人源打靶载体介导的人~Aγ-珠蛋白基因转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗是指将遗传物质导入患者体内,使患者获得有益治疗的一种新型治疗方式,它是根治遗传性疾病的最直接和有效的方法。造血干细胞(hematopoietic stem cell, HSC)因具有自我更新和多谱系分化的能力成为基因治疗的最理想的靶细胞。基因治疗的基本目标是外源基因整合于HSC的染色体。
     人类珠蛋白基因家族包括α-和β-两个基因簇,两簇内各功能基因呈红系组织特异性、发育阶段特异性、终产物始终维持平衡的表达。一旦平衡失调将导致地中海贫血。β-地贫的发生是由于人类β-珠蛋白基因簇中的DNA序列缺失或突变导致β-珠蛋白肽链合成不足,相对过剩的α-珠蛋白肽链自身形成四聚体,从而导致红细胞形态及功能异常。
     β-地贫是人类较为常见的造血系统遗传性疾病,目前尚无疗效满意的治疗方法。β-地贫的基因治疗大多采用病毒载体介导的造血干细胞的基因转移策略。尽管病毒载体对遗传信息的传递非常有效,但是由于载体的不稳定性可导致转移基因不稳定整合和表达,而且病毒载体在转移基因的过程中可能发生的随机插入突变及可能产生的野生型重组病毒对机体危害甚大,因此寻找安全有效的载体系统是目前基因治疗领域的重要课题。为避免病毒载体的上述负面效应,在本研究中,我们引入一种新型打靶载体HCD-TV(human chromosome-derived targeting vector)。HCD-TV是一种人D,G组染色体靶向的人源载体,它利用人类D,G组染色体短臂上的序列作为打靶臂,通过同源重组将外源基因定向导入D,G组染色体短臂rDNA区,rDNA序列可以为外源基因的表达提供合适的染色质环境,最终获得外源基因的高效表达。
     HCD-TV的基本骨架是细菌人工染色体(bacterial artificial chromosome, BAC)载体,它的两个打靶引导序列(targeting leading sequence)TGLS1和TGLS2分别为1.5kb和1.6kb,来源于D,G组染色体短臂,与其高度同源。打靶臂之间为正筛选基因Neo基因,打靶臂以外、TGLS2与BAC载体骨架之间为负筛选基因tk基因,Neo基因上游与TGLS2之间的NheI位点可允许外源基因的插入。携带外源基因的打靶载体转染细胞后,经过G418进行正筛选,GCV进行负筛选,所获得的细胞克隆即为外源基因定向整合克隆。
     许多临床病例及实验表明胎儿型血红蛋白(fetal hemoglobin, HbF)的增
Gene therapy can be defined as the modification of the genome of cells to treat or prevent diseases. It is the most direct and effective method for the treatment of hereditary disorders. Hematopoietic stem cells (HSCs) are regarded as the most ideal target cells in gene therapy because of their capacity of self-renewing (being able to give rise to literally billions of progeny cells for essentially a lifetime) and pluripotent differentiation (being able to give rise to cells of all hematopoietic and lymphoid lineages). It is an attractive treatment strategy for many genetic and hematological diseases to transfer therapeutic genes into HSCs based on integrating vectors.
    β-thalassemia is a kind of common hereditary disease in hematopoietic system.. Till now, no satisfactory strategies can be performed effectively in the treatment of β-thalassemia. Human globin gene family resides in different loci, α-globin gene cluster and β-globin gene cluster. The function genes in both clusters can be expressed with the characteristics of erythroid-specificity, developmental stage-specificity and final product-balance. Once the balance between α -and β -globin final products was destroyed, thalassemia is coming. β-thalassemia results from deletions or mutations in regulatory regions or coding regions of β-globin gene cluster, which leads to the descendance or cessation of the synthesis of β-globin polypeptide, and thus the aggregation of redundant α -globin peptide.
    Viral vectors-mediated gene transfer to HSC are mostly used in the gene therapy of β-thalassemia by now. Viral vectors are efficient but currently appear to be too dangerous for routine clinical use, because their instability might cause unstable integration and expression of target gene. What's more, viral vectors may cause integration mutation during the procedure of gene transfer, and recombinant wild-type virus may be produced. So Gene delivery vehicles ("vectors") are the main
引文
1. McAdams A T, Miller M W and PapoutsakisT E, Hematopoietic cell culture therapies (Partl)xell culture considerations, TIBTECH, 1996, 14: 343-347.
