吲哚美辛对结肠癌细胞成瘤裸鼠作用的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     结肠癌是常见的消化道肿瘤,确诊时多属中晚期,手术效果较差,寻找有效防治结肠癌的药物一直是人们关注的热点。随着对慢性炎症与肿瘤发生发展之间关系研究的深入,非甾体类抗炎药(NSAIDs)抗结肠癌的作用备受重视。大量资料显示长期服用NSAIDs可降低结肠癌的发病率,多种NSAIDs可通过抑制细胞增殖、诱导细胞凋亡等产生抗肿瘤作用,吲哚美辛(indomethacin,IN)也是研究较多的此类药物之一,但具体的分子生物学机制未完全明确。NSAIDs的抗炎活性主要通过环氧合酶2(COX-2)实现,COX-2在结肠腺瘤和结肠腺癌中表达增高,COX-2抑制剂可抑制肿瘤增长,因此环氧合酶2被认为在此过程中起关键作用。但COX-2并不能解释NSAIDs抗肿瘤的全部,因为NSAIDs对不表达COX的癌细胞同样可产生抗肿瘤效应,不具有环氧合酶抑制活性的NSAIDs衍生物也有抗肿瘤作用,提示除环氧合酶外,NSAIDs还有其他作用靶点存在。现有研究表明NSAIDs可通过PPARγ、PPARδ和RKS2等非COX依赖性途径发挥抗肿瘤作用。由于大肠癌的发生是一多因素多步骤的过程,涉及多个基因的突变,而NSAIDs抗结肠癌的作用涉及到大肠癌发生发展的多个环节,具体作用机制较为复杂,故常规方法很难做到全面的研究。蛋白质组学是动态研究一个细胞、组织或有机体中所表达全部蛋白质的新兴学科,利用蛋白质组学研究的高通量特点,有望发现药物具体作用机制的线索及新的药物靶标。我们先前的研究已发现吲哚美辛可明显抑制结肠癌细胞成瘤裸鼠瘤组织的生长,为此我们利用不表达COX-2的HCT116结肠癌细胞接种至裸鼠皮下,以成瘤裸鼠作研究对象,用蛋白质组学技术对吲哚美辛抗结肠癌的分子机制进行深入研究。
     第一部分:吲哚美辛对结肠癌细胞裸鼠成瘤组织作用的功能蛋白质组学分析
     目的:建立吲哚美辛处理组与未处理组结肠癌HCT116细胞裸鼠成瘤组织的双向凝胶电泳图谱,分析两组间差异表达蛋白质点;方法:
Background:
    Colorectal cancer is among the leading causes of cancer-related mortality, most patients were diagnosed in late stage, and the effects of operation on them were poor. Thus searching for effective drugs to the therapy, or those with potential to prevent colorectal cancer, is of great importance. Followed by the further understanding of relationship between chronic inflammation and tumor progression, nonsteroidal anti-inflammatory drugs (NSAIDs), as the main anti-inflammation drugs, draw more and more research attention for their functions of cancer therapy and chemoprevention. Ample data show that regular intake of NSAIDs is associated with decreased incidence of colorectal adenoma or colorectal cancer. NSAIDs have shown effects on tumor in many sites of the body through anti-proliferation and inducing apoptosis. Indomethacin has been frequently used to study the effect on colorectal cancer as well as cancers in other sites. Despite lots of researches related to NSAIDs including indomethacin's effect on CRC, concrete mechanism of its anti-tumor activity is not completely known. Because cyclooxygenase-2 (COX-2) is the main target through which NSAIDs exert their anti-inflammation effect, colorectal adenoma and adenocarcinoma have a high level expression of COX-2, and COX-2 specific inhibiting drugs such as celecoxib can impede cancer proliferation, so COX-2 has been thought to play a pivotal role in this process. However, COX-2 could not explain all the mechanism of NSAIDs' anti-cancer effects, other evidences exhibited that COX-independent cancer-chemotherapy mechanisms of NSAIDs still exist, since NSAIDs had antiproliferative effects on cell lines which do not expressed COX, anf derivations of NSAIDs which do not inhibit COX also have antitumor effects. Several studies have demonstrated that NSAIDs including indomethcin can play a chemopreventive and therapeutic activity through targets such as ribosomal S6 kinase 2 (RSK2), peroxisome proliferator-activated receptor
引文
[1] Boyle P, Langman JS. ABC of colorectal cancer: epidemiology. BMJ, 2000, 321: 805-808.
    [2] Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol, 2001, 2(9): 533-43.
    [3] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2): 74-108.
    [4] Wong SK, Kneebone A, Morgan M, et al. Surgical management of colorectal cancer in south-western Sydney 1997-2001: a prospective series of 1293 unselected cases from six public hospitals. ANZ J Surg, 2005, 75(9): 776-82.
    [5] Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol, 1983, 24(1): 83-87.
    [6] Gonzaga RA, Lima FR, Cameiro S, Maciel J, Amarante Junior M. Sulindac treatment for familial polyposis coli (Letter). Lancet, 1985, 1: 751.
    [7] Waddell WR, Ganser GF, Cerise EJ, Loughry RW. Sulindae for polyposis of the colon. Am J Surg, 1989; 157: 175-9.
    [8] Labayle D, Fischer D, Vielh P, et al. Sulindac causes regression of rectal polyps in patients with familial adenomatous polyposis. Gastroenterology, 1991; 101: 635-639.
