哮喘易感基因的克隆及两个单基因遗传性疾病的遗传学分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哮喘是一种多基因遗传性疾病,是由一些基因与环境因素共同作用而致病,其遗传度为7O~8O%。不同基因一基因和基因一环境相互作用导致哮喘发生。随着人类基因组学与分子生物学技术的发展,哮喘的遗传学研究已成为国际热点。迄今为止,至少有22个分布于15条常染色体的不同位点被不同的研究组证明与哮喘或及相关性状连锁,由于细胞因子在哮喘炎症的触发和炎症持续的过程中起到非常重要的作用,而许多编码炎症细胞因子的基因位于染色体5q31-33区域,因此细胞因子基因是倍受关注的候选基因.
     我们根据对哮喘发生的分子机制的研究分析,选择了IL13与IL4为关键作用因子的分子免疫通路中的细胞因子基因作为研究对象,我们首先确定了位于染色体5q31-33区域的IL13,IL4,IL5,IL9,IL3,CD14,IL12B基因,以及位于染色体16p12区域的IL4和IL13基因的共同受体IL4R基因作为我们进行哮喘相关性研究的候选基因,我们随机选择了14个哮喘病人样本和10正常人样本进行多态性位点的检测,通过对上述基因的编码区以及转录起始位点上游的1500bp的DNA序列进行直接测序,发现多态性位点,然后利用高通量SNP检测技术Pyrosequence以及直接测序相结合的方法对大样本量进行逐个多态位点的基因分型,我们共发现42个SNP位点,其中15个是NCBI中尚未报道的,我们选择了30个杂合率较高的SNP对全部样本进行了与哮喘疾病的关联分析及单倍型分析,所有SNP位点的基因型分布均符合Hardy-Weinberg平衡,我们对所有SNP位点与疾病关联分析结果显示, IL4R基因中的SNP18685711、SNP18686951、SNP18686994、SNP18687043、SNP18687051、SNP18687259六个位点与疾病存在显著相关性(P<0.05),连锁不平衡分析它们处在同一单倍型结构域中Block(D’=1),其中三个SNP位点改变氨基酸序列,对其进一步进行蛋白二级结构预测显示这些位点一定程度上影响了蛋白的二级结构从而导致功能的改变,
     本实验首次在中国人群中系统性的对染色体5q31-33区域的细胞因子IL13,IL4,IL5,IL9,IL3,CD14,IL12B基因及IL4R基因的SNP位点与哮喘的相关性进行了检验,证明了IL4R基因中的六个SNP位点与哮喘易感性具有相关性,这六个位点通过改变蛋白序列影响蛋白结构和功能,从而增加了哮喘的易感性。
     石骨症是遗传性破骨细胞功能障碍引起的骨放射密度显著增高的骨代谢疾病。石骨症遗传异质性明显,在不同家族之间,甚至同一家族的不同成员之间表型可以有显著差异。临床上石骨症分为三型:常染色体隐性遗传的恶性婴儿型石骨症,患儿通常在5岁以前死亡;常染色体隐性遗传的中间型石骨症,通常在10岁以前发病,所有患儿都可以存活至成年;常染色体显性遗传的成人型石骨症,发病年龄不限,对生命无威胁。
     本研究报道的家系是陕西一个遗传了4代的石骨症家系,属常染色体显性遗传II型,但稍具有不同于以往国内外报道的临床表型。我们经过对该家系进行连锁分析,将致病基因定位到遗传标记D16SA和D16SD之间,这个位点与Benichou通过全基因组扫描的一个位点即16P13.3重合。最近,Cleiren等在12个ADOP-II型家系中找到了ClCN7的突变,而ClCN7基因在我们定位范围之内,因此我们对ClCN7基因进行了突变检测,但是没有发现与疾病一致的突变,由于石骨症遗传异质性非常复杂,而且该家系患者有不同于以往国内外报道的临床表型,因此很可能是该区域其他基因的突变导致了该类型常染色体显性石骨症发生.