    2. Barker E, Planelles V. Vectors derived from the human immunodeficiency virus, hiv-1. Front Biosci. 2003 May 1;8:D491-510.
    3. Miller AD, Buttimore C, Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production, Molecular cell Biology, 1986, 6: 2895-2902.
    4. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN. Gene therapy: principles and applications to hematopoietic cells. Leukemia. 2001 Apr;15(4):523-44.
    5. 唐佩弦.造血干细胞与基因治疗.中国实验血液学杂志 1999; 7:198—204
    6. Laufs S, Gentner B, Nagy KZ, Jauch A, Benner A, Naundorf S, Kuehlcke K, Schiedlmeier B, Ho AD, Zeller WJ, Fruehauf S. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood. 2003 Mar 15;101(6):2191-8.
    7. Ketteler R, Glaser S, Sandra O, Martens UM, Klingmuller U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther. 2002 Apr;9(8):477-87.
    8. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000 Apr 28;288(5466):669-72.
    9. Marshall E. Gene therapy. What to do when clear success comes with an unclear risk? Science. 2002 Oct 18;298(5593):510-l
    10. Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther. 2001 Oct 10;12(15):1893-905.
    11. Amado RG, Chen IS. Lentiviral vectors-the promise of gene therapy within reach? Science. 1999 Jul 30;285(5428):674-6.
    12. Amsellem S, Ravet E, Fichelson S, Pflumio F, Dubart-Kupperschmitt A. Maximal lentivirus-mediated gene transfer and sustained transgene expression in human hematopoietic primitive cells and their progeny. Mol Ther. 2002 Nov;6(5):673-7.
    13. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and ??tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002 Feb l;295(5556):868-72.
    14. Scherr M, Battmer K, Blomer U, Schiedlmeier B, Ganser A, Grez M, Eder M. Lentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells. Blood. 2002 Jan 15;99(2):709-12.
    15. Woods NB, Muessig A, Schmidt M, Flygare J, Olsson K, Salmon P, Trono D, von Kalle C, Karlsson S. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood. 2003 Feb 15;101(4):1284-9.
    16. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002 Aug 23;110(4):521-9.
    17. Lebouch P, Huang G M S, Humphries R K, et al. Mutagenesis of retroviral vectors transducing human β-globin gene and p-globin locus control region derivatives results in stable transmission of an active transcription structure. EMBO J, 1994,13: 3065-3076
    18. Duan D, Yue Y, Yan Z, Engelhardt JF. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med. 2000 May;6(5):595-8.
    19. Virella-Lowell I, Poirier A, Chesnut KA, Brantly M, Flotte TR. Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Then 2000 Oct;7(20): 1783-9:
    20. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000 Mar;24(3):257-61.
    21. Zhou SZ, Cooper S, Kang LY, Ruggieri L, Heimfeld S, Srivastava A, Broxmeyer HE: Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. J Exp Med 179:1867, 1994
    22. Fisher-Adams G, Wong KK Jr, Podsakoff G, Forman SJ, Chatterjee S. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood. 1996 Jul 15;88(2):492-504.
    23. Malik P, McQuiston SA, Yu XJ, Pepper KA, Krall WJ, Podsakoff GM, Kurtzman GJ, Kohn DB: Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line. J Virol 71:1776, 1997
    24. LaFace D, Hermonat P, Wakeland E, Peck A: Gene transfer into hematopoietic progenitor??cells mediated by an adeno-associated virus vector. Virology 162:483, 1988
    25. Russell DW, Kay MA. Adeno-associated virus vectors and hematology. Blood. 1999 Aug l;94(3):864-74.
    26. Buckton KE, Spowart G, Newton MS, Evans HJ. Forty four probands with an additional "marker" chromosome. Hum Genet. 1985;69(4):353-70.
    27. Raimondi E, Ferretti L, Young BD, Sgaramella V, De Carli L. The origin of a morphologically unidentifiable human supernumerary minichromosome traced through sorting, molecular cloning, and in situ hybridisation. J Med Genet. 1991 Feb;28(2):92-6.
    28. Huxley C.Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther. 1994 Jan;1(1):7-12.
    29. Willard HF. Chromosome manipulation: a systematic approach toward understanding human chromosome structure and function. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6847-50.
    30. Grimes B, Cooke H. Engineering mammalian chromosomes. Hum Mol Genet. 1998;7(10):1635-40.
    31. Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet. 1997 Apr;15(4):345-55.