    [9] Rigau J, Pique JM, Rubio E, et al. Effects of long-term sulindac therapy on colonic polyposis. Ann Intern Med, 1991, 115: 952-954.
    [10] Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med, 1993, 328: 1313-1316.
    [11] Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res, 1988, 48 (15): 4399-4404.
    [12] Gridley G, McLaughlin JK, Ekbom A, et al. Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst, 1993, 85(4): 307-11.
    [13] Chan AT, Giovannucci EL, Meyerhardt JA, et al. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA, 2005, 294(8): 914-923.
    [14] Stoll BA. Indomethacin in breast cancer. Lancet, 1973, 18; 2(7825): 384.
    [15] Al-Salem T, Ali ZS, Qassab M. Skin cancers in xeroderma pigmemosum: response to indomethacin and steroids. Lancet, 1980, 2(8188): 264-265.
    [16] Panje WR. Regression of head and neck carcinoma with a prostaglandin-synthesis inhibitor. Arch Otolaryngol, 1981, 107(11): 658-663.
    [17] Kralj M, Kapitanovic S, Kovacevic D, et al. Effect of the nonsteroidal anti-inflammatory drug indomethacin on proliferation and apoptosis of colon carcinoma cells. J Cancer Res Clin Oncol, 2001, 127(3): 173-179.
    [18] Pollard M, Luckert PH. Indomethacin treatment of rats with dimethylhydrazine-induced intestinal tumors. Cancer Treat Rep, 1980, 64(12): 1323-1327.
    [19] Wang HM, Zhang G. Y. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo. World J. Gastroenterol, 2005, 11: 340-343.
    [20] 张桂英,段朝军,施家琦,等.消炎痛抗肿瘤作用及体外增敏作用的研究.湖南医科大学学报,1997,22(6):478-482
    [21] 张桂英,段晓明,袁伟健,等.吲哚美辛诱导结肠癌细胞凋亡的分子机制.中华消化杂志,2000,20(4):267-268.
    [22] 徐美华,张桂英,谢兆霞,等.吲哚美辛对结肠癌细胞CDK2、CDK4、p21WAF1/CIPI、Bcl-2及Bax蛋白表达的影响冲华消化杂志,2002,22(10):605-607.
    [23] Zhang GS, Tu CQ, Zhang GY, et al. Indomethacin induces apoptosis and inhibits proliferation in chronic myeloid leukemia cells. Leukemia Res, 2000, 24: 385-392.
    [24] Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994, 107: 1183-1188.
    [25] Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med, 2000, 342(26): 1946-1952.
    [26] Shift SJ, Qiao L, Tai L, et al. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induce apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest, 1995, 96: 491-503.
    [27] Goldberg Y. Nassif II. Pittas A. et al. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene, 1996, 12: 893-901.
    [28] Tsuji M, Kawano S, Sawaoka H, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998, 93: 705-716.
    [29] Zhang X, Morham SG, Langenbach R, et al. Malignant transform- ation and antineoplastic actions of nonsteroidal anti-inflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med, 1999, 190: 451-460.
    [30] Grosch S, Tegeder I, Niederberger E, et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J, 2001, 15(14): 2742-2744.
    [31] He T C, Chan TA, Vogelstein B, et al. PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99(3): 335-345.
    [32] Lehmann JM, Lenhard JM, Oliver BB, et al. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem, 1997, 272(6): 3406-3410.
    [33] Stevenson MA, Zhao MJ, Asea A, et al. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-kappa B-responsive genes. J Immunol, 1999, 163(10): 5608-5616.
    [34] Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science, 2000, 290(5493): 989-992.
    [35] Smith ML, Hawcroft G; Hull MA. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. Eur J Cancer, 2000, 36(5): 664-74.
    [36] Kapitanovic S, Cacev T, Antica M, et al. Effect of indomethacin on E-cadherin and beta-catenin expression in HT-29 colon cancer cells. Exp Mol Pathol, 2006, 80(1): 91-96.
    [37] 陈强,刘亚刚,杨雪,等.蛋白质组学的研究进展.西南民族大学学报(自然科学版).2005,31(2):257-260.
    [38] Brower V. Proteomics: biology in the post-genomic era: Companies all over the world rush to lead the way in the new post-genomics race. EMBO Rep, 2001, 2(7): 558-560.
    [39] 王洁,童建.蛋白质组学在放射生物学研究中的应用.中华放射医学与 防护杂志,2005,25(2):205-207.
    [40] 贺福初.蛋白质组(proteome)研究.后基因组时代的生力军.科学通报,1999,44(2):113-117.
    [41] Stulik J, Hemychova L, Porkertova S, et al. Proteome study of colorectal carcinogenesis. Electrophoresis, 2001, 22(14): 3019-3025
    [42] Rui Z, Jian-Guo J, Yuan-Peng T, et al. Use of serological proteomic methods to find biomarkers associated with breast cancer. Proteomics, 2003, 3 (4): 433-439.
    [43] Huang J, Hu N, Taylor P, et al. An approach to proteomic analysis of human tumors. Mol Carcinog, 2000, 27(3): 158-165.
    [44] Stierum R, Gaspari M, Dommels, Y, et al. Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim Biophys Acta, 2003, 21(1): 73-91.
    [45] Tomlinson AJ, Hincapie M, Morris GE, et al. Global proteome analysis of a human gastric carcinoma. Electrophoresis, 2002, 23(18): 3233-3240.
