电站钢管TLP扩散连接界面特征与连接过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电站机组容量、规模和参数的不断提高,锅炉管道承受的蒸汽温度和压力不断增大,新型耐热钢的研发和相应焊接工艺成为制约电站发展的关键课题。采用传统的焊接方法,容易产生焊接变形以及焊接残余应力,瞬时液相扩散焊连接温度低,界面连接强度高,应用到电站锅炉管道的焊接具有很好的市场前景。
     本文介绍了电站三种常用钢管的TLP扩散连接,用新研制的FeNiCrSiB非晶箔作中间层,氩气保护,连接压力均为2MPa,连接工艺为:20/20钢,单温工艺,等温温度1200℃,等温时间3min;T91/T91钢,双温工艺,高温温度1260℃,加热0.5min,等温温度1230℃,等温时间3min;T91/12Cr2MoWVTiB钢,双温工艺,高温温度1260℃,加热1/3min,等温温度1250℃,等温时间3min。研究表明,等温温度和等温时间对TLP连接接头界面特征影响显著,上述好的工艺下降熔元素扩散比较充分,没有脆性相形成,随着温度升高,接头中心硬度明显下降。
     三种TLP连接接头的整体特征是:20/20钢连接界面比较明显,T91/T91钢连接界面模糊不清,而T91/12Cr2MoWVTiB异种钢的连接界面在T91一侧模糊不清,在12Cr2MoWVTiB钢一侧比较明显。界面特征不同的原因为:一是中间层与母材成分上的差异,二是降熔元素和主要合金元素扩散的充分性。根据三种TLP连接接头不同的界面特征,对电站钢管典型的TLP扩散连接界面进行了定义以及区域划分,TLP连接接头可分为接头中心区、接头扩散区、母材扩散区三部分。
     从试验角度研究了20钢管TLP扩散连接的动力学过程,推测出了连接过程的四个阶段。等温凝固时间10s时焊缝宽度达到最大,此时中间层熔化以及增宽已经完成;等温凝固时间60s时,界面变得平直,等温凝固阶段完成,随后进入接头的均匀化阶段。用EPMA测定了降熔元素的扩散过程,发现在等温凝固时间10s时,降熔元素B、Si的扩散已经很明显,而在10s到60s的等温凝固阶段,B、Si的扩散变化不大,到180s时,B、Si的扩散都比较充分。
As the capacity, scale and parameters of China's power station unit continuously improving, the temperature and pressure of boilers steam pipes are increased, the development of new heat-resistant steels and corresponding welding technology becomes a key issue. Using traditional welding methods easily lead to welding distortion and welding residual stress, but transient liquid phase diffusion bonding(TLP) has low tempreture and can obtain high intensity, so it has good market prospects to use TLP bonding connecting power plant boiler tubes.
     This paper introduced three TLP joints of the power station commonly used tubes , their respective better technics were found using newly developed amorphous foil FeNiCrSiB as middle layer in argon atmosphere at pressure 2MPa. The results indicated that: 20/20 steel with single temperature process at 1200℃for 3min; T91/T91 steel with double temperature process at high temperature 1260℃for 0.5 min and isothermal temperature 1230℃for 3min; 12Cr2MoWVTiB/T91 steel with double temperature process at high temperature 1260℃for 1/3 min and isothermal temperature 1250℃for 3min. The research showed that temperature and time had a significant effect on interface character of TLP bondings. In good process, melting point depressant elements(MPD) diffused absolutely, there was no brittle phase formation. With the temperature increasing, the center hardness of joints decreased significantly.
     Overall characteristics of three TLP joints demonstrated that: the interface of 20/20 steel was clear, but the interface of T91/T91 steel was vague. For dissimilar steel T91/12Cr2MoWVTiB, the interface was vague at the side of T91 whlie the interface was clear at the side of 12Cr2MoWVTiB. The interface characteristics of the three TLP joints had a tremendous distinct , the main reason was as follows: first, the composition of middle layer was different with base metal; second, the difussion was full or not for MPD elements and main alloying elements. In accordance with three different interface characteristics of TLP joints, the joint of TLP bonding was definited and district boundaries was demarcated. The joint include three parts: joint central area, joint diffusion area, and parent material diffusion area.
     The dynamic process of 20 steel TLP bonding was studyed from experimental angle. The four stages of TLP bonding were speculated out , melt and broaden of the middle layer was completed when isothermal solidification time was 10s, the weld width became maximum at the same time. Isothermal solidification completed when the time was 60s ,and the interface became straight. Then the joint entered homogenization stage. The diffusion process of MPD elements was detected by using EPMA. The results showed that:, the diffusion of MPD elements B, Si was already quite obvious when the time was 10s, but the diffusion had no big change during the time 10s and 60s. The diffusion of B, Si was quite full when the time became 180s.
引文
[1]周荣灿,范长信.超超临界火电机组材料研究及选材分析[J].中国电力.2005,38(8):41-47.
    [2]杨富,章应霖,任永宁,等.新型耐热钢焊接[M].北京:中国电力出版社,2005:88-89.