    32. Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998 May; 16(5):431-9.
    33. Csonka E, Cserpan I, Fodor K, Hollo G, Katona R, Kereso J, Praznovszky T, Szakal B, Telenius A, deJong G, Udvardy A, Hadlaczky G. Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J Cell Sci. 2000 Sep;113 ( Pt 18):3207-16.
    34. Brown KE, Barnett MA, Burgtorf C, Shaw P, Buckle VJ, Brown WR. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet. 1994 Aug;3(8):1227-37.
    35. Grimes BR, Warburton PE, Farr CJ. Chromosome engineering: prospects for gene therapy. Gene Ther. 2002 Jun;9(ll):713-8.
    36. Auriche C, Donini P, Ascenzioni F. Molecular and cytological analysis of a 5.5 Mb minichromosome. EMBO Rep. 2001 Feb;2(2): 102-7.
    37. Guiducci C, Ascenzioni F, Auriche C, Piccolella E, Guerrini AM, Donini P. Use of a human minichromosome as a cloning and expression vector for mammalian cells. Hum Mol Genet. 1999 Aug;8(8):1417-24.38. Kuroiwa Y, Tomizuka K, Shinohara T, Kazuki Y, Yoshida H, Ohguma A, Yamamoto T, Tanaka S, Oshimura M, Ishida I. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol. 2000 Oct;18(10):1086-90.
    39.Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol. 2002 Sep;20(9):889-94.
    40. Mills W, Critcher R, Lee C, Farr CJ. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet. 1999 May;8(5):751-61.
    41. Willard HF. Genomics and gene therapy. Artificial chromosomes coming to life. Science. 2000 Nov 17;290(5495): 1308-9.
    42. Karpen GH, Schaefer JE, Laird CD. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988 Dec;2(12B): 1745-63.
    43. Sadelain M. Genetic treatment of the haemoglobinopathies: recombinations and new combinations. Br J Haematol. 1997 Aug;98(2):247-53.
    44. Rivella S, Sadelain M, Genetic Treatment of Severe Hemoglobinopathies: The Combat Against Transgene Variegation and Transgene Silencing, Semin. Hematol, 1998, 35(2): 112-125
    45. Bender MA, Gelinas RE, Miller AD. A majority of mice show long-term expression of a human beta-globin gene after retrovirus transfer into hematopoietic stem cells. Mol Cell Biol. 1989 Apr;9(4):1426-34.
    46.Ellis J, Pasceri P, Tan-Un K C, et al, Evaluation of β -globin gene therapy constructs in single copy transgenic mice, Nucleic Acids Res, 1997, 25 (6):1296-1302
    47. Sadelain M, Wang C M J, Antoniou M, Grosveld F, Mulligan R C, Generation of a high -titer retroviral vector capable of expression high levels of the human p-globin gene, Proc Natl Acad. Sci USA. 1995, 92: 6728-6732
    48. Wei Q Z, Liu D P, Tao J Z, et al. Effect of erythroid enhancer on p-globin gene expression. Progress in Natural Science, 1996,6: 502-506
    49. Chang JC, Liu D, Kan YW. A 36-base-pair core sequence of locus control region enhances retrovirally transferred human beta-globin gene expression. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3107-10.
    50. Emery DW, Chen H, Li Q, Stamatoyannopoulos G. Development of a condensed locus control region cassette and testing in retrovirus vectors for A gamma-globin. Blood Cells Mol Dis. 1998 Sep;24(3):322-39.51. Blouin M J, Beauchemin H, Wright A, et al. Genetic correction of sickle cell disease: insights using transgenic mouse models. Nature Medicine, 2000,6: 177-182
    52. Li Q, Emery D W, Fernandez M, et al. Development of viral vectors for gene therapy of β-chain hemoglobinopathies: optimization of a γ-globin gene expression cassette. Blood, 1999,93:2208-2216
    53. Emery DW, Yannaki E, Tubb J, Nishino T, Li Q, Stamatoyannopoulos G. Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood. 2002 Sep 15; 100(6):2012-9.
    54. Einerhand M P W, Antoniou M, Zolotukhin S, et al. Regulated high-level human β-globin gene expression in erythroid cells following recombinant adeno-associated virus-mediated gene transfer. Gene Ther, 1995,2:336-343
    55. Miller JL, Donahue RE, Sellers SE, Samulski RJ, Young NS, Nienhuis AW. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells. Proc Natl Acad Sci U S A. 1994 Oct 11;91 (21):10183-7.