    [46] 俞利荣,王楠,吴高德,等.人肝癌细胞系BEL-7404和正常肝细胞系L-02表达的蛋白质组双向凝胶电泳分析.科学通报,2000,45(2):170-178.
    [47] Jungblut PR, Zirrmy-Amdt U, Zeindl-Eberhart E, et al. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis, 1999, 20(10): 2100-2110.
    [48] Dundas SR, Lawrie LC, Rooney PH, et al. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol, 2005, 2050): 74-81.
    [49] Lin JD, Chan EC, Weng HF, et al. Two-dimensional electrophoretic analysis of membranous protein from human thyroid tissue and cancer cell lines. Electrophoresis, 1998, 19(18): 3213-3216.
    [50] Hanash SM, Bobek MP, Rickman DS, et al. Integrating cancer genomics and proteomics in the post-genome era. Proteomics, 2002, 2(1): 69-75.
    [51] Williams AC, Browne SJ, Manning AM, et al. Biological consequences of the genetic changes which occur during human colorectal carcinogenesis. Semin Cancer Biol, 1993, 4(3): 153-159.
    [52] Janne PA, Mayer RJ. Chemoprevention of colorectal cancer. N Engl J Med, 2000, 342(26): 1960-1968.
    [53] Steiner S, Witzmann FA. Proteomics: applications and opportunities in preclinical drug development. Electrophoresis, 2000, 21 (11): 2099-2104.
    [54] Winter CA, Risley EA, Nuss GW. Anti-inflammatory and antipyretic activities of indomethacin, 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole -3-acetic acid. J Pharmacol Exp Ther, 1963, 141: 369-376.
    [55] Kudo T, Narisawa T, Abo S. Antitumor activity of indomethacin on methylazoxymethanol-induced large bowel tumors in rats. Gann, 1980, 71(2): 260-264.
    [56] Kobayashi S, Nantz R, Kitamura T, et al. Combined inhibition of extracellular signal-regulated kinases and HSP90 sensitizes human colon carcinoma cells to ionizing radiation. Oncogene, 2005, 24(18): 3011-3019.
    [57] Li Cui, Chen Zhuchu, Xiao Zhiqiang, et al. Comparative proteomics analysis of human lung squamous carcinoma. Biochemical and Biophysical Research communications, 2003, 309: 253-260.
    [58] 程艳丽,张桂英,肖志强.吲哚美辛抗人结肠癌HCT116细胞双向电泳蛋白质表达谱的差异分析.肿瘤,2005,25(1):28-32.
    [59] Zhang X, Xiao Z, Chen Z, et al. Comparative proteomics analysis of the proteins associated with laryngeal carcinoma-related gene 1. Laryngoscope, 2006, 116(2): 224-230.
    [60] Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1988, 9(9): 531-546.
    [61] Gorg A, Obermaier C, Boguth G; Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6): 1037-1053.
    [62] Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4(12): 3665-3685.
    [63] Berkelman T and Stenstedt T, 2-D Electrophoresis using Immobilized pH Gradients: Principles and Methods. Amersham Pharmacia Biotech, Piscataway, NJ, 1998.
    [64] Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25, 1327-1333.
    [65] 陈主初,梁宋平.肿瘤蛋白质组学.长沙:湖南科技出版社,2002.38-48.
    [66] 孙燕.“饮食西方化”使大肠癌发病危险急剧增加.首都医药,2005,12(15):36-38.
    [67] 李广灿,叶召.我国常见肿瘤发病现状.中国肿瘤,1999,8(11):498-499.
    [68] 杨工,郑树,金凡,等.结直肠癌发病率趋势变化的病因探索.实用肿瘤杂志,1998,13(3):136-137.
    [69] McCarthy DO, Whitney P, Hitt A, Al-Majid S. Indomethacin and ibuprofen preserve gastrocnemius muscle mass in mice bearing the colon-26 adenocarcinoma. Res Nurs Health, 2004, 27(3): 174-184.
    [70] Yasumaru M, Tsuji S, Tsujii M, Irie T, Komori M, Kimura A, Nishida T, Kakiuchi Y, Kawai N, Murata H, Horimoto M, Sasaki Y, Hayashi N, Kawano S, Hori M. Inhibition of angiotensin Ⅱ activity enhanced the antitumor effect of cyclooxygenase-2 inhibitors via insulin-like growth factor Ⅰ receptor pathway. Cancer Res, 2003, 63(20): 6726-6734.
    [71] Shift SJ, Koutsos MI, Qiao L, Rigas B. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis. Exp Cell Res, 1996, 222(1): 179-88.
    [72] Hixson LJ, Alberts DS, Krutzsch M, Einsphar J, Brendel K, Gross PH, Paranka NS, Baier M, Emerson S, Pamukcu R, et al. Antiproliferative effect of nonsteroidal antiinflammatory drugs against human colon cancer cells. Cancer Epidemiol Biomarkers Prev, 1994, 3(5): 433-8.
    [73] Tanaka Y, Tanaka T, Ishitsuka H. Antitumor activity of indomethacin in mice bearing advanced colon 26 carcinoma compared with those with early transplants. Cancer Res, 1989, 49(21): 5935-9.
    [74] Rubio CA, Wallin B, Ware J, et al. Effect of indomethacin in autotransplanted colonic tumors. Dis Colon Rectum. 1989, 32(6): 488-91.
    [75] Narisawa T, Sato M, Sano M, Niwa M, Takahashi M, Ito T, Tanida N, Shimoyama T. Prevention of colon polyposis and carcinomas by right hemicolectomy and indomethacin in animal model. Cancer, 1985, 56(7): 1719-24.
