Kiniry J R,Jones C A,O'Toole J C,et al.Radiation use efficiency in biomass accumulation prior to grain filling for five grain field crops species[J].Field Crop Research,1989,20:51-64.
    [58]Knyazikhin Y,Martonchik J V,Diner D J,et al.Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data[J].Journal of Geophysical Research,1998,103(24):32239-32256.
    [59]Kogan F N.Remote sensing of weather impacts on vegetation in no-homogeneous areas[J].International Journal of Remote Sensing,1990,11:1405-1419.
    [60]Kreith F,Kreider J F.Principles of Solar Engineering[M].New York:McGraw-Hill,1978.
    [61]Kuusk A.The hot spot effect of a uniform vegetative cover[J].Soviet Russia Journal of Remote Sensing,1985:3645-3658.
    [62]Leblon B,Guerif M,Baret F.The use of remotely sensed data in estimation of PAR use efficiency and biomass production of flooded rice[J].Remote Sensing of Environment,1991,38:147-158.
    [63]Li C,Qui J,Frolking S,et al.Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000[J].Geophysical Research Letters,2002,29(20):1972.
    [64]Li X,Strahler A.Geometric-optical modeling of a coniferous forest canopy [J].IEEE Transactions on Geoscience and Remote Sensing,1985,23:207-221.
    [65]Li Y,Liao Q,Li X,et al.Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images[J].International Journal of Remote Sensing,2003,24(21):4207-4220.
    [66]Liu B Y,Jordan R C.The interrelationship and characteristic distribution of direct,diffuse and total solar radiation[J].Solar Energy,1960,4:1-19.
    [67]Lloyd D.A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery [J].International Journal of Remote Sensing,1990,11:2269-2279.
    [68]Lu X,Liu R,Liu J,Liang S.Removal of noise by Wavelet method to generate the high-quality time series of terrestrial MODIS products[J].Photogrammetric Engineering and Remote Sensing,2007,73(10):1129-1139.
    [69]Maas S J.Use of remotely-sensed information in agricultural crop growth models[J].Ecological Modelling,1988a,41:247-268.
    [70]Maas S J.Using satellite data to improve model estimates of crop yield[J].Agronomy Journal,1988b,80(4):655-662.
    [71]MacDonald R B,Hall F G.Global Crop Forecasting [J].Science,1980,208(4445):670-679.
    [72]Major D J,Baret F,Guyot G.A ratio vegetation index adjusted for soil brightness [J].International Journal of Remote Sensing,1990,11:727-740.
    [73]Markon C J,Fleming M D,Binnian E F.Characteristics of vegetation phenology over the Alaskan landscape using AVHRR time-series data[J].Polar Record,1995,31:179-190.
    [74]McCloy K R,Smith F R,Robinson M R.Monitoring rice areas using Landsat MSS data[J].International Journal of Remote Sensing,1987,8:741-749.
    [75]Menzel A.Trends in phenological phases in Europe between 1951 and 1996[J].International Journal of Biometeorology,2000,44:76-81.
    [76]Mkhabela M S,Mkhabela M S,Mashinini N N.Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAA's-AVHRR[J].Agricultural and Forest Meteorology,2005,129:1-9.
    [77]Moriondo M,Maselli F,Bindi M.A simple model of regional wheat yield based on NDVI data[J].European Journal of Agronomy,2007,26:266-274.
    [78]Mougin E,Lo Seen D,Rambal S,et al.A regional Sahelian grassland model to be coupled with multispectral satellite data.I.Model description and validation[J].Remote Sensing of Environment,1995,52:181-193.
    [79]Moulin S,Kergoat L,Viovy N,et al.Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements [J].Journal of Climate,1997,10:1154-1170.
    [80]Myneni R B,Asrar G.Photon interaction cross sections for aggregations of finite dimensional leaves[J].Remote Sensing of Environment,1991,37:219-224.
    [81]Myneni R B,Hall F G,Sellers P J,et al.The interpretation of spectral vegetation indexes [J].IEEE Transactions on Geoscience and Remote Sensing,1995,33:481-486.