     瘢痕疙瘩是皮肤损伤后引发的胶原异常积聚导致的瘢痕样病变。该疾病的遗传方式及遗传因素比较复杂,而且遗传性大家系非常罕见。近年来,研究者确认遗传性瘢痕疙瘩症的遗传模式符合常染色体显性遗传,并伴有不完全显性和表型差异, Alexander等通过对两个瘢痕疙瘩家系进行全基因组扫描定位研究,分别将两个家系定位于D2S410和D2S1353之间40cm的区域和D7S678和D7S494之间16cM的区域内,这是迄今为止国际上对遗传性瘢痕疙瘩唯一的定位报道.
     我们利用一个采集于内蒙古赤峰的家系对这两个致病位点进行了连锁分析,结果显示该家系的致病基因与2q23和7p11位点上的微卫星标记不具有紧密连锁关系,说明对于遗传性瘢痕疙瘩还存在不同于国外报道的第三个致病位点,同时对遗传性瘢痕疙瘩症符合常染色体显性遗传以及具有遗传异质性提供了更为丰富的证据,我们需要收集其他家系或扩大所研究家系的样本以进行进一步的研究,通过克隆瘢痕疙瘩症的致病基因最终阐明瘢痕疙瘩形成的分子机制.
Asthma has become the most common chronic childhood disease in developed nations, affecting more than 155 million individuals. Both, gene–gene as well as gene–environment interactions contribute to its overall phenotype. The development of asthma appears to be determined by the interaction between host susceptibility (genetics) and a variety of environmental exposures. Numerous genetic studies have mapped an asthma susceptibility genes to a region on chromosome 5q31-q33 in several populations. This region contains a cluster of proinflammatory cytokines important in immune regulation including the genes encoding the T helper 2-type cytokines (the interleukin genes IL3, IL4, IL5, IL9, and IL13),Two members of this cluster, IL4 and IL13, have been both genetically and functionally implicated in the pathogenesis of asthma. The increasing knowledge of the human genome and the large number of SNPs that are becoming available as well as improved technology for genotyping make large scale association studies possible. In an effort to discover additional polymorphisms in genes whose variants have been implicated in asthma, we scrutinized the genetic polymorphisms in IL13, IL4, IL4R,IL3, IL9, CD14, IL5, IL12B genes to evaluate it as potent candidate genes for asthma host genetic study. We performed extensive screening of these genes by direct sequencing to detect polymorphisms and statistical analysis to examine the genetic effects on asthma.
     Here, we present thirty genetic polymorphisms found in these genes and the results of an association study in Chinese population. Our genetic association analysis of polymorphisms revealed that six polymorphisms in IL4R gene, three of which resulted in an amino-acid change, showed significant association with the risk of asthma (P=0.0002). In Chinese population, these six polymorphisms segregated in strong linkage disequilibrium. This information about the genetic association of important genes with asthma might provide valuable insights into strategies for the pathogenesis of asthma.
     Osteopetrosis is an inherited skeletal condition characterized by increased bone radiodensity. There are three clinical groups: infantile-malignant autosomal recessive, fatal within the first few years of life; intermediate autosomal recessive, appears during the first decade of life but does not follow a malignant course; and autosomal dominant, with full-life expectancy but many orthopaedic problems.
     Here, we identified and analysed a four-generation family affected with ADO type II. We used linkage analysis strategy to map the disease locus and found a linkage between markers on 16q13 and the ADO type II phenotype. According to previous reports, Benichou used a whole genome scan strategy to map the disease locus on the same region 16q13-22. Following the assignment of the gene causing ADO type II to chromosome 16p13.3, Wim Van Hul report seven different mutations in the gene encoding the CICN7 chloride channel in all 12 ADO type II families analysed. For excluding the possibility that the mutation segregating in this family was in the CICN7 gene we have directly sequence the CICN7 gene in two affected members of this family, no mutation were identified. These results suggested there is other gene located on this region responsible for this disorder in this family.