    [76] Gaffen JD, Chambers EA, Bennett A. The effects of dipyridamole and indomethacin on methotrexate cytotoxicity in LoVo human colon cancer cells. J Pharm Pharmacol, 1989, 41(5): 350-2.San dler RS.
    [77] Aspirin and other nonsteroidal anti-inflammatory agents in the prevention of colorectal cancer. Important Adv Oncol, 1996; 123-37.
    [78] Elder DJ, Halton DE, Crew TE, et al. Apfptosis induction and cyclooxygenase-2 regulation in human colorectal adenoma and carcinoma cell lines by the cyclooxygenase-2-selective non-steroidal antiinflammatory drug NS-398. Int J Cancer, 2000, 86: 553-560.
    [79] Hsueh CT, Chiu CF, Kelsen DP, et al. Selective inhibition of cyclooxygenase-2 enhancces mitomycin-C-induced apoptosis. Cancer Chemother Pharmacol, 2000, 45: 389-396.
    [80] Elder DJ, Halton DE, Playle LC, et al. The MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells. Int J Cancer, 2002, 99(3): 323-327.
    [81] Yamamoto Y, Yin MJ, Lin KM, et al. Sulindac inhibits activation of the NF-κB pathway. J Biol Chem, 1999, 274: 27307-27314.
    [82] Shureiqi I, Jiang W, Zuo X, et al. The 15-1ipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci USA, 2003, 100(17): 9968-9973.
    [83] Chung YM, Bae YS, Lee SY. Molecular ordering of ROS production, Mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radio Biol Med, 2003, 34(4): 434-442.
    [84] He TC, Chan TA, Vogelstein B, et al. PPAR delta is an APC regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99(3): 335-345.
    [85] Wick M, Hurteau G; Dessev C. et al. Peroxisome proliferator-activated receptor-γ is a target of nonsteroidal anti-inflammatory drugs mediating cyclooxygenase-independent inhibition of lung cancer cell growth. Molecular Pharmacology, 2002, 62(5): 1207-1214.
    [86] Dihlmann S, Siermann A, von Knebel Doeberitz M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene, 2001, 20(5): 645-653.
    [87] Alessandro R, Belluco C, Kohn EC. Proteomic approaches in colon cancer: promising tools for new cancer markers and drag target discovery. Clin Colorectal Cancer, 2005, 4(6): 396-402.
    [88] Haberkorn U, Altmann A, Eisenhut M. Functional genomics and proteomics-the role of nuclear medicine. Eur J Nucl Med, 2002, 29(1): 115-132.
    [89] 郑艳颖.蛋白质组学在临床医学中的应用.检验诊断与实验室自动化,2004.4:19-22.
    [90] Schramm A, Apostolov O, Sitek B, et al. Proteomics: techniques and applications in cancer research. Klin Padiatr, 2003, 215(6): 293-297.
    [91] Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150(1): 76-85.
    [92] Baldwin MA. Mass spectrometers for the analysis of biomolecules. Methods Enzymol, 2005, 402: 3-48.
    [93] Henzel WJ, Billeci TM, Stults JT, et al Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proc. Natl. Acad. Sci. USA, 1993, 90(11): 5011-5015.
    [94] Yates JR 3rd. Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct, 2004, 33: 297-316.
    [95] Chen P, Xie J. Y, Liang S. P, et al. Identification of protein spots insilver-stained two-dimensional gels by MALDI-TOF mass peptidemap analysis, Acta Biochim. Biophys. Sin, 2000, 32: 387-391.
    [96] Li F, Li M, Xiao Z, et al. Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML database—Xindice. BMC Bioinformatics, 2006 Jan 11; 7: 13.
    [97] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
    [98] Pierce WM, Cai J. Applications of mass spectrometry in proteomics. Contrib Nephrol, 2004, 141: 40-58.
    [99] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928): 198-207.
    [100] 钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社.2003,101-130.
    [101] Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem Rev, 2001, 101(2): 269-295.
    [102] Buckingham S. Bioinformatics: data's future shock. Nature, 2004, 428(6984): 774-777.
    [103] Englbrecht CC, Facius A. Bioinformatics challenges in proteomics. Comb Chem High Throughput Screen, 2005, 8(8): 705-715.
    [104] Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
    [105] Perkins DN, Pappin DJ, Creasy DM, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18): 3551-3567.
    [106] 大肠癌中Fas、FasL、FAP-1的表达及意义.中国癌症杂志,2004,24(2):119-122.
    [107] Ryan AE, Shanahan F, O'Connell J, et al. Addressing the "Fas counterattack" controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res, 2005, 65(21): 9817-9823.
    [108] Beatty GL, Paterson Y. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol, 2000, 165(10): 5502-5508.
    [109] Symons A, Cooper DN, Barclay AN. Characterization of the interaction between galectin-1 and lymphocyte glycoproteins CD45 and Thy-1. Glycobiology, 2000, 10(6): 559-563
    [110] Rubinstein N, Alvarez M, Zwirner NW, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege. Cancer Cell, 2004, 5: 241-251.
    [111] Sanjuan X, Fernandez PL, Castells A, et al. Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology, 1997, 113: 1906-1915.
    [112] Hartwell LH. Genetic control of the cell division cycle in yeast. Ⅳ. Genes controlling bud emergence and cytokinesis. Exp Cell Res, 1971, 69: 265-276.