    [82]Myneni R B,Nemani R R,Running S W.Estimation of global leaf area index and absorbed PAR using radiative transfer model [J].IEEE Transactions on Geoscience and Remote Sensing,1997a,35:1380-1393.
    [83]Myneni R B,Ross J,Asrar G.A review on the theory of photon transport in leaf canopies in slab geometry[J].Agricultural and Forest Meteorology,1989,45:1-165.
    [84]Myneni R B,Tucker C J.Increased plant growth in the northern high latitudes from 1981 to 1991 [J].Nature,1997b,386:698-702.
    [85]Nageswara Rao P P,Rao V R.Rice crop identification and area estimation using remotely sensed data from Indian cropping patterns [J].International Journal of Remote Sensing,1987,8(4):639-650.
    [86]Neue H,Boonjawat J.Methane emissions from rice fields.Asian change in the context of global climate change[M].Cambridge:Cambridge University Press,1998:187-209.
    [87]Okamoto K,Kawashima H.Estimation of rice-planted area in the tropical zone using a combination of optical and microwave satellite sensor data[J].International Journal of Remote Sensing,1999,20(5):1045-1048.
    [88]Oker-Blom P,Lappi J,Smolander H.Radiation regime and photosynthesis of coniferous stands.Photon-Vegetation Interactions:Applications in Plant Physiology and Optical Remote Sensing [M].New York:Springer-Verlag,1991:469-499.
    [89]Parmesan C,Yohe G.A globally coherent fingerprint of climate change impacts across natural systems[J].Nature,2003,421:37-42.
    [90]Partridge G W,Piatt C M R.Radiative Processes in Meteorology and Climatology[M].Amsterdam,Netherlands:Elsevier Scientific Publishing Company,1976.
    [91]Pearson R L,Miller L D.Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie,Pawnee National Grasslands,Colorado [G].Proceedings of the 8th International Symposium on Remote Sensing of Environment,1972:1357-1381.
    [92]Pinty B,Verstraete M M.GEMI:A non-linear index to monitor global vegetation from satellites[J].Vegetation,1992,101:15-20.
    [93]Potter C S,Randerson J T,Field C B,et al.Terrestrial ecosystem production:a process model based on global satellite and surface data[J].Global Biogeochemical Cycles,1993, 7(4):811-841.
    [94]Qi J,Chehbouni A,Huete A R,et al.A modified soil adjusted vegetation index (MSAVI)[J].Remote Sensing of Environment,1994,48:119-126.
    [95]Reed B C,Brown J F,VanderZee D,et al.Measuring phenological variability from satellite imagery[J].Journal of Vegetation Science,1994,5:703-714.
    [96]Ren J,Chen Z,Zhou Q,et al.Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong,China[J].International Journal of Applied Earth Observation and Geoinformation,2008,In Press.doi:10.1016/j.jag.2007.11.003.
    [97]Repo T,Hanninen H,Kellomaki S.The effects of long-term elevation of air temperature and CO_2 on the frost hardiness of Scots pine [J].Plant Cell and Environment,1996,19:209-216.
    [98]Reujean J,Breon F.Estimating PAR absorbed by vegetation from bidirectional reflectance measurements [J].Remote Sensing of Environment,1995,51:375-384.
    [99]Ribbes F,Toan T L.Rice field mapping and monitoring with RADARSAT data[J].International Journal of Remote Sensing,1999,20(4):745-765.
    [100]Richardson A J,Wiegand C L.Distinguishing vegetation from soil background information[J].Photogrammetric Engineering and Remote Sensing,1977,43:1541-1552.
    [101]Roetzer T,Wittenzeller M,Haeckel H,et al.Phenology in central Europe-differences and trends of spring phenophases in urban and rural areas [J].International Journal of Biometeorology,2000,44:60-66.
    [102]Roller N E G,Colwell J E.Coarse-resolution satellite data for ecological surveys[J].Bioscience,1986,36 (7):468-75.