     Keloid formation is a common scarring disorder that can occur with an autosomal dominant inheritance pattern but incomplete clinical penetrance and variable expression.in some families. A.lexander performed a genome-wide linkage search for genes predisposing to keloid formation in two large families, and identified keloid susceptibility loci on chromosomes 2q23 and 7p11.This is a only report of gene locus for familial keloid formation so far.
     We have collected one family with a high occurrence of keloids, excluded these two keloids susceptibility loci on chromosomes 2q23 and 7p11 by linkage analysis and haplotype analysis. Based on the high occurrence of keloid in the African -American population and the observed variation in severity of keloid formation, it is likely that additional loci for keloids exist in Chinese population. Despite detailed histological and biochemical analyses of keloid tissue and keloid fibroblasts in culture, the causes for keloid formation remain unknown. Identifying these genes will lead to a better understanding of the biological mechanisms that regulate scarring.
引文
1. 李璞 《医学遗传学》北京:北京医科大学、中国协和医科大学联合出版,1999
    2. 贺林 《解码生命》 北京:科学出版社,2000
    3. Dibc., et al. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature,1996;380(6570):153-4.
    4. Lander ES. The new genomics: global views of biology. Science. 1996 Oct 25;274(5287):536-9.
    5. Brookes AJ ,Lehvaslaiho H ,Siegfried M, et al . A database of SNPs and other variations in and around human genes . Nucleic Acids Research ,2000 ,28(1) :356-360.
    6. Brookes AJ . The essence of SNPs. Gene ,1999 ,234 (2) :1772186.
    7. Taillon Miller P ,Gu Z ,Li Q , et al Overlapping genomic sequences :a treasure trove of single2nucleotide polymorphisms. Genome Res ,1998 ,8 (7) :748-754.
    8. Lai E. Application of SNPs technologies in medicine : lessons learned and future challenges. Genome Res ,2001 ,11 (6) :9272929.
    9. Cargill M,Altershuler D,Ireland J , et al . Characterization of single nucleotide polymorphisms in coding regions of human genes. Nature Geneoms ,1999 ,22 (3) :231-238.
    10. Barbujani G,Magagni A ,Minch E , et al . An apportionment of human DNA diversity. Proc Natl Acad Sci USA,1997,94 (9):4516-4519.
    11. Wang DG, Fan JB, Siao CJ. Large-scale identification ,mapping , and genotyping of single2nucleotide polymorphisms in the human genome. Science, 1998, 280 (5366):1077-1082.
    12. Jiang R,Duan J,Windemuth A, et al . Genome-wide evaluation of the public SNP databases. Pharmacogenomics ,2003,4(6):779-789.
    13. Stephens JC,Schneider JA,Tanguay DA, et al . Haplotype variation and linkage disequilibrium in 313 human genes. Science,2001, 293 (5529) :489-493.
    14. Horikawa Y,Oda N,Cox NJ, et al . Genetic variation in the gene encoding calpain210 is associated with type 2 diabetes mellitus. Nat Genet,2000,26 (2) :163-175.
    15. Howard TD,Postma DS,Jongepier H, et al . Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. J Allergy Clin Immunol,2003,112(4):717-722.
    16. Kruglyak L. Prospects for whole genome linkage disequilibrium mapping of common disease genes. Nat Genet ,2002 ,22(2) :139-144.
    17. Su B,Xiao J,Underhill P, et al . Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. AmJ Hum Genet,1999,65(6):1718-1724.
    18. Goncalves R ,Rosa A ,Freitas A , et al . Y-chromosome lineages in Cabo Verde Islands witness the diverse geographic origin of its first male settlers. Hum Genet,2003,113(6):467-472.
    19. Macphee IA,Fredericks S,Tai T, et al . Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation,2002,74 (11) :1486-1489.
    20. Reynolds R,Walker K,Steiner L. SNP Genotyping usingMegaplex PCR Amplificationand linear probe arrays [EBPOL]. http ://www. promega. com/geneticidproc/ussympproc/adstracts.htm,2004205207.