    [113] Dobbelaere J, Barral Y. Spatial Coordination of Cytokinetic Events by Compartmentalization of the Cell Cortex. Science, 2004, 305: 393-396.
    [114] Solito E, Raguenes-Nicol C, de Coupade C, et al. U937 cells deprived of endogenous annexin 1 demonstrate an increased PLA2 activity. Br J Pharmacol, 1998, 124: 1675-1683.
    [115] Brockstedt E, Otto A, Rickers A, et al. Preparative high-resolution two-dimensional electrophoresis enables the identification of RNA polymerase Btranscription factor 3 as an apoptosis-associated protein in the human BL60-2 Burkitt lymphoma cell line. J Protein Chem, 1999, 18: 225-231.
    [116] 荣举,许丽艳,蔡唯佳,等.Fascin 1基因在永生化食管上皮细胞癌变中的表达.癌症,2004,23(3):243-248.
    [117] Jawhafi AU, Buda A, Jenkins M, et al. Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro. Am J Pathol, 2003, 162(1): 69-80.
    [118] Calderwood SK, Khaleque MA, Sawyer DB, et al. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci, 2006, 31(3): 164-172.
    [119] Cappello F, Bellafiore M, Palma A, et al. 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem, 2003, 47(2): 105-110.
    [120] Ostwald TJ, MacLennan DH. Isolation of a high affinity calciumbinding protein from sarcoplasmic reticulum. J Biol Chem, 1974, 249: 974-979.
    [121] Krause KH, Michalak M. Calreticulin. Cell, 1997, 88 (4): 439-443.
    [122] Michalak M, Corbett EF, Mesaeli N, et al. Calreticulin: one protein, one gene, many functions. Biochem J, 1999, 344 Pt 2: 281-92.
    [123] Timchenko LT, Iakova P, Welm AL, et al. Calreticulin interacts with C/EBPalpha and C/BPbeta mRNAs and represses translation of C/EBP proteins. Mol Cell Biol, 2002, 22(20): 7242-7257.
    [124] Mery L, Mesaeli N, Michalak M, et al. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem, 1996, 271(16): 9332-9339.
    [125] Opas M, Szewczenko-Pawlikowski M, Jass GK, et al. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol, 1996, 135(6 Pt 2): 1913-1923.
    [126] Fadel MP, Szewczenko-Pawlikowski M, Leclerc P, et al. Calreticulin affects beta-catenin-associated pathways. J Biol Chem, 2001, 276(29): 27083-27089.
    [127] Brunagel G, Shah U, Schoen RE, et al. Identification of calreticulin as a nuclear matrix protein associated with human colon cancer. J Cell Biochem, 2003, 89(2): 238-243.
    [1] Williams CS. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol, 1996, 270(3 Pt 1): G393-G400.
    [2] Kudo T, Narisawa T, Abo S. Antitumor activity of indomethacin on methylazoxymethanol-induced large bowel tumors in rats. Gann, 1980, 71(2): 260-264.
    [3] Pollard M, Luckert PH. Indomethacin treatment of rats with dimethylhydrazine-induced intestinal tumors. Cancer Treat Pep, 1980, 64(12): 1323-1327.
    [4] Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol, 1983, 24(1): 83-87.
    [5] Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res, 1988, 48(15): 4399-404.
    [6] Thun MJ, Namboodiri MM, Health CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med, 1991, 325(23)1593-1596.
    [7] Giovannucci E, Rimm EB, Stampfer MJ, et al. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994, 121(4): 241-246.
    [8] Giovannucci E, Egan KM, Hunter DJ, et al. Aspirin and the risk of colorectal cancer in women. N Engl J Med, 1995, 333(10): 609-614.
    [9] Shift SJ, Qiao L, Tsal LL, et al. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest, 1995, 96(1): 491-503.
    [10] Schnitzler M, Dwight T, Robinson BG. Sulindac increases the expression of APC mRNA in malignant colonic epithelial cells: an in vitro study. Gut. 1996, 38(5): 707-13.
    [11] Subbegowda R, Frommel TO. Aspirin toxicity for human colonic tumor cells results from necrosis and is accompanied by cell cycle arrest. Cancer Res, 1998, 58(13): 2772-2776.
    [12] Tomozawa S, Nagawa H, Tsuno N, et al. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522. Br J Cancer, 1999, 81(8): 1274-1279.
    [13] Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res, 1998, 58(2): 362-366.
    [14] Dial EJ, Doyen JR, Lichtenberger LM. Phosphatidylcholine- associated nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit DNA synthesis and the growth of colon cancer cells in vitro. Cancer Chemother Pharmacol, 2006, 57(3): 295-300.
    [15] 卢雅丕,任建林.NSAIDs相关性胃肠病.世界华人消化杂志,2005,13(21):2597-2600.
    [16] Yeh RK, Chen J, Williams JL, et al. NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property?. Biochem Pharmacol. 2004, 67(12): 2197-2205.
    [17] Folkmen J. Tumor angiogenesis: Therapeutic implication. N. Engl J. Med, 1971, 285: 1182-1186.
    [18] Folkmen J. What is the evidence that tumors are angiogenesis dependent?. J. Natl Cancer Inst, 1990, 82(4): 4-6.
    [19] Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3): 353-364.
    [20] Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000 Mar 1; 60(5): 1306-1311.
    [21] Peterson HI Effects of prostaglandin synthesis inhibitors on tumor growth and vascularization. Experimental studies in the rat. Invasion Metastasis, 1983, 3: 151-159.