    56. Hargrove PW, Vanin EF, Kurtzman GJ, Nienhuis AW. High-level globin gene expression mediated by a recombinant adeno-associated virus genome that contains the 3' gamma globin gene regulatory element and integrates as tandem copies in erythroid cells. Blood. 1997 Mar 15;89(6):2167-75.
    57.董文吉,刘德培,梁植权.病毒载体介导的β-地中海贫血基因治疗研究进展.国外医学输血及血液学分册 2001,24(5):380-384.
    58. Plavec B L, Papayarmopoulou T, Maury C,et al. A human β-globin gene fused to the human β-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells.Blood 1993,81 (5): 1384-1392
    59. Raftopoulos H, Ward M, Leboulch P, Bank A. Long-term transfer and expression of the human beta-globin gene in a mouse transplant model. Blood. 1997 Nov 1;90(9):3414-22.
    60. Ponnazhagan S, Yoder M C, Srivastava A. Adeno-associated virus type-2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo. J virol, 1997,71:3098-3104
    61. Tan M, Qing K, Zhou S, Yoder MC, Srivastava A. Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human beta-globin gene in hematopoietic cells from homozygous beta-thalassemic mice. Mol Ther. 2001 Jun;3(6):940-6.
    62. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded??human beta-globin. Nature. 2000 Jul 6;406(6791):82-6.
    63. May C, Rivella S, Chadburn A, Sadelain M. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood. 2002 Mar 15;99(6): 1902-8.
    64. Imren S, Payen E, Westerman KA, Pawliuk R, Fabry ME, Eaves CJ, Cavilla B, Wadsworth LD, Beuzard Y, Bouhassira EE, Russell R, London IM, Nagel RL, Leboulch P, Humphries RK. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22): 14380-5.
    65. Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma- globin gene is influenced by chromosomal position effects and vector copy number. Blood. 2003 Mar 15;101(6):2175-83.
    66. Swank R T, Zhen L D, A simple, rapid and high yield method for recovering DNA from agarose gels, Biotechnique, 1993, 14: 894-898.
    67. Sambrook J, Fristsch E F, Maniatis T, Filling recessed 3' termini, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: F2-F3.
    68. Sambrook J, Fristsch E F, Maniatis T, Removing protuding 3' termini, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: F4-F5.
    69. Sambrook J, Fristsch E F, Maniatis T, Dephosphorylation of linearized plasmid DNA, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: 1.60-1.61.
    70. Sambrook J, Fristsch E F, Maniatis T, Preparation and transformation of competent E. Coli, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: 1.82-1.83.
    71. Sambrook J, Fristsch E F, Maniatis T, Preparation and transformation of competent E. Coli, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: 1.80-1.81.
    72. Sambrook J, Fristsch E F, Maniatis T, Small-scale preparation of plasmid DNA, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor,1989:l .25-1.32.
    73. Sambrook J, Fristsch E F, Maniatis T, Large-scale preparation of plasmid DNA, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: 1.33-1.38
    74. Reiss M, Jastreboff MM, Bertino JR, Narayanan R. DNA-mediated gene transfer into epidermal cells using electroporation. Biochem Biophys Res Commun. 1986 May 29;137(1):244-9.
    75. Sambrook J, Fristsch E F, Maniatis T, Isolating of high-molecular-weight DNA from mammalian cells, in: Molecular Cloning: A laboratory manual , 2nd ed, Cold Spring Harbor, 1989:9.16-9.22.76. Sambrook J, Fristsch E F, Maniatis T, Analysis of Genomic DNA by Southern Hybridization, in: Molecular Cloning: A laboratory manual, 2nd ed, Cold Spring Harbor, 1989: 9.31-9.59.
    77. Tonkonow BL, Hoffman R, Burger D, Elder JT, Mazur EM, Murnane MJ, Benz EJ Jr. Differing responses of globin and glycophorin gene expression to hemin in the human leukemia cell line K562. Blood. 1982 Apr;59(4):738-46.
    78. Fibach E, Kollia P, Schechter AN, Noguchi CT, Rodgers GP. Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood. 1995 May 15;85(10):2967-74.
    79. Auffray C, and Rougeon F, Purification of mouse immunoglobin heavy -chain messager RNAs from total myeloma tumor RNA, European Journal of Biochemistry, 1980, 107: 303-314.
