胰岛发生、发育和再生及相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨胰腺发育中胰岛细胞的分化、迁移和胰岛的形成,以及在此过程中相关基因表达的变化。对胰岛β细胞损伤后的胰岛再生机制进行初步研究,并检测了β细胞损伤后调控胚胎胰岛细胞分化发育的部分关键性基因Pdx-1、Ngn3、Nkx2.2及Nkx6.1的表达情况,为应用胰腺干细胞作为糖尿病生物治疗性手段提供基础性研究。
     材料和方法
     1.收集征得孕妇签字同意后、因意外等各方面原因必须终止妊娠的不同胎龄段的正常胚胎标本进行组织学观察,并通过免疫组织化学方法观察胰岛细胞的分化发育和CD34、AFP、IGF-I、IGF-IR,TGF-β、TGF-βR,bFGF及FGFR因子在胰腺发育中的表达分布。
     2.采用β细胞毒性剂—Alloxan腹腔注射破坏新生SD大鼠的β细胞,复制糖尿病模型,采用免疫组织化学方法观察胰岛β细胞的再生,并通过RT-PCR、Western-blot方法检测Pdx-1、Ngn3、Nkx2.2及Nkx6.1基因的表达。
     结果
     1.人胚胎观察
     ① 4周时,人胚胰芽由前肠末端发出,腹、背胰在胎龄5周时融
Objective
    To clarify the differentiation and migration of islet cells as well as islet forming in pancreatic genesis and development, and the expressing changes of related genes in pancreatic development. Meanwhile, Initial investigation were established for mechanism of islets regeneration after β-cells injured. Part vital genes related to islet cells differentiation and development of embryo such as Pdx-1, Ngn3, Nkx2.2 and Nkx6.1 were detected in islets regeneration. It expected to provide elementary investigation for the biological application to finally cure diabetes mellitus. Material & Methods
    Sample collection was conducted in accordance to the principle of informed consent. Histological method and immunohistological methods were adopted in studying normal embryonic pancreas of donators at 3-14 weeks of gestation, and analysis were made on vital cytokines expression of CD34, AFP, IGF-I, IGF-IR, TGF-β, TGF-βR, bFGF and FGFR for
引文
1. Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, k. H., Sharma, A and O'Neil, J. J. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl, Acad Sci, USA,2000,97:7999-8004
    2. Ramiya, V. K., Maraist, M., Arfors, K. E., Schatz, D. A., Peck, A. B. and Cornelius, J. G. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med, 2000,6:278-282
    3. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A. and Martin, F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabets, 2000,49:157-162
    4.徐庆,吴志勇.胰腺移植进展.肝、胆、胰外科杂志,2000,12(2):111
    5. L, ChArles Murtaugh, Douglas A. Melton. Genes, Signal, and Lineages in Pancreas Development. Annu. Rew. Cell Dev. Biol, 2003,19:71-89
    6. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+cells are islet progenitors and are distinct from duct progenitors. Development, 2002,129:2447-57
    7. Herrera, P. L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development, 2000,127:2317-2322
    8. Gmyr V, Verr—loote J, Belaich S, et al. Adult human cytokeratin 19-positive cells re-express insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans. Diabetes, 2000, 49(10):1671-1680.
    9. Nieto DA, Villar J, Matorras WR, et al. In tranterine growth retardation at tern: associatoon between anthropometric and endocrine patameters. Acta Obstet Gynecol Scand,1996; 75(2): 127.
    10. Ale ssandro C, Giancarlo P Sergio F, et al. Effect of maternal carbohydrate metabolism on fetal growth. Obstet Gynecol,1998; 92(1):8.
    11.卫朝霞,郑惠良,李杭生.人胎血清胰岛素含量测定.河南医科大学学报,2001,36(5):596—597.
    1. Serup P, Madesen OD, Mandrup-Pooulsen T. Islet and stem cell transplantation for treating diabetes. Br Med J, 2001, 322: 29-32.
    2. Zulewski H, Abraham EJ ,Gerlach MJ, et al. Multipotential nestin-positive stem cells isolate from adult pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes , 2001, (50) :521-533.
    3. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science.2001, 294:564-67
    4. Whittaker SR, Walton MI, GarrettMD, et al. The Cyclin—dependent kinase inhibitor CYC202 (R-roscovitine) inhibits rectino-blastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway Cancer Res, 2004, 64(1): 262-272.
    5. Li MS, Li PF, Li G, et al. The intracellular mechanism of alpha-fetoprotein promoting the proliferation of NIH3T3 cells. Cell Research, 2002, 12(2): 151-156
    6. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell, 1990, (60) :583-595.