    [22] Tsujii M, Kawano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998, 93(5): 705-716.
    [23] Wang HM, Zhang GY. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo. World J Gastroenterol. 2005, 11(3): 340-343.
    [24] Bennett A, Gaffen JD, Melhuish PB, et al. Studies on the mechanism by which indomethacin increases the anticancer effect of methotrexate. Br J Pharmacol, 1987, 91(1): 229-235.
    [25] Kobayashi S, Okada S, Hasumi T, et al. The marked anticancer effect of combined VCR, MTX, and indomethacin against drug-resistant recurrent small cell lung carcinoma after conventional chemotherapy: report of a case. Surg Today, 1999, 29(7): 666-669.
    [26] 张桂英,冷爱民,贺智敏,等.消炎痛抑制人结肠癌细胞增殖和诱导凋亡的研究.中国现代医学杂志,1998,8(12):1-5.
    [27] Ricchi P, Di Matola T, Ruggiero G, et al. Effect of non-steroidal anti-inflammatory, drugs on colon carcinoma Caco-2 cell responsiveness to topoisomerase inhibitor drugs. Br J Cancer, 2002, 86(9): 1501-1509.
    [28] Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer, 2000, 89(12): 2637-2645.
    [29] Pisano C, Ottaiano A, Tatangelo F, et al. Cyclooxygenase-2 expression is associated with increased size in human sporadic colorectal adenomas. Anticancer Res, 2005, 25(3B): 2065-2068.
    [30] Wu AW, Gu J, Ji JF, et al. Role of COX-2 in carcinogenesis of colorectal cancer and its relationship with tumor biological characteristics and patients'prognosis. World J Gastroenterol, 2003, 9(9): 1990-1994.
    [31] Rodrigues S, Nguyen QD, Faivre S, et al. Activation of cellular invasion by trefoil peptides and src is mediated by cyclooxygenase 2 and thromboxane A2 receptor-dependent signaling pathways. FASEB J, 2001, 15(9): 1517-1528.
    [32] Shattuck-Brandt RL, Varilek GW, Radhika A, et al. Cyclooxygenase-2 expression is increased in the stroma of colon carcinomas from IL210 (-/-) mice. Gastroenterology, 2000, 118(2): 337-345.
    [33] Cianchi F, Cortesini C, Bechi P, et al. Up-regulation of cyclooxygenase-2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology, 2001, 121 (6): 1339-1347.
    [34] Masunaga R, Kohno H, Dhar DK, et al. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients. Clin Cancer Res, 2000, 6(10): 4064-4068.
    [35] Soumaoro LT, Uetake H, Higuchi T, et al. Cyclooxygenase-2 expression: a significant prognostic indicator for patients with colorectal cancer. Clin Cancer Res, 2004, 10(24): 8465-8471.
    [36] Xiong B, Sun TJ, Hu WD, et al. Expression of cyclooxygenase-2 in colorectal cancer and its clinical significance. World J Gastroenterol, 2005, 11(8): 1105-1108.
    [37] Williams CS ,Tsujii M ,Reese J, et al. Host cyclooxygenase-2 modulates carcinoma growth . J Clin Invest, 2000, 105(11):1589-1594.
    [38] Abdelrahim M, Safe S. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Spl and Sp4 proteins. Mol Pharmacol, 2005, 68(2): 317-329.
    [39] Elder DJ , Paraskeva C. Induced apoptosis in t he prevention of colorectal cancer by non2steroidal anti2inflammatory drugs. Apoptosis, 1999, 4 (5): 365-372.
    [40] Soumaoro LT, Uetake H, Takagi Y, et al. Coexpression of VEGF-C and COX-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum, 2006, 49(3):392-398.
    [41] Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA, 1997, 94(7): 3336-3340.
    [42] Tomozawa S, Tsuno NH, Sunami E, et al. Cyclooxygenase-2 overexpression correlates with tumor recurrence, especially haematogenous metastasis of colorectal cancer. Br J Cancer, 2000, 83(3): 324-328.
    [43] Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J, 2001,15(12): 2057-2072.
    [44] Grosch S, Tegeder I, Niederberger E, et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J, 2001, 15(14):2742-2744.
    [45] Yamazaki R, Kusunoki N, Matsuzaki T, et al. Selective cyclooxygenase -2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett, 2002, 531(2):278-284.
    [46] McCracken JD, Wechter WJ, Liu Y, et al. Antiproliferative effects of the enantiomers of flurbiprofen. J Clin Pharmacol, 1996, 36(6): 540-545.
    [47] Wechter WJ, Kantoci D, Murray Jr ED, et al. R-flurbiprofen chemoprevention and treatment of intestinal adenomas in the APC(Min)/t mouse model: implications for prophylaxis and treatment of colon cancer. Cancer Res, 1997, 57(19): 4316-4324.
    [48] Reddy BS, Kawamori T, Lubet RA, et al. Chemopreventive efficacy of sulindac sulfone against colon cancer depends on time of administration during carcinogenic process. Cancer Res, 1999, 59(14):3387-3391.
    [49] Stoner GD, Budd GT, Ganapathi R, et al. Sulindac sulfone induced regression of rectal polyps in patients with familial adenomatous polyposis. Adv Exp Med Biol, 1999, 470: 45-53.
    [50] Song X, Lin HP, Johnson AJ, et al. Cyclooxygenase-2, player or spectator in cyclooxygenase-2, inhibitorinduced apoptosis in prostate cancer cells. J Natl Cancer Inst, 2002, 94(8): 585-591.