    80. Fiering S, Epner E, Robinson K, Zhuang Y, Telling A, Hu M, Martin DI, Enver T, Ley TJ, Groudine M. Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 1995 Sep 15;9(18):2203-13.
    81. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997 Mar 15;25(6):1317-8.
    82. Ellis J, Tan-Un K C, Harper A, et al, A dominant chromatin opening activity in 5' hypersensitive site 3 of the human β -globin locus control region. EMBO J. 1996 , 15:562— 568
    83. Sadelain M, Genetic treatment of the heamoglobinopathies: recombinants and combinations, Brit J Hematol,1997, 98: 247-253
    84. Rivella S,Sadelain M.Genetic Treatment of Severe Hemoglobinopathies:The Combat Against Transgene Variegation and Transgene Silencing, Semin. Hematol, 1998, 35(2): 112-125
    85.Dong WJ, Li B, Liu DP, Zu ZX, Li J, Hao DL, Liu G, Guo ZC, Liang CC. Evaluation of Optimal Expression Cassette in Retrovirus Vector for beta-Thalassemia Gene Therapy. Mol Biotechnol. 2003 Jun;24(2): 127-40.
    86. Li B, Liu D P, Wang J, et al, Generation of Stable Recombinant Retroviruses Containing the β-Globin Genes Linked to Complex Regulatory Elements by Using Transient Transfection, Mol Biotech, 1999, 13: 73-75
    87. Van Tendeloo VF, Ponsaerts P, Van Broeckhoven C, Berneman ZN, Van Bockstaele DR. Efficient generation of stably electrotransfected human hematopoietic cell lines without drug selection by consecutive FACsorting. Cytometry. 2000 Sep 1;41(1):31-5.88. Kume A, Hanazono Y, Mizukami H, et al. Hematopoietic stem cell gene therapy: a current overview. Int J Hematol 1999; 69: 227-233
    89.Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263:802-805
    90. Limon A, Briones J, Puig T, et al. High-titer retroviral vectors containing the enhanced green fluorescent protein gene for efficient expression in hematopoietic cells. Blood, 1997, 90: 3316-3321
    91. Persons DA, Allay JA, Allay ER, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scorting and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 1997;90:1777-1786
    92. Gatlin J, Douglas J, Evans JT, et al. In vitro selection of lentivirus vector-transduced human CD34+ cells. Hum Gene Then 2000 Sep 1; 11(13):1949-57.
    93. Li LH, McCarthy P, Hui SW. High-efficiency electrotransfection of human primary hematopoietic stem cells. FASEB J. 2001 Mar;15(3):586-8.
    94. Marit G, Cao Y, Froussard P, Ripoche J, Dupouy M, Elandaloussi A, Lacombe F, Mahon FX, Keller H, Pla M, Reiffers J, Theze J. Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers. Eur J Haematol. 2000 Jan;64(1):22-31.
    95. Ng P, Baker MD. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.Genetics. 1999 Mar;151(3):1143-55.
    96. Ledermann B. Embryonic stem cells and gene targeting. Exp Physiol. 2000 Nov;85(6):603-13.
    97.Frohman MA, Martin GR. Cut, paste, and save: new approaches to altering specific genes in mice. Cell. 1989 Jan 27;56(2): 145-7.
    98. Fung-Leung WP, Mak TW. Embryonic stem cells and homologous recombination. Curr Opin Immunol. 1992 Apr;4(2): 189-94.
    99. Leung W, Malkova A, Haber JE. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6851-6.
    100. Deng C, Capecchi MR. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol. 1992 Aug;12(8):3365-71.
    101. Li J, Baker MD. Mechanisms involved in targeted gene replacement in mammalian cells. Genetics. 2000 Oct;156(2):809-21.102. Bohr VA, Wassermann K. DNA repair at the level of the gene. Trends Biochem Sci. 1988 Nov;13(ll):429-33.
    103. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985 Sep 19-25;317(6034):230-4.
    104. Chen Y, Xue Z, Zheng D, Xia K, Zhao Y, Liu T, Long Z, Xia J. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr Gene Ther. 2003 Jun;3(3):273-9.
    105. Hollrigl A, Hergovich A, Gorzer I, Bader A, Ellersdorfer G, Habegger K, Hammer E, Enzinger S, Capetanaki Y, Weitzer G. High-throughput site-directed mutagenesis in ES cells. Biochem Biophys Res Commun. 2001 Nov 30;289(2):329-36.