    21. 陈仁彪,冯波主编 医学遗传学,上海:上海科学文献出版社, 1994
    22. Rimion DL. et al. Principles and Practice of Medical Genetics. 3rd, Church ill L ivingstone, 1996sp31
    23. DibC et al. Nature, 1996; 380: 402
    24. Ott J. Analysis of human genetic linkage. John Hopkins University Press, 1991
    25. Morton NE. Am J Hum Genet, 1995; 7: 277
    26. Morton NE. Outline of genetic epidemiology, New York:Karger, 1982
    27. Elston RC et al. Hum Hered, 1971; 21: 523
    28. Kruglyak L et al. Am J Hum Genet, 1995; 56: 519
    29. Ott J. Am J Hum Genet 1976; 28: 528
    30. Lathrop GM et al. Proc Natl Acad Sci USA , 1984; 81: 34
    31. O’Connell J et al. Nature Genetics, 1995; 11: 402
    32. Thein SLet al. Am J Hum Genet, 1994; 54: 2114
    33. Penrose LS. Ann Eugen, 1935; 6: 133
    34. Risch N. Am J Hum Genet, 1990; 46: 222
    35. Weeks DE et al. Am J Hum Genet, 1988; 42: 315
    36. Pericak Vance MA et al. Trends in Genetics, 1995; 11:504
    37. Smithies O et al. Proc Natl Acad Sci USA , 1995; 92: 5266
    38. Jennings HS. Genetics, 1917; 2: 97
    39. Tomlinson IPM et al. Trends in Genetics, 1995; 11: 493
    40. Fisher RA. The genetical theory of natural selection.Dover, 1930
    41. Jorde L,Am J Hum Genet, 1995; 56: 11
    42. Lander ES et al. Science, 1994; 265: 2037
    43. Terwilliger JD. Am J Hum Genet, 1995; 56: 777
    44. Spielman RS et al. Am J Hum Genet, 1993; 52: 506
    45. Zhang Y et al. Nature, 1994; 372: 425
    46. Montague CT et al. Nature, 1997; 387: 903
    47 Risch N et al. Science, 1996; 273: 1516
    48. Scott WK et al. Science, 1997; 275: 1327
    1. Shek LP, Tay AH ,Chew DL ,et al. Genetic susceptibiliti to asthma and atopy among Chinese in Singapore2linkage to markers on chromosome 5q31-33. Allergy ,2001 ;56 :7492753
    2. Holly JW, Lonjou C, Beghe B ,et al. Linkage analysis of the 5q31-33 candidate region for asthma in 240 U K families. Genes Immun , 2001 ;2 :20224
    3. Mansur AH, Christie G, Turner A ,et al. Lack of linkage between chromosome 5q31-33 markers and IgE/bronchial hyperreactivity in 67 Scottish families. Clin Exp Allergy ,2000 ;30 :9542961
    4. Suzuki I, Hizawa N ,Yamaguchi E ,et al. Association between a C +33T polymorphism in the IL-4 promoter region and total serum IgE levels. Clin Exp Allergy,2000;30 :174621749
    5. Noguchi E, Shibasaki M, Arinami, et al. Mutation screening of interferon regulatory factor 1 gene ( IRF-1) as a candidate gene for atopy/asthma. Clin Exp Allergy,2000;30 :156221567
    6. Bhathena PR, Comhair SA, Holroyd KJ ,et al.Interlekin-9 receptor expression in asthmatic airways In vivo. Lung,2000;178:1492160
    7. Shimbara A, Christodoulopoulos P, Soussi-Gounni A,et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol,2000;105:108-115
    8. Yokouchi Y, Nukaga Y, Shibasaki M,et al. Significant evidence for linkage of mite-sensitive childhood asthma to chromosome 5q31-q33 near the IL12B locus by a genome wide search in Japanese families. Genomics, 2000; 66:152-160
    9. Damato M, Vitiani LR, Petrelli G, et al. Association of persistent bronchial hyperreponsiveness with beta22adrenoceptor (ADRB2) haplotypes. Am J Respir Crit Care Med,1998;158:1968-1973
    10. Castro J, Telerra JJ, Linares P,et al. Increased TNFA-2, but not TNFB-1,allele frequency in Spanish atopic patients. J InvestigAllergol Clin Immunol,2000; 10:149-154