    7. Kim SJ.Letterio J.Transforming growth factor-beta signaling in norm- al and malignant hematopoiesis. Leukemia,2003,17(9): 1731 -7
    8. Plotnikov AN, Hubbard SR, Schlessinger J, et al. Crystal structure of two FGF-FGFR complexes reveal the determinans of ligand receptor specificity. Cell, 2000, 101(4): 413-424
    9. Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997, 385:257-60
    10. Esni F, Johansson BR, Radice GL, Semb H. Dorsal pancreas agenesis in N-cadherin-deficient mice. Dev. Biol. 2001,238:202-12
    11. Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, embryonic stem cells to insulin-secreting et al. Pbxl inactivation disrupts pancreas development and in Ipfl-deficient mice promotes diabetes mellitus. Nat. Genet. 2002,30:430-35
    12. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, et al. Fgf10 isessential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 2001,128:5109-17
    1. Docherty K. Growth and development of the islets of Langerhans: implications for the treatment of diabetes mellitus. Current Pharmacology, 2001, 1: 641-650
    2. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343: 230-38
    3. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolate from adult pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes, 2001, (50): 521-533.
    4. Ramiya VK, Maraist M, Arfors KE, et al. Reversal of insulin-dependent diabetes using islet generated in vitro from pancreatic stem cells. Nat Med, 2000, (6): 278-282.
    5. Bonnet-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 1993, 42: 1715-20
    6. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagons-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology, 2002, 143: 3152-3162
    7. Fernandes A, King LC, Guz Y, Stein R, et al. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology, 1997, 138(4): 1751-1762
    8. Humphrey RK, Bucay N, Beattie GM. Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas. Diabetes, 2003, 52: 2519-2525.
    9. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+cells are islet progenitors and are distinct from duct progenitors. Development, 2002, 129: 2447-57
    10. Edlund, H. Pancreas: how to get there from the gut? Curr. Opin. Cell Biol, 1999, 11: 663-668
    11. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Nalt. Acad. Sci. USA, 2000, 97: 7999-8004
    12. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci, USA, 2000, 97: 1607-11
    13. Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, et al. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes, 2000, 49: 163-76
    1. Peck AB, Chaudhari M, Cornelius JG, Ramiya VK. Pancreatic stem cells: building blocks for a better surrogate islet to treat type Ⅰ diabetes. Ann Med, 2001, 33: 186-192
    2. Ramiya VK et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med, 2000, 6: 278-282
    3. Bonner-Weir S et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000, 97: 7999-8004
    4. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestin-positive stem cells isolate from adult pancreatic endocrine, exocrine and hepatic phenotypes. Diabetes, 2001, (50): 521-533.
    5. Wilson Me, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech. Dev, 2003, 120: 65-80
    6. Guz Y, Montiminy MR, Stein R, Leonard J, Gamer LW, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors durine ontogeny. Development, 1995, 121: 11-18.
    7. Holland AM, Hale MA, Kagami H, HammerRE, MacDonald RJ. Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA 2002, 99: 12236—41
    8. Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, et al. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes, 2000, 49: 163-76
    9. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 2000, 127: 3533-42
    10. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci, USA, 2000, 97: 1607-11
    11. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002, 21: 6338-47
    12. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3~+ cells are islet progenitors and are distinct from duct progenitors. Development, 2002, 129: 2447-57
    13. Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 1998, 125: 2213-21
    14. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development, 2000, 127: 5533-40
    15. L, ChArles Murtaugh, Douglas A. Melton. Genes, Signal, and Lineages in Pancreas Development. Annu. Rew. Cell Dev. Biol, 2003, 19: 71-89
    16. Herrera PL. Adult insulin- and glucagonproducing cells differentiate from two independent cell lineages. Development ,2000,127: 2317-22
    17. Berg A. Transplanted pancreatic stem cells can reverse diabetes in mice. BMJ,2000,320 (3): 736
    18. Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes , 2003, 52:2007-2001
    19. Grapin-Botton, A., Majithia, A.R. and Melton, D A. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev, 2001,15: 444-454.