    106..Abe A, Takeo T, Emi N, Tanimoto M, Ueda R, Yee JK, Friedmann T, Saito H. Transduction of a drug-sensitive toxic gene into human leukemia cell lines with a novel retroviral vector. Proc Soc Exp Biol Med. 1993 Jul;203(3):354-9.
    107. Grosveld, F., van Assendelft, G. B., Greaves, D.R. and Kollias, G. Position-independent, high-level expression of the human p-globin gene in transgenic mice. Cell, 1987, 51:975-9851. Samulski, R. J. Chang, L. S. Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol. 61, 3096-3101.
    2. Gao, GP., Qu, G, Faust, LZ., Engdahl, RK., Xiao, W., Hughes, JV., Zoltick, PW., Wilson, JM. (1998) High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther. 9(16), 2353-62.
    3. Summerford, C, and Samulski, R J. (1998) Membrane-associated heparan sulfate proteoglycan I a receptor for adeno-associated virus type 2 virions. J Virol.72, 1438-1445.
    4. Summerford, C, Bartllet, J. S., and Samulski, R. J. (1999) αVβ5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nature Med. 5, 78-82.
    5. Qing, K., Mah, C, Hansen, J., Zhou, S., Dwarki, V., Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nature Med. 5(1), 71-77.
    6. Duan, D., Li, Q., Kao, AW., Yue, Y., Pessin, JE., Engelhardt, JF. (1999) Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol. 73(12), 10371-6.7. Balague, C, Kalla, M., Zhang, WW. (1997) Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol. 71(4), 3299-306.
    8. Recchia, A., Parks, RJ., Lamartina, S., Toniatti, C., Pieroni, L., Palombo, F., Ciliberto, G, Graham, FL., Cortese, R., La Monica, N., Colloca, S. (1999) Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci U S A.96(6), 2615-20.
    9. Beschin, N., Cubelli, R., Delia, Sala, S., Spinazzola L. (1997) Left of what? The role of egocentric coordinates in neglect. J Neurol Neurosurg Psychiatry. 63(4), 483-9.
    10. Qing, K., Mah, C, Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus type 2. Nature Med. 5,71-7.
    11. Girod, A., Ried, M, Wobus, C, Lahm, H., Leike, K., Kleinschmidt, J., Deleage, G, Hallek, M. (1999) Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nature Med. 5(9), 1052-6.
    12. Chiorini, JA., Kim, F., Yang, L., Kotin, RM. (1999) Cloning and characterization of adeno-associated virus type 5. J Virol. 73, 1309-1319.
    13. Duan, D., Sharma, P., Dudus, L., Zhang, Y., Sanlioglu, S., Yan, Z., Yue, Y, Ye, Y, Lester, R., Yang, J., Fisher, KJ., Engelhardt, JF. (1999) Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus E4 ORF6 and E2a gene expression. J Virol. 73(1), 161-9.
    14. Kanazawa, T., Urabe, M., Mizukami, H., Okada, T., Kume, A., Nishino, H., Monahan, J., Kitamura, K., Ichimura, K., Ozawa, K. (2001) Gamma-rays enhance rAAV-mediated transgene expression and cytocidal effect of AAV-HSVtk/ganciclovir on cancer cells. Cancer Gene Ther. 8(2), 99-106.
    15. Ueno, T., Matsumura, H., Tanaka, K., Iwasaki, T., Ueno, M., Fujinaga, K., Asada, K., Kato, I. (2000) Site-specific integration of a transgene mediated by a hybrid adenovirus/adeno-associated virus vector using the Cre/loxP-expression-switching system. Biochem Biophys Res Commun. 273(2), 473-8.
    16. Stone, D., David, A., Bolognani, F., Lowenstein, PR., Castro, MG. (2000) Viral vectors for gene delivery and gene therapy within the endocrine system. J Endocrinol. 164(2), 103-18.
    17. Xiao, X., Li,J., Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 72, 2224-2232.
    18. Salvetti, A., Oreve, S., Chadeuf, G, Favre, D., Cherel, Y, Champion-Arnaud, P., David-Ameline, J., Moullier, P. (1998) Factors influencing recombinant adeno-associated virus??production. Hum Gene Then 9, 695-706.