    11. Malerba G, Trabetti E, Patuzzo C, et al. Candidate genes and a genome-wide searchin Italian families with atopic asthmatic children. Clin Exp Allergy, 1999;29:27-30
    12. Shek LP, Tay AH, Goh DL, et al. Ethnic differences in genetic susceptibility to atopy and asthma in Singapore. Ann Acad Med Singapore ,2000 ;29 :346-350
    13. Lara-Marquez ML,Yunis JJ,Layrisse Z,et al. Immunogenetics of atopic asthma :association of DRB1*1101 DQA1 * 0501 DQB1 *0301 haplotype with Dermatophagoides spp2sensitive asthma in a sample of the Venezuelan populaion. Clin Exp Allergy , 1999 ; 29 :60-71
    14. Laprise C, Boulet LP, Morissette J,et al. Evidence for association and linkage between atopy , airway hyper2responsiveness , and the beta subunit Glu237Gly variant of the high2affinity receptor for immunoglobulin E in the French Canadian population. Immunogenetics,2000;51:695-702
    15. Simon TN, Wilkinson J, Lonjou C, et al. Linkage analysis of markers on chromosome 11q13 with asthma and atopy in a United Kingdom population. Am J Respir Crit Care Med,2000;162:1268-1272
    16. Wilkinson J, Thomas NS, Morton N, et al. Candidate gene and mutational analysis in asthma and atopy. Int Arch Allergy Immungol ,1999 ;118 :265-267
    17. Rohrbach M, Kraemer R, Liechti-Gallati S. Screning of the FcepsolonRI-beta gene in a Swiss population of asthmatic children: no association with E237G and identification of new sequence variations. Dis Markers,1998;14 :177-186
    18. Hayden C, Pereira E, Rye P, et al. Mutation screening of interferon-gama (IFN gama) as a candidate gene for asthma.Exp Allergy,1997;27:1412-1416
    19. Barnes KC,Freidhoff LR,Nickel R,et al.Dense mapping of chromosome 12q13.12- q23.3 and linkage to asthma and atopy. J Allergy ClinImmunol,1999;104:485-491
    20. Nakao F,Ihara K,Kusuhara K, et al.Association of IFN-gamma and IFN regulatory factor 1 polymorphims with childhood atopic asthma. J Allergy Clin Immunol, 2001;107:499-504
    21. Grasemann H.Genetics of the Neuronal NO-Synthase. Pneumologie, 2001; 55: 390-395
    22.Grasemann H,Yandava CN, Drazen JM. Neuronal NO synthase (NOS1) is a major candidate gene for asthma. Clin Exp Allergy ,1999;29:39-41
    23. Noguchi E, Shibasaki M,Arinaki T, et al. Lack of association of atopy/asthma and the interleukin-4 receptor alpha gene in Japanese. Clin Exp Allergy, 1999; 29: 228-233
    24. Malerba G, Patuzzo C, Trabetti E,et al. Chromosome 14 linkage analysis and mutation study of 2 serpin genes on allergic asthmatic families. J Allergy Clin Immunol, 2001;107:654-658
    25. Heinzmann A, Blattmann S, Forster J, et al. Common polymorphisms and alternative splicing in the ILT3 gene are not associated with atopy. Eur J Immunogenet, 2000;27:121-127
    26. Barnes KC, Mathias RA, Nickel R, et al. Testing for gene-gene interaction controlling total IgE in families from Barbados :evidence of sensitivity regarding linkage heterogeneity among families. Genomics,2001;71:246-251
    1. Albers Sch?nberg H. R?ntgenbilder einer seltenen knochenerkrankung.Munch Med Wochemschr, 1904;51:365
    2. Beighton P,Cremin BJ,Hamersma H.The radiology of sclerosteosis.Br J Radiol,1976;49:934-9
    3. Cure JK, Key LL, Goltra DD,et al. Cranial MR imaging of osteopetrosis. AJNR Am J Neuroradiol, 2000 Jun-Jul;21(6):1110-5