    20. Yelena Guz, Irem Nasir and Glads Teitelman. Regeneration of pancreatic β cells from intra-islet precursor cells in an experimental model of Diabetes. Endocrinology, 2001,142:4956-4968
    21. Fernandes A, King LC, Guz Y, Stein R, et al. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology, 1997,138(4): 1751 -1762
    22. Leon-Quinto T. Jones J, Skoudy A, et al. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia, 2004, 29
    [1] L, Charles Murtaugh, Douglas A. Melton. Genes, signal, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol, 2003,19:71-89
    [2] Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3 +cells are islet progenitors and are distinct from duct progenitors. Development, 2002,129:2447-57
    [3] Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development, 1996, 122:1409-16
    [4] Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development, 1996,122:983-95
    [5] Roy S, Qiao T, Wolff C, Ingham PW..Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr. Biol. 2001,11:1358-63
    [6] dilorio PJ, Moss JB, Sbrogna JL, KarlstromRO, Moss LG. Sonic hedgehog is required early in pancreatic islet development. Dev. Biol. 2002, 244:75-84
    [7] Stafford D, Prince VE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 2002, 12:1215-20
    [8] Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F. BMPsignalling regulates anteroposterior endoderm patterning in zebrafish. Mech. Dev. 2002,118:29-37
    [9] Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development. 2002,129:2367-79
    [10] Harrison KA, Thaler J, Pfaff SL, Gu H, KehrlJH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat. Genet. 1999, 23:71-75
    [11] Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet. 2002, 32:128-34
    [12] Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature.1997, 385:257-60
    [13] Esni F, Johansson BR, Radice GL, Semb H. Dorsal pancreas agenesis in N-cadherin-deficient mice. Dev. Biol. 2001,238:202-12
    [14] Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, embryonic stem cells to insulin-secreting et al.Pbxlinactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 2002,30:430-35
    [15] Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 2001,128:5109-17
    [16] Holland AM, Hale MA, Kagami H, HammerRE, MacDonald RJ. Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA 2002, 99: 12236—41
    [17] Dutta S, Gannon M, Peers B, Wright C, Bonner-Weir S, et al. PDX: PBX complexes are required for normal proliferation of pancreatic cells during development. Proc. Nalt. Acad Sci. USA, 2001, 98: 1065-70
    [18] Wilson ME, Scheel D, German MS. Gene expression cascades in pancreatic development. Mech. Dev. 2003, 120: 65-80
    [19] Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, et al. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes, 2000a, 49: 163-76
    [20] Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 2000, 127: 3533-42
    [21] Lee JC, Smith SB, Watada H, Lin J, Scheel D, et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes, 2001, 50: 928-36
    [22] Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci, USA, 2000, 97: 1607-11
    [23] Lewis J. Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol, 1998, 9: 583-89
    [24] Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, et al. Notch signalling controlspancreatic cell differentiation. Nature, 1999, 400: 877-81
    [25] Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, et al. Control of endodermal endocrine development by Hes-1. Nat. Genet, 2000b, 24: 36-44
    [26] Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell. Biol, 2000, 20: 4445-54
    [27] Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002, 21: 6338-47
    [28] Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 2002, 16: 1488-97
    [29] Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 1998, 125: 2213-21
    [30] Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development, 2000, 127: 5533-40
    [31] Herrera PL. Adult insulin- and glucagonproducing cells differentiate from two independent cell lineages. Development, 2000, 127: 2317-22
    [32] Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet, 2002, 32: 128-34
    [33] Fishman MP, Melton DA. Pancreatic lineage analysis using a retroviral vector in embryonic mice demonstrates a common progenitor for endocrine and exocrine cells, Int. J. Dev. Biol. 2002, 46: 201-7
    [34] Horb LD, Slack JM.. Role of cell division in branching morphogenesis and differentiation of the embryonic pancreas. Int. J. Dev. Biol, 2000, 44: 791-96
    [35] Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfrnann R. Signaling through fi-broblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl. Acad. Sci. USA 1999, 96: 6267-72
    [36] Cras-Meneur C, Elghazi L, Czernichow P, Scharfmann R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes 2001, 50: 1571-79
    [37] Huang HP, Chu K, Nemoz-Gaillard E, Elberg D, Tsai MJ. Neogenesis of beta-cells in adult BETA2/NeuroD-deficient mice. Mol. Endocrinol. 2002., 16: 541-51
    [38] Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD deficient mice. Genes Dev. 1997, 11: 2323-34
    [39] Wells JM, MeltonDA. Early mouse endoderm is pattemed by soluble factors from adjacent germ layers. Development 2000, 127: 1563-72
    [40] Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001, 294: 564-67
    [41] Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343: 230-38
    [42] Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Nalt. Acad. Sci. USA, 2000, 97: 7999-8004
    [43] Wang RN, Kloppel G, Bouwens L. Ductto islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 1995, 38: 1405-11
    [44] Bouwens L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas. Microsc. Res. Tech, 1998, 43: 332-36
    [45] Fernandes A, King LC, Guz Y, Stein R, Wright CV, et al. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology, 1997, 138: 1750-62
    [46] Hunziker E, Stein M. Nestin-expressing cells in the pancreatic islets of Langerhans. Biochem. Biophys. Res. Commun, 2000, 271: 116-19
    [47] Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes, 2001, 50: 521-33
    [48] Lumelsky N, Blondel O, Laeng P, Velaseo I, Ravin R, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001, 292: 1389-94
    [49] HoriY, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci, USA, 2002, 99: 16105-10
    [50] Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulinproducing cells. Proc. Natl. Acad. Sci, USA, 2003, 100(3): 998-1003
    [51] Humphrey RK, Bucay N, Beattie GM. Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas. Diabetes2003; 52: 2519-2525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700