    19. Cao, L., Liu, Y., During, MJ., Xiao, W. (2000) High-titer, wild-type free recombinant adeno-associated virus vector production using intron-containing helper plasmids. J Virol. 74(24), 11456-63.
    20. Drittanti, L., Jenny, C, Poulard, K., Samba, A., Manceau, P., Soria, N., Vincent, N., Danos, O., Vega, M. (2001) Optimised helper virus-free production of high-quality adeno-associated virus vectors. J Gene Med. 3(1), 59-71.
    21. Conway, JE., Rhys, CM., Zolotukhin, I., Zolotukhin, S., Muzyczka, N., Hayward, GS., Byrne, BJ. (1999) High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther. 6(6), 986-93.
    22. Liu, XL., Clark, KR., Johnson, PR.. (1999) Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther. 6(2), 293-9.
    23. Vincent, K.A., Piraino, S.T., and Wadsworth, S.C. (1997). Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J Virol. 3, 1897-1905.
    24. Costantini, LC, Jacoby, DR., Wang, S., Fraefel, C, Breakefield, XO., Isacson, O. (1999) Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther. 10(15), 2481-94
    25. Zhang, L., Wang, D., Fischer, H., Fan, PD., Widdicombe, JH., Kan, YW, Dong, JY. (1998) Efficient expression of CFTR function with adeno-associated vectors that carry shortened CFTR genes. Proc Natl Acad Sci USA. 95, 10158-10163.
    26. Yang, J., Zhou, W., Zhang, Y, Zidon, T., Ritchie, T., Engelhardt, JF. (1999) Concatamerization of AAV circular genomes occurs through intermolecular recombination. J Virol. 73(11), 9468-9477.
    27. Nakai, H., Iwaki, Y, Kay, MA., Couto, LB. (1999) Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J Virol. 73(7), 5438-47.
    28. Nakai, H., Storm, TA., Kay, MA. (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol. 18(5), 527-32.
    29. Yan, Z., Zhang, Y, Duan, D., and Engelhardt, J. (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA. 97(12), 6716-6721.30. Joose, K., Yang, Y., Fisher, K.J., and Wilson, J.M. (1998). Transduction of dendritic cells by DNA viral vectors directs the immune respone to trandgene products in muscle fibers. J Virol. 72, 4212-4223.
    31. Xiao, X., Li,J., Samulski, R. J. (1996) Efficient long term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol. 70, 8098-8108.
    32. Hontebeyrie-Joskowicz, M, Said, G, Milon, G, Maechal, G, and Eisen, H. (1987) L3T4 T cells able to mediate parasite-specific delayed-type hypersensitivity play a role in the pathology of experimental Chagas' disease. Eur J Immunol. 17, 1027-1033.
    33. Chirmule, N., Propert, K., Magosin, S., Qian, Y, Qian, R., Wilson, J. (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6(9), 1574-83.
    34. Brockstedt, DG, Podsakoff, GM., Fong, L., Kurtzman, G, Mueller-Ruchholtz, W., Engleman, EG. (1999) Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol. 92(1), 67-75.
    35. Manning, WC, Zhou, S., Bland, MR, Escobedo, JA., Dwarki, D. (1998) Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum Gene Ther. 9, 477-485.
    36. Moskalenko, M., Chen, L., van Roey, M., Donahue, BA., Snyder, RO., McArthur, JG, Patel, SD. (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol. 74(4), 1761-6.
    37. Halbert, CL., Rutledge, EA., Allen, JM., Russell, DW., Miller, AD. (2000) Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. 74(3), 1524-32.
    38. Zhou, SZ., Broxmeyer, HE., Cooper, S., Harrington, MA., Srivastava, A. (1993) Adeno-associated virus 2-mediated gene transfer in murine hematopoietic progenitor cells. ExpHematol. 21(7), 928-33.
    39. Kaplitt MG,, Leone P., Samulski, RJ., Xiao, X., Pfaff, DW, O'Malley, KL., During, MJ. (1994) Long term gene expression and phenotypic correction using adeno-associated virus vectors iv the mammalian brain. Nat Genet. 8, 148-54.
    40. Ali, RR., Reichel, MB., Thrasher, AJ., Levinsky, RJ., Kinnon, C, Kanuga, N., Hunt, DM., Bhattacharya, SS. (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet. 5, 591-4.