    4. Bollerslev J. Osteopetrosis. A genetic and epidemiological study. Clin Genet,1987 Feb; 31(2):86-90
    5. Sly WS, Hewett-Emmett D, Whyte MP,et al. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A, 1983 May;80(9):2752-6
    6. Shapiro F.Osteopetrosis:current clinical considerations.Clin Orthop,1993; 294: 34-44
    7. Bollerslev J,Nielsen HK,Larsen HF,et al.Biochemical evidence of disturbed bone metabolism and calcium homeostasis in two types of autosomal dominant osteopetrosis.Acta Med Scand,1988;224:479-483
    8. Kovacs CS,Lambert RGW,Lavoie GJ.Centrifugal osteopetrosis:appendicular slcerosis with relative sparing of the vertebrae.Skeletal Radiol,1995;24:27-29
    9. Brady KP, Dushkin H, Fornzler D, et al.A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics,1999 Mar 15;56(3):254-61
    10. Li J, Sarosi I, Yan XQ,et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A,2000 Feb 15;97(4):1566-71
    11. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des,2001 May;7(8):613-35
    12. Kawaguchi N, Noda M. Mitf is expressed in osteoclast progenitors in vitro. Exp Cell Res, 2000 Nov 1;260(2):284-91
    13. Motyckova G, Weilbaecher KN, Horstmann M, et al. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci U S A,2001 May 8;98(10):5798-803
    14. Li YP, Chen W, Liang Y,et al. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet,1999 Dec;23(4):447-51
    15. Kornak U, Kasper D, Bosl MR,et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell,2001 Jan 26;104(2):205-15
    16. Kornak U, Schulz A, Friedrich W,et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet,2000 Aug 12;9(13): 2059-63
    17. Frattini A, Orchard PJ, Sobacchi C,et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet, 2000 Jul;25(3):343-6
    18. Bollerslev J, Mondrup MP. The role of carbonic anhydrase in autosomal dominant osteopetrosis. Scand J Clin Lab Invest,1989 Feb;49(1):93-5
    19. Tripathi RK, Flanders DJ, Young TL,et al. Microphthalmia-associated transcription factor (MITF) locus lacks linkage to human vitiligo or osteopetrosis: an evaluation. Pigment Cell Res,1999 Jun;12(3):187-92
    20. Van Hul W, Bollerslev J, Gram J,et al. Localization of a gene for autosomal dominant osteopetrosis (Albers-Schonberg disease) to chromosome 1p21. Am J Hum Genet,1997 Aug;61(2):363-9
    21. White KE, Koller DL, Takacs I,et al. Locus heterogeneity of autosomal dominant osteopetrosis (ADO). J Clin Endocrinol Metab,1999 Mar;84(3):1047-51
    22. Benichou OD, Benichou B, Copin H,et al. Further evidence for genetic heterogeneity within type II autosomal dominant osteopetrosis J Bone Miner Res,2000 Oct;15(10):1900-4
    23. Benichou O, Cleiren E, Gram J,et al. Mapping of autosomal dominant osteopetrosis type II (Albers-Schonberg disease) to chromosome 16p13.3. Am J Hum Genet,2001 Sep;69(3): 647-54
    24. Cleiren E, Benichou O, Van Hul E,et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001 Dec 1;10(25):2861-7
    1. 赵辨, 临床皮肤病学[M] 第2版 南京:江苏科学技术出版社,1987,1025-1026
    2. 杨国亮,王侠生 现代皮肤病学[M] 第2版 上海:上海医科大学出版社,1995,979
    3. Cosman B, Crikelair CF, Ju DM, et al. The surgical treatment of keloids. Plast Reconst Surg. 1961,27;335-358
    4. A lexander GM, James EC, et al. Clinical Genetics of Familial Keloids. Archives of Dermatology, 2001,137 (11):1429-1434.