    [103]Rondeaux G,Steven M,Baret F.Optimization of soil-adjusted vegetation indices[J].Remote Sensing of Environment,1996,55:95-107.
    [104]Root T L,Price J T,Hall K R,et al.Fingerprints of global warming on wild animals and plants[J].Nature,2003,421:57-60.
    [105]Ross J,Knyazikhin Y,Kuusk A,et al.Mathematical Modeling of the Solar Radiation Transfer in Plant Canopies (in Russian,with English abstract)[M].St.Peterburg,Russia:Gidrometeoizdat,1992:195.
    [106]Ross J.The Radiation Regime and Architecture of Plant Stands[M].Norwell,Mass.US A:Dr.W.Junk,1981:391.
    [107]Rousse J W,Haas R W,Schelle J A,et al.Monitoring vegetation systems in the great plains with ERTS[G].Third ERTS Symposium,NASA SP-351 I,1973:309-317.
    [108]Roy D P,Borak J S,Devadiga S,et al.The MODIS land product quality assessment approach[J].Remote Sensing of Environment,2002,83:62-76.
    [109]Ruimy A,Saugier B,Dedier G.Methodology for the estimation of terrestrial net primary production from remotely sensed data[J].Journal of geophysical research,1994,99:5263-5283.
    [110]Sakamoto T,Nguyen N V,Ohno H.Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow f the Mekong and Bassac rivers[J].Remote Sensing of Environment,2006,100:1-16.
    [111]Sakamoto T,Yokozawa M,Tritani H,et al.A crop phenology detection method using time-series MODIS data[J].Remote Sensing of Environment,2005,96:366-374.
    [112]Samarasinghe G B.Growth and yields of Sri Lanka's major crops interpreted from public domain satellites[J].Agricultural water management,2003,58:145-157.
    [113]Savitzky A,Golay M J E.Smoothing and differentiation of data by simplified least squares procedures [J].Analytical Chemistry,1964,36(8):1627-1639.
    [114]Schwartz M D,Reed B C,White M A.Assessing satellite-derived start-of-season measures in the conterminous USA[J].International Journal of Climatology,2002,22(14):1793-1805.
    [115]Schwartz M D.Advancing to full bloom:planning phenological research for the 21st century[J].International Journal of Biometeorology,1999,42(3):113-118.
    [116]Seaquist J W,Olsson L,Ardo J.A remote sensing-based primary production model for grassland biomes[J].Ecological Modelling,2003,169:131-155.
    [117]Seiler R A,Kogan F N,Wei G.Monitoring weather impact and crop yield from NOAA AVHRR data in Argentina[J].Advances in Space Research,2000,26(7):1177-1185.
    [118]Sellers P J,Tucker C J,Collatz G J,et al.A global 1° by 1° NDVI data set for climate studies:Part Ⅱ.The generation of global fields of terrestrial biophysical parameters from the NDVI[J].International Journal of Remote Sensing,1994,15(17):3519-3545.
    [119]Sellers P J,Dickinson R E,Randall D A,et al.Modeling the exchange of energy,water,and carbon between continents and atmosphere [J].Science,1997,275:602-509.
    [120]Shao Y,Fan X,Liu H,et al.Rice monitoring and production estimation using multitemporal RADARSAT[J].Remote Sensing of Environment,2001,76:310-325.
    [121]Studer S,Appenzeller C,Defila C.Inter-annual variability and decadal trends in Alpine spring phenology:a multivariate analysis approach[J].Climate Change,2005,73:395-414.
    [122]Tao F,Masayuki Y,Zhang Z,et al.Remote sensing of crop production in China by production efficiency models:models comparisons,estimates and uncertainties[J].Ecological Modelling,2005,183:385-396.
    [123]Tennakoon S B,Murty V V N,Eiumnoh A.Estimation of cropped area and grain yield of rice using remote sensing data[J].International Journal of Remote Sensing,1992,13:427-439.
    [124]Tucker C J,Elgin J H Jr,McMurtrey J E.Monitoring corn and soybean crop development by remote sensing techniques[J].Remote Sensing of Environment,1979a,8:237-248.