    41. Nakai, H., Herzog, RW., Hagstrom, JN., Walter, J., Kung, SH., Yang, EY, Tai, SJ., Iwaki, Y, Kurtzman, GJ., Fisher, K.J., Colosi, P., Couto, LB., High, KA. (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood. 91,4600-7.42. Daly, TM., Vogler, C, Levy, B., Haskins, ME., Sands, MS. (1999) Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acda Sci USA. 96, 2296-300.
    43. Summerford, C, Bardlet, J. S., and Samulski, R. J. (1999) αV β 5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nature Med. 5, 78-82.
    44. Zhou, S., Murphy, JE., Escobedo, JA., Dwarki, VJ. (1998) Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hemotocrit in nonhuman primates. Gene Ther. 5(5), 665-70.
    45. Bals, R., Xiao, W., Sang, N., Weiner, DJ., Meegalla, RL., Wilson, JM. (1999) Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J Virol. 73(7), 6085-6088.
    46. Koeberl, DD., Bonham, L., Halbert, CL., Allen, JM., Birkebak T., Miller, AD. (1999) Persistent, therapeutically relevant levels of human granulocyte colony-stimulating factor in mice after systemic delivery of adeno-associated virus vectors. Hum Gene Ther. 10(13), 2133-40.
    47. Fan, DS., Ogawa, M., Fujimoto, KL, Ikeguchi, K., Ogasawara, Y, Urabe, M., Nishizawa, M., Nakano, I., Yoshida, M., Nagatsu, I., Ichinose, H., Nagatsu, T., Kurtzman, GJ., Ozawa, K. (1998) Behavioral recovery in 6-hydroxydopamine lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic L-amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum Gene Ther. 9, 2527-35.
    48. Bosch, A., Perret, E., Desmaris, N., Heard, JM. (2000) Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther. 1(1), 63-70.
    49. Shimazaki, K., Urabe, M., Monahan, J., Ozawa, K., Kawai, N. (2000) Adeno-associated virus vector-mediated bcl-2 gene transfer into post-ischemic gerbil brain in vivo: prospects for gene therapy of ischemia-induced neuronal death. Gene Ther. 7(14), 1244-9
    50. Kasuya, H., Mizuno, M., Yoshida, J., Nishiyama, Y, Nomoto, S., Nakao, A. (2000) Combined effects of adeno-associated virus vector and a herpes simplex virus mutant as neoplastic therapy. J Surg Oncol. 74(3), 214-8.
    51. Mitchell, M., Jerebtsova, M., Batshaw, ML., Newman, K., Ye, X. (2000) Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Ther. 7(23), 1986-92.
    52. Lipshutz, GS., Gruber, CA., Cao, Ya., Hardy, J., Contag, CH., Gaensler, KM. (2001) In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther. 3(3), 284-92.53. Lamartina, S., Ciliberto, G, Toniatti, C. (2000) Selective cleavage of AAVS1 substrates by the adeno-associated virus type 2 rep68 protein is dependent on topological and sequence constraints. J Virol. 74(19), 8831-42.
    54. Satoh, W., Hirai, Y., Tamayose, K., Shimada, T. (2000) Site-specific integration of an adeno-associated virus vector plasmid mediated by regulated expression of rep based on Cre-loxP recombination. J Virol. 74(22), 10631-8.
    55. Duan, D., Sharma, P., Yang, J., Yue, Y, Dudus, L., Zhang, Y, Fisher, KJ., Engelhardt, JF. (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long- term episome persistence in muscle tissue. J Virol.72 (11), 8568-8577
    56. Xiao,W., Berta,S.C, Lu,M.M., Moscioni.A.D., Tazelaar,J., Wilson,J.M. (1998) Adeno-associated virus as a vector for liver-directed gene therapy. J Virol.72, 10222-10226.
    57. Fisher, KJ., Jooss, K., Alston, J., Yang, Y, Haecker, SE., High, K., Pathak, R., Raper, SE., Wilson, JM. (1997) Recombinant adeno-associated virus for muscle directed gene therapy. Nature Med. 3(3), 306-12.
    58. Ponnazhagan, S., Wang, XS., Woody, MJ., Luo, F., Kang, LY, Nallari, ML., Munshi, NC., Zhou, SZ., Srivastava, A. (1996) Differential expression in human cells from the p6 promoter of human parvovirus B19 following plasmid transfection and recombinant adeno-associated virus 2 (AAV) infection: human megakaryocytic leukaemia cells are non-permissive for AAV infection. J Gen Virol. 77 (Pt 6), 1111 -22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700