    5. 宋文刚, 宋光江, 李桂信 瘢痕疙瘩四家系遗传学分析. 中国皮肤性病学杂志,1992, 6(2): 109-110
    6. O’Toole GA, Milward TM. Fraternal keloid. Br J P last Surg,1999, 52(5): 408-410.
    7. Pitot HC. The molecular biology of carcinogenesis. Cancer,1993, 72 (3 suppl): 962-962.
    8. Dang CV, Resar LM, Emison E, et al. Function of the c-myconco-genic transcription factor. Exp Cell Res, 1999, 253(1): 63.
    9. 胡振富,罗力生,罗盛康 病理性瘢痕中c-myc、c-fos和ras原癌基因表达的实验研究. 中华整形外科杂志,2002,18(3): 165-167
    10. Saed GM, Ladin D, Olson J. Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand con-formational polymorphism and DNA sequencing. Arch Dermatol, 1998, 134 (8) : 963-967.
    11. Teofoli P,Barduagni S, Ribuffo M, et al. Exp ression of Bcl-2, p53,c-jun and c-fospro tooncogenes in keloids and hypertrophic scars. J Dermatol Sci,1999, 22(1): 31-37.
    12. Messadi DV, Le A, Berg S. Exp ression of apopto sis-associated genes by human dermal scar fibroblasts. Wound Repair Regen,1999,7(6) : 511-517.
    13. Ladin DA, Hou Z Patel D, et al. p53 and apoptosis alterations in keloids and keloid fibroblast. Wound Repair Regen,1998,6(1):28-37.
    14. 鲁峰,高建华,刘永波,等 瘢痕疙瘩Fas基因基因突变的PCR-SSCP筛选. 解放军医学杂志,1999, 4: 358-361
    15. 刘永波,高建华,段红杰 瘢痕疙瘩Fas基因外显子126 基因突变的检测. 第一军医大学学报, 2002, 22 (1) 61.
    16. Sayah DN, Soo C, Shaw WW, et al. Downregulation of apoptosis-related gene in keloid tissues. J Surg Res, 1999,87( 2): 209-216.
    1. WHO/NHLBI Workshop Report. 1995. Global strategy for asthma management and prevention National Institute of Health, National Heart, Lung and Blood Institute 95-3659.
    2 Marsh DG, Neely JD , Breazeale DR , et al . Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science , 1994 ,264 :1152-1156.
    3. Noguch i E et a l . Am J Resp Crit CareM ed, 1997, 156: 1390-1393.
    4. Symula DJ et al . N ature Genet, 1999, 23: 2412244.
    5. Howard TD et a l . Am J Hum Genet, 2002, 70: 2302236.
    6.Wills KM et a l . J A llergy Clin Immuno l, 2001, 107 (1) : 9-18.
    7. Koppelman GH et al . Am J Resp ir Critm CareM ed, 2001, 163(4) : 965-969.
    8. W interton DL et a l . A nn A llergy A sthma Immuno l, 2001, 86(2) : 232-238.
    9. Palmer LJ et a l . Hum Mo l Genet, 2001, 10: 891-899.
    10. Rosa-Rosa L,Zimmemann N,Benstein JA,et a1.The R576 IL4 receptor alpha a11ele correlates with asthma severity J A11ergy C1in Immun,1999,104(5):1008-1014.
    11. Mitsuyasu H,Izuhaa K,Mao XQ,et a1.11e50Val vaiant of IL4R alpha up regulates IgE synthesis and associates with atopyic asthma.Nat Cenet,1998,19(2):119-120.
    12. 0iso N,Fukai K,IshH M.Inter1eukin 4 receptor alpha chain po1ymorphism Gln551Arg is associated with adult atopic dermatitis in Japan.Br J Dermatol,2000,142(5):1003-1006.