    [3]任永宁.电力行业新型耐热钢的焊接现状[J].现代焊接.2007,(5):4-9.
    [4]范长信,张红军,周荣灿,超超临界机组锅炉用新型耐热钢的焊接[J],电力设备.2006,7(4):11-14.
    [5]乔亚霞,郭军.电站锅炉用马氏体耐热钢P92钢的焊接[J].电力建设.2007,28(6):87-90.
    [6] Spigarelli S,Quadrini E.Analysis of the creep behaviour of modified P91 (9Cr-1Mo-NbV) welds[J].Materials & Design.2002,23(6):547-552.
    [7]唐晓锋,赵院婷,金海嵘.12Cr2Mo1R手工焊工艺研究[J].现代焊接.2007,(3):15-17.
    [8]曲文卿.异种材料TLP扩散连接过程及界面力学失配性研究[D].北京:北京航空航天大学博士论文,2001.
    [9]中国机械工程学会焊接学会.焊接手册(焊接方法及设备),第2版[M].北京:机械工业出版社,2001.
    [10]李志远,钱乙余,张九海.先进连接方法[M].北京:机械工业出版社,2000.
    [11]王学刚,严黔,李辛庚.连接压力在钻杆瞬时液相扩散连接中的作用[J].石油机械,2006,34(11):1-3.
    [12]中国机械工程学会焊接分会.焊接词典,第二版[M].北京:机械工业出版社.1996:246-247.
    [13]张贵锋,张建勋,王士元,等.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002,23(6):92-96.
    [14] Duvallds,Owczarskiwa,Paulonisdf.TLP Bonding:A new method for joining heat resistant alloys[J].Welding Journal,1974,53(4):203-214.
    [15]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,1991.
    [16]陈思杰,井晓天,李辛庚.T91钢管液相扩散焊接[J].焊接学报,2004,25(6):73-76.
    [17]陈思杰,井晓天,李辛庚.20钢管的瞬间液相扩散焊工艺研究[J].热加工工艺,2003,(6):37-38.
    [18]张贵锋,张建勋,王士元等.日本液相扩散焊钢管对接技术研究近况[J].焊管,2003,26(5):56-60.
    [19]中国机械工程学会焊接学会.焊接手册(焊接方法及设备),第2版[M].北京:机械工业出版社,2001.
    [20]任家烈,吴爱萍.先进材料的连接[M].北京:机械工业出版社,2000.
    [21]陈思杰,李辛庚,井晓天.耐热钢管的瞬时液相扩散焊工艺研究[J].焊接工艺,2005,34(2):21-23.
    [22] Cam G,Kocak M.Progress in joining advanced materials[J].International Materials Review,1998,43(1):1-30.
    [23] Gale W F,Butts D A.Transient liquid phase bonding[J].Science and Technology of Welding and Joining.2004,9(4):283-300.
    [24] Zhou Y,Gale W F,NoAh T H.Modelling of transient liquid phase bonding[J].International Materials Review,1995,40(5):181-196.
    [25]北野健次,小沟裕一.钢管のアモルフアス高速接合システム[J].配管技术,1989,(5):65-70.
    [26]谷口庸一,加藤钦也.アモルフアス接合スリ-づヨ-クの实用化[J].自动车技术,1995,49(11):37-42.
    [27]王学刚,严黔,李辛庚.20钢管高温钎焊与瞬时液相扩散焊接组织与性能[J].焊接学报,2005,26(5):56-60.
    [28]陈思杰,井晓天,李辛庚.TP304H钢管的瞬时液相扩散焊工艺研究[J].热加工工艺.2004,(11):58-60.
    [29]井晓天,卢俊峰,李辛庚.TP304H/12CrlMoV异种钢管的瞬时液相扩散连接[J].焊接学报,2006,27(2):97-101.
    [30]陈思杰,王英.异种钢管的瞬时液相扩散焊接[J].热加工工艺.2005,(4):58-60.
    [31]陈思杰,李辛庚.瞬时液相扩散连接的双温工艺模型[J].焊接学报,2005,26(4):69-72.
    [32]邹家生,许志荣,初亚杰,赵其章,等.Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4二次部分瞬间液相连接强度[J].焊接学报,2005,26(2):41-44.
    [33] Chunguang Zhang,Guanjun Qiao,Zhihao Jin.Active brazing of pure alumina to Kovar alloy based on the partial transient liquid phase (PTLP) technique with Ni–Ti interlayer[J].Journal of the European Ceramic Society ,2002,(22):2181–2186.
    [34] YU Zhi—shui,LIANG Chao,LI Rui—feng,eta1.Bonding of Al2O3 ceramic and Nb using transient liquid phase brazing[J].Trans.Nonferrous Met.Soc.China.2004,14(1):99–104.
    [35]范振红,孙永兴,等.45钢的瞬时液相扩散焊[J].热加工工艺,2006,(19):19-21.
    [36] CHEN Zheng ,ZHA0 Qbzhang,W U Bin,eta1.Thestrength and fracture of partial transient liquid-phasebonding of Si3 N4/Ti/Ni/Ti/Si3 N4[J].The ChineseJournal of Nonferrous Metals,1999,9(S1):166-171.