    [51] Hanif R, Pittas A, Feng Y, et al. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol, 1996, 52: 237-245.
    [52] de Mello MC, Bayer BM, Beaven MA. Evidence that prostaglandins do not have a role in the cytostatic action of anti-inflammatory drugs. Biochem Pharmacol, 1980, 29: 311-318.
    [53] Piazza GA, Rahm AK, Finn TS, et al. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest and p53 induction. Cancer Res, 1997, 57: 2452-2459.
    [54] Chan TA, Morin PJ, Vogelstein B, et al. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci USA, 1998, 95: 681-686.
    [55] Nobuoka A, Takayama T, Miyanishi K, et al. Glutathione-S-transferase P1-1 protects aberrant crypt foci from apoptosis induced by deoxycholic acid. Gastroenterology, 2004, 127: 428-443.
    [56] Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and carcinomas. Gastroenterology, 1994, 107: 1183-1188.
    [57] Algul H, Adler G, Schmid RM. NF-kappaB/Rel transcriptional pathway: implications in pancreatic cancer. Int J Gastrointest Cancer, 31(13) 2002, 31(13): 71-78.
    [58] Viatour P, Merville MP, Bours V, et al. Phosphorylation of NFkappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci, 2005, 30(1): 43-52.
    [59] Gilmore TD. The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat Res, 2003, 115: 241-265.
    [60] May MJ, Ghosh S. Signal transduction through NF-kappa B. Immunol Today, 1998,19(2):80-88.
    [61] Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionary conserved mediators of immune responses. Annu Rev Immunol, 1998,16:225-260.
    [62] Evertsson S,Sun XF.Protein expression of NF-kB in human colorectal adenocarcinoma. Int Mol Med, 2002,10(5):547.
    [63] Christian M, Michalis PC, Upinder B, et al. Expression of cyclooxygenase-2 parallels expression ofinterleukin-1 beta,interleukin-6 and NF-κB in human colorectal cancer. Carcinogenesis, 2003, 24(4):665.
    [64] Stark LA, Din FV, Zwacka RM, et al. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J, 2001,15(7):1273-1275.
    [65] Din FV, Stark LA, Dunlop MG. Aspirin-induced nuclear translocation of NFkappaB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency.Br J Cancer, 2005, 92(6):1137-1143.
    [66] Din FV, Dunlop MG, Stark LA. Evidence for colorectal cancer cell specificity of aspirin effects on NF kappa B signalling and apoptosis. Br J Cancer, 2004,91(2):381-388.
    [67] Houseknecht KL, Cole BM, et al. Peroxisome proliferators-activated receptor (PPAR) and its ligands: A review. Domest Anim Endocrinol, 2002,22:1-23.
    [68] Park BH, Breyer B, He TC. Peroxisome proliferator-activated receptors: roles in tumorigenesis and chemoprevention in human cancer. Curr Opin Oncol, 2001, 13(1):78-83.
    [69] Gupta RA, Tan J, Krause WF, et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA, 2000, 97(24): 13275-13280.
    [70] Jackson L, Wahli W, Michalik L, et al. Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer. Gut, 2003, 52(9): 1317-1322.
    [71] He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999, 99(3):335-345.
    [72] Nikitakis NG, Hebert C, Lopes MA, et al. PPARgamma-mediated antineoplastic effect of NSAID sulindac on human oral squamous carcinoma cells. Int J Cancer, 2002, 98(61): 817-823.
    [73] Baek SJ, Kim KS, Nixon JB, et al. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmaeol, 2001, 59(4): 901-908.
    [74] Rybalkin SD, Beavo JA. Multiplicity within cyclic nucleotide phosphodiesterases. Biochem Soc Trans, 1996, 24: 1005-1009.
    [75] Perry MJ, Higgs GA. Chemotherapeutic potential of phosphodiesterase inhibitors. Curr Opin Chem Biol 1998, 2: 472-481.
    [76] Barnes PJ. New directions in allergic diseases: mechanism-based anti-inflammatory therapies. J Allergy Clin Immunol, 2000, 106: 5-16.
    [77] Santibanez JF, Olivares D, Guerrero J, et al. Cyclic AMP inhibits TGFbeta1-induced cell-scattering and invasivenes in mufine-transformed keratinocytes. Int J Cancer, 2003, 107(5): 715-720.
    [78] Yamanaka Y, Mammoto T, Kirita T, et al. Epinephrine inhibits invasion of oral squamous carcinoma cells by modulating intracellular cAMP. Cancer Lett, 2002, 176(2): 143-148.
    [79] Thompson WJ, Piazza GA, Li H, Liu L, et al. Exisulind induction of apoptosis involves guanosine 3', 5'-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res, 2000, 60(13): 3338-3342.
    [80] Belham C, Wu S, Avruch J: Intracellular signalling: PDK1-a kinase at the hub of things. Curr Biol, 1999, 9: R93-R96.
    [81] Arico S, Pattingre S, Bauvy C, et al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositidedependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem, 2002, 277(31): 27613-27621.
    [82] Bjorbaek C, Zhao Y, Moiler DE: Divergent functional roles for p90rsk kinase domains. J Biol Chem, 1995, 270: 18848-18852.
    [83] Stevenson MA, Zhao MJ, Asea A, Coleman CN, Caiderwood SK: Salicylic acid and. aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-B-responsive genes. J Immunol, 1999, 163: 5608-5616.