    [125]Tucker C J.Red and photographic infrared linear combination for monitoring vegetation[J].Remote Sensing of Environment,1979b,8:127-150.
    [126]Turner M D,Congalton R G.Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African flood plain[J].International Journal of Remote Sensing,1998,19(1):12-41.
    [127]US Department of Agriculture (USDA).USDA Statistical Reporting Service[M].Washington,D.C,1964.
    [128]Verstraete M M,Pinty B,Dickenson R E.A physical model of the bidirectional reflectance of vegetation canopies[J].Journal of Geophysical Research,1990,95:11765-11775.
    [129]Verstraete M M,Pinty B.Designing spectral indexes for remote sensing applications [J].IEEE Transactions on Geoscience and Remote Sensing,1996,34:1254-1265.
    [130]Viovy N,Arino O,Belward A.The Best Index Slope Extraction (BISE):A method for reducing noise in NDVI time-series [J].International Journal of Remote Sensing,1992,13(8):1585-1590.
    [131]Vygodskaya N N,Gorshkova 11.Theory and experiment in vegetation remote sensing (in Russian,with English abstract) [M].St.Petesburg,Russia:Gidrometeoizdat,1987:248.
    [132]Wang L,Qu J.NMDI:A Normalized Multi-band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing[J].Geophysical Research Letters,2007,34:L20405.
    [133]White M A,Thornton P E,Running S W.A continental phenology model for monitoring vegetation responses to interannual climatic variability [J].Global Biogeochemical Cycles,1997,11(2):217-234.
    [134]Wiegand C L,Richardson A J.Leaf area,light interception,and yield estimates from spectral components analysis[J]. Agronomy Journal, 1984, 76: 543-548.
    [135] Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006, 100: 95-113.
    [136] Xiao X, Boles S, Frolking S, et al. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images[J]. International Journal of Remote Sensing, 2002a, 23: 3579-3594.
    [137] Xiao X, Boles S, Frolking S, et al. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data[J]. International Journal of Remote Sensing, 2002b, 23: 3009-3022.
    [138] Xiao X, Boles S, Liu J, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95: 480-492.
    [139] Yu F, Price K P, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern central Asia[J]. Remote Sensing of Environment, 2003, 87(1): 42-54.
    [140] Zhang X, Friedl M A, Schaaf C B, et al. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 2003, 84: 471-475.
    [141] Zhou L, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research, 2001, 106: 20069-20083.
    [142] 杜桐生,黄进良,薛怀平,李蓉蓉.动态聚类法在湖北省农作物遥感估产区划中的应用[J].华中师范大学学报(自然科学版),2000,34(2):241-244.
    [143] 方红亮.两种水稻种植面积遥感提取方案的分析[J].地理学报,1998,53(1):58-65.
    [144] 黄敬峰.基于GIS的大面积水稻遥感估产方法研究--以浙江省为例[D].杭州:浙江大学,1999.
    [145] 江东,王乃斌,杨小唤,刘红辉.NDVI曲线与农作物长势的时序互动规律[J].生态学报,2002,22(2):247-252.
    [146] 江南,何隆华,王延颐.江苏省水稻遥感估产研究[J].长江流域资源与环境,1996,2(5):160-165.
    [147] 焦险峰,杨邦杰,裴志远.基于分层抽样的中国水稻种植面积遥感调查方法研究[J].农业工程学报,2006,22(5):105-110.
    [148] 赖格英,杨星卫,姚克敏.GIS支持下的浙江省水稻种植面积遥感估算综合自然区 划[J].南京气象学院学报,1998,21(4):656-661.
    [149] 李明霞,千怀遂.中国水稻遥感估产区划研究[J].地域研究与开发,1996,15(4):73-76.
    [150] 林瑞余,梁义元,蔡碧琼,等.不同水稻产量形成过程的干物质积累与分配特征[J].中国农学通报,2006,22(2):185-190.