    1. Manusov EG, Douville DR, Page LV,et al. Osteopetrosis ('marble bone' disease). A m Fam Physician 1993 Jan;47(1):175-80
    2. Albers-Sch?nberg,H. R?ntgenbilder einer seltenen Knochennerkrankung. Muenchener Med Wschr 51:365,1904
    3. Karshner R.G. Osteopetrosis. AJR 16:405,1926
    4. Popoff SN, Marks SC Jr. The heterogeneity of the osteopetrosis reflects the diversity of cellular influences during skeletal development. Bone 1995 Nov;17(5):437-45
    5. Edeiken J,Dalinka M,Karasick D.Dysplasias.In:Edeiken’s roentgen diagnosis of diseases of bone.Baltimore:Williams & Wilkins,1990:1625-1628
    6. Bejaoui M, Baraket M, Lakhoua R,et al. Recessive osteopetrosis. Identification of a form of medium severity. Arch Fr Pediatr, 1992 Aug-Sep;49(7):627-31
    7. Benichou O, Cleiren E, Gram J,et al. Mapping of autosomal dominant osteopetrosis type II (Albers-Schonberg disease) to chromosome 16p13.3. Am J Hum Genet,2001 Sep;69(3): 647-54
    8. Cleiren E, Benichou O, Van Hul E,et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001 Dec 1;10(25):2861-7
    9. Shapiro F. Osteopetrosis. Current clinical considerations. Clin Orthop 1993 Sep;(294):34-44
    10. Kahler SG, Burns JA, Aylsworth AS. A mild autosomal recessive form of osteopetrosis. Am J Med Genet 1984 Feb;17(2):451-64
    11. Benichou OD, Benichou B, Copin H,et al. Further evidence for genetic heterogeneity within type II autosomal dominant osteopetrosis. J Bone Miner Res 2000 Oct;15(10):1900-4
    12. Horton WA, Schimke RN, Iyama T. Osteopetrosis: further heterogeneity. J Pediatr 1980 Oct;97(4):580-5
    13. Andersen PE Jr, Bollerslev J. Heterogeneity of autosomal dominant osteopetrosis. Radiology 1987 Jul;164(1):223-5
    14. Kovacs CS, Lambert RG, Lavoie GJ,et al. Centrifugal osteopetrosis: appendicular sclerosis with relative sparing of the vertebrae. Skeletal Radiol 1995 Jan;24(1):27-9
    15. Bollerslev J, Mosekilde L, Nielsen HK,et al. Biomechanical competence of iliac crest trabecular bone in autosomal dominant osteopetrosis type I. Bone 1989;10(3):159-64
    16. Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 2000 Jan;26(1):87-93
    17. Bollerslev J, Nielsen HK, Larsen HF,et al. Biochemical evidence of disturbed bone metabolism and calcium homeostasis in two types of autosomal dominant osteopetrosis. Acta Med Scand 1988;224(5):479-83
    18. Walpole IR, Nicoll A, Goldblatt J. Autosomal dominant osteopetrosis type II with "malignant" presentation: further support for heterogeneity? Clin Genet 1990 Oct;38(4):257-63
    19. White KE, Koller DL, Takacs I,et al. Locus heterogeneity of autosomal dominant osteopetrosis (ADO). J Clin Endocrinol Metab 1999 Mar;84(3):1047-51
    20. Cleiren E, Benichou O, Van Hul E,et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001 Dec 1;10(25):2861-7
    21. Tasdemir HA, Dagdemir A, Celenk C,et al. Middle cerebral arterial occlusion in a child with osteopetrosis major. Eur Radiol 2001;11(1):145-7
    1. Alexander G, Norris JE, Olsen, B R, Reichenberger E,Clinical genetics of familial keloids.Arch Derm. 2001.137: 1429-1434
    2. Alexander G,Norris JE,Watanabe S,Olsen B.Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11.J Inves Der.2004,5;122(5):1126-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700