    [84] Pillinger MH, Capodici C, Rosenthal P, Kheterpal N, Hanft S, Philips MR, et al. Modes of action of aspirin-like drugs: salicylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc Natl Acad Sci USA 1998,95(24):14540-14545.
    [85] Schwenger P, Bellosta P, Vietor I,et al. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun Nterminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci USA, 1997,94(7):2869-2873.
    [86] Schwenger P, Alpert D, Skolnik EY, et al. Cell-type-specific activation of c-Jun N-terminal kinase by salicylates. J Cell Physiol, 1999,179(1): 109-114.
    [87] Nusse R. Wnt signaling in disease and in development. Cell Res, 2005,15: 28-32.
    [88] McEntee MF, Chiu CH, Whelan J. Relationship of beta-catenin and Bcl-2 expression to sulindac-induced regression of intestinal tumors in Min mice. Carcinogenesis, 1999, 20(4) :63 5-640.
    [89] Rice PL, Kelloff J, Sullivan H, et al. Sulindac metabolites induce caspase-and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Mol Cancer Ther, 2003, 2(9): 885-892.
    [90] Boon EM, Keller JJ, Wormhoudt TA, et al. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer, 2004,90(1):224-229.
    [91] Zou H , Li Y, Liu X, et al. An Apaf-1. cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem, 1999, 274 (17): 11549-11556.
    [92] Hu Y, Benedict MA , Ding L, et al . Role of cytochrome C and dATP/ ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J, 1999,18 (13): 3586-3595.
    [93] Saleh A , Srinivasula SM , Acharya S, et al . Cytochrome C and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem, 1999,274 (25):17941-17945.
    [94] Pique M, Barragan M, Dalmau M, et al. Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Lett, 2000, 480 (2-3): 193-196.
    [95] Zimmermann KC, Waterhouse NJ, Goldstein JC, et al. Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia, 2000, 2(6): 505-13.
    [96] Sanchez-Alcazar JA, Bradbury DA, Pang L, et al. Cyclooxygenase (COX) inhibitors induce apoptosis in non-small cell lung cancer through cyclooxygenase independent pathways. Lung Cancer, 2003, 40(1): 33-44.
    [97] Li M, Wu X, Xu XC. Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin Cancer Res, 2001, 7(4): 1010-1016.
    [98] Kuhn H, Saam J, Eibach S, et al. Structural biology of mammalian lipoxygenases: enzymatic consequences of targeted alterations of the protein structure. Biochem Biophys Res Commun, 2005, 338(1): 93-101.
    [99] Shureiqi I, Wojno KJ, Poore JA, et al. Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-1ipoxygenase-1 expression in human colon cancers. Carcinogenesis, 1999, 20(10): 1985-95.
    [100] Shureiqi I, Jiang W, Zuo X, et al. The 15-1ipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci USA, 2003, 100(17): 9968-73.
    [101] Shureiqi I, Chen D, Lee JJ, Yang P, et al. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. J Natl Cancer Inst, 2000, 92(14): 1136-1142.
    [102] Shureiqi I, Chen D, Lotan R, et al. 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory druginduced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res, 2000, 60(24): 6846-6850.
    [103] Nakai A, Kartha S, Sakurai A, et al. A human earlyresponse gene homologous to murine nur77 and rat NGFI-B, and related to the nuclearreceptor superfamily. Mol Endocrinol, 1990, 4: 1438-1443.
    [104] Maira M, Martens C, Batsche E, et al. Dimer-specificpotentia- tion of NGFI-B (Nur77) transcriptional activity by the protein kinase A pathway and AF-1-dependent coactivator recruitment. Mol Cell Biol, 2003, 23: 763-776.
    [105] Kang HJ, Song MJ, Choung SY, et al. Transcriptional induction of Nur77 by indomethacin that results in apoptosis of colon cancer cells. Biol Pharm Bull, 2000, 23(7): 815-819.
    [106] Chao DT, Korsmeyer SJ: BCL-2 family: Regulators of cell death. Annu Rev Immunol, 1998, 16: 395-419.
    [107] Brabletz T , Herrmann K, Jung A, et al. Expression of nuclear betacatenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol, 2000, 156 (3): 865-870.
    [108] Hao X, Tomlinson I, Ilyas M, et al. Reciprocity between membranous and nuclear expression of beta-catenin in colorectal tumours. Virchows Arch, 1997, 431(3): 167-172.
    [109] Mahmoud NN, Dannenberg AJ, Mestre J, et al. Aspirin prevents tumors in a murine model of familial adenomatous polyposis. Surgery, 1998, 124: 225-231.
    [110] Smith ML, Hawcroft G, Hull MA. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: Evidence of different mechanisms of action. Eur J Cancer, 2000, 36: 664-674.
    [111] Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19): 2390-400.
    [112] 周长春,刘芝华,齐军.AP-1和肿瘤的关系研究进展.世界华人消化杂志,2006,14(1):1-5.
    [113] Tegeder I, Niederberger E, Israr E, et al. Inhibition of NF- kapa B and AP-1 activation by R- and S-flurbiprofen. Faseb J, 2001, 15: 2-4.
    [114] Grrsch S, Tegeder I, Schilling K, et al. Activation of c-Jun-N-terminalkinase is crucial for the induction of a cell cycle arrest in human colon carcinoma cells caused by flurbiprofen enantiomers. FASEB J, 2003, 17(10): 1316-1318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700