    [151] 刘爱霞,王长耀,刘正军,牛铮.基于RS与GIS的干旱区棉花信息提取及长势监测[J].地理与地理信息科学,2003,19(4):101-104.
    [152] 刘海启.欧盟MARS计划简介与我国农业遥感应用思路[J].中国农业资源与区划,1999,3(20):55-57.
    [153] 刘可群,张晓阳.江汉平原水稻长势遥感监测及估产模型[J].华中师范大学学报(自然科学版),1997,4:482-487.
    [154] 梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [155] 千怀遂,李明霞.大面积农作物遥感估产区划的理论研究[J].河南大学学报(自然科学版),1997a,27(4):84-92.
    [156] 千怀遂,李明霞.中国玉米遥感估产区划研究[J].中国农业科学,1998a,31(4):32-39.
    [157] 千怀遂.农作物遥感估产最佳时相的选择研究--以中国主要粮食作物为例[J].生态学报,1998b,18(1):48-55.
    [158] 千怀遂.中国小麦遥感估产区划研究[J].自然资源学报,1997b,12(2):97-104.
    [159] 史定珊,毛留喜.NOAA AVHRR冬小麦长势遥感动态监测方法研究[J].气象学报,1992,50(4),520-523.
    [160] 孙九林.中国农作物遥感动态监测与估产总论[M].北京:中国科学技术出版社,1996.
    [161] 涂方旭.对广西水稻气候区划的探讨[J].广西气象,2006,27(1):34-36.
    [162] 王乃斌.中国小麦遥感动态监测与估产[M].北京:中国科学技术出版社,1996.
    [163] 王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002.
    [164] 王延颐.南方稻区遥感水稻长势监测与估产研究[J].遥感技术与应用,1991,6(3):1-6.
    [165] 王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源遥感,1996,27:56-59.
    [166] 王育光,姜丽霞,石剑,杜春英.黑龙江省水稻生产区域划分的初步研究[J].黑龙江气象,2006,1:13-17.
    [167] 吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):23-35.
    [168] 武建军,杨勤业.干旱区农作物长势综合监测[J].地理研究,2002,21(5):593-598.
    [169] 肖乾广,周嗣松,陈维英,等.用气象卫星数据对冬小麦进行估产试验[J].环境遥感,1986,1(4):260-269.
    [170] 肖乾广.用NOAA气象卫星的定量资料计算冬小麦种植面积的两种方法[J].环境遥感,1989,4(3):191-126.
    [171] 谢华安,王乌齐,杨惠杰,等.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4):201-204.
    [172] 熊利亚.中国农作物遥感动态监测与估产集成系统[M].北京:中国科学技术出版社,1996.
    [173] 许红卫,王人潮.浙江省水稻遥感估产区划研究[J].浙江大学学报(农业与生命科学版),2000,26(4):417-422.
    [174] 阎静,王汶,李湘阁.利用神经网络方法提取水稻种植面积--以湖北省双季早稻为例[J].遥感学报,2001,5(3):227-230.
    [175] 杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [176] 杨星卫,王红,周红妹,等.GIS支持下的上海水稻遥感估产分层研究.遥感技术与应用,1993,8(2):41-46.
    [177] 张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社,2004:9-46.
    [178] 张友水,原立峰,姚永慧.多时相MODIS影像水田信息提取研究[J].遥感学报,2007,11(2):282-288.
    [179] 赵锐,汤君友,何隆华.江苏省水稻长势遥感监测与估产[J].国土资源遥感,2002,3:9-11.
    [180] 赵锐,王延颐,戴锦芳.中国水稻遥感动态监测与估产[M].北京:中国科学技术出版社,1996.
    [181] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [182] 中华人民共和国国家统计局.中国统计年鉴[M].中国统计出版社,2007.
    [183] 周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14.
    [184] 朱勇,段长春,王鹏云.云南杂交水稻种植的气候优势及区划[J].中国农业气象,1999,20(2):21-24.
    [185] 朱勇.云南杂交水稻种植的气候条件及区划[J].云南农业大学学报,2000,15(1):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700