    [37] M. Ghosh,K. Bhanumurthy,G.B. Kale ,et al.Diffusion bonding of titanium to 304 stainless steel[J].Journal of Nuclear Materials ,2003,(322):235–241.
    [38] N.S. Bosco,F.W. Zok.Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system[J].Acta Materialia,2004,(52):2965–2972.
    [39] I.C. Wallisa,H.S. Ubhia,M.-P. Bacosb et al.Brazed joints in g TiAl sheet: microstructure and properties[J].Intermetallics ,2004,(12):303–316.
    [40]曲文卿,张彦华.TLP连接技术研究进展[J].焊接技术,2002,31(3):4-7.
    [41]曲文卿,庄鸿寿,等.异种材料TLP扩散连接过程的非对称性[J].中国有色金属学报,2003,13(2):300-304.
    [42]何鹏,冯吉才,等.扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,22(1):53–55.
    [43]张贵锋,张建勋,裴怡,等.液相扩散焊等温凝固阶段的特征及解析解[J].焊管,2004,27(6):25-30.
    [44]石智华.瞬时液相扩散焊焊接温度场有限元模拟[J].机械制造与研究,2005,34(4):40-42,46 .
    [45] Y. Zhou.Analytical modeling of isothermal solidification during transient liquid phase (TLP)bonding[J].Journal of Materials Science Letters,2001,20(9):841-844.
    [46] Tien-Chien Jen,Yuning Jiao.Numerical Simulation Of Solute Redistribution During Transient Liquid Phase Bonding Process For Al-Cu Alloy[J].Numerical Heat Transfer,Part A, 2001,(39):123-138.
    [47] Y.N. Liang,M.I. Osendi, P. Miranzo.Joining mechanism in Si3N4 bonded with a Ni–Cr–B interlayer[J].Journal of the European Ceramic Society,2003,(23):547–550.
    [48] E. Lugscheider,S. Ferrara,H. Janssen, A. Reimann,B. Wildpanner.Progress and developments in the field of materials for transient liquid phase bonding and active soldering processe[J]s.Microsystem Technologies,2004,(10):233–236.
    [49]美国焊接学会.焊接手册(第二卷,第七版)[M].清华大学焊接教研室译.北京:机械工业出版社,1988.
    [50]才田一幸,金大业,浅井知,古川康广.平成10年度溶接学会论文赏,Ni基单结晶超合金の液相扩散接合に关すな研究(第1-6报).溶接学会,1999,68(4):21.
    [51]王运炎,叶尚川.机械工程材料,第二版[M].北京:机械工业出版社,2001.
    [52]樊东黎,徐跃明,佟晓辉.热处理工程师手册,第2版[M].北京:机械工业出版社,2005:76.
    [53]李伟,刘志刚.102钢锅炉管运行可靠性研究[J].山东电力技术.2003(2):63-65.
    [54]王尉才.12Cr2MOWVTiB与SA213-T91异种钢焊接工艺[J].西北电建.2006(2):29-32.
    [55]S D D,W C O,F P D.TLP bonding:a new method for jioning heat resistant alloys[J]. Welding Journal. 1974,53(4):203-214.
    [56] F G W,A B D.Transient liquid phase bonding[J].Science and Technology of Welding and Joining.2004,9(4):283-300.
    [57] Shirzadi A A,Wallach E R..Analytical modelling of transient liquid phase (TLP) diffusion bonding when a temperature gradient is imposed[J].Acta Materialia..1999,47(13):3551-3560.
    [58] Assadi H,Shirzadi A A,Wallach E R..Transient liquid phase diffusion bonding under a temperature gradient:modelling of the interface morphology[J].Acta Materialia.2001,49(1):31-39.
    [59] Arafin M A,Medraj M, Turner D P,et al.Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations[J].Materials Science and Engineering: A.2007,447(1-2):125-133.
    [60] Arafin M A,Medraj M,Turner D P,etal.Effect of alloying elements on the isothermal solidification during TLP bonding of SS 410 and SS 321 using a BNi-2 interlayer[J].Materials Chemistry and Physics.2007,106(1):109-119.
    [61]陈思杰,井晓天,李辛庚.不同中间层TLP连接T91钢管的组织和性能[J].焊接学报,2006,27(2):77-80.
    [62] Locatelli M R,Tomsia A P,Nakashima K.New stratagies for joining ceramics for high temperature application[J].Key Engi. Mater.1995(111-112),157-190.
    [63] Padron T,Khan T I,Kabir M J.Modelling the transient liquid phase bonding behaviour of a duplex stainless steel using copper interlayers[J].Materials Science and Engineering A.2004,385(1-2):220-228.
    [64]李永红.20#钢管的应用探讨[J].化工设计,2003,13(2):23-25,35.
    [65]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998.
    [66] Tual-poku,M D,B M T.A study of the transient liquid phase bonding process applied to aAg/Cu/Ag sandwich joint[J].Metall Trans.1988,19(2):675-685.
    [67]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700