冷变换器原理及其在低品位热驱动制冷系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是保证人类社会可持续发展的基础和关键,也是当今世界普遍关注的热点问题,因此太阳能、地热能以及工业废热、废气、废水、余热等低品位能源的利用成为我国缓解能源紧张和保护生态环境的重要战略任务之一。由于低品位能源的热源温度偏低,传统的低品位热驱动制冷空调的制冷效率低,甚至可能导致制冷系统不能正常工作,使得低品位能源在空调制冷行业的应用和发展受到限制。
     众所周知,冷量也有品位之分,即温度越低的冷量,其品位越高;温度越接近环境温度的冷量,其品位越低。获取高品位的冷量,难度高;而获取低品位的冷量,难度低。本论文从热力学原理出发,比照热变换器原理,提出了一种低品位热驱动的冷变换器制冷系统新流程以期有效解决低品位热驱动空调制冷效率低等问题。
     对所提出的低品位热驱动冷变换器制冷系统的新流程特性进行了理论研究。在阐述冷变换器制冷系统工作原理的基础上,建立了制冷系统各部件数学模型,利用数值计算方法编写程序进行了数值计算,分析计算了热水温度、冷却水温度、蒸发器冷媒水入口温度等操作参数对循环热力学性能的影响。
     为了测试操作参数对冷变换器制冷系统性能的影响,本文自行搭建了冷变换器制冷系统性能实验台。在定流量(即热水流量、冷却水流量和冷媒水流量相同)的实验条件下,进行了系统性能的实验研究。实验结果表明,与传统低品位热驱动吸收制冷系统相比,冷变换器制冷系统不仅可以利用低品位热源制取高品位冷量,而且还具有较高的效率,从而扩宽了吸收制冷系统的工作温度范围。
     最后,在总结冷变换器原理和实验研究结果的基础上,对今后进一步研究工作提出了一些意见与建议。
Energy and environment are foundation and keys to the sustainable development of human society. They have become the worldwide concerned problems. The efficient utilization low-grade energy is recognized as one of the most important strategic missions which can relieve the energy sources problems and protect the environments. However, due to the low temperature feature of low-grade thermal energy, efficiency of traditional air conditioning driven by low-grade thermal energy is low and even hardly maintains its normal working condition. These features restricted the application and development of low-grade thermal energy in the refrigeration fields.
     It is well known that cooling capacity can be graded by its temperature, that is to say, the lower the temperature, the higher the grade of cooling capacity. It is more difficult to obtain higher grade cooling capacity than lower one. Based on the principle of thermodynamics and compared with the heat transformer, a cooling transformer driven by low grade thermal energy was introduced. It can be expected that a cooling transformer driven by low grade thermal energy may work efficiently.
     Theoretical research on the performance of cooling transformer driven by low grade energy was conducted. Based on the principle of cooling transformer, a simulation model of a new refrigeration system driven by low-grade energy was developed and a mathematical model for each component of the system is presented. The influences of the heating water temperature, cooling water temperature and inlet temperature of the cooled water to the evaporator on cycle performance were evaluated.
     A cooling transformer driven by low grade energy for experimental investigations was fabricated. The experimental results were obtained under constant flow condition. It indicated that the cooling transformer not only had higher value of refrigeration capacity and higher value of COP, but also the operating temperature range of low-grade energy is broadened, compared with the traditional absorption refrigeration system.
     Finally, based on the principle of cooling transformer and experimental results, some suggestions on the future researches were proposed.
引文
[1]M.M. Ardehali, M. Shahrestani and Charles C. Adams, Energy simulation of solar assisted absorption system and examination of clearness index effects on auxiliary heating. Energy Conversion and Management,2007,48:864-870.
    [2]R. D. Misra, P. K. Sahoo, A. Gupta, Application of the exergetic cost theory to the LiBr/H2O vapour absorption system. Energy,2002,27(11):1009-1025.
    [3]G. Thomas, Cowing and L. Daniel, Microeconomic modeling and policy analysis studies in residential energy demand. Orlando:Academic Press,1984.
    [4]R. Tozer, Ron W. James, Heat powered refrigeration cycles. Applied Thermal Engineering,1998,18(9-10):731-743.
    [5]R. Saravanan, M.P. Maiya, Thermodynamic comparison of waterbased working fluid combinations for a vapor absorption refrigeration system. Applied Thermal Engineering,1998,18(7):553-568.
    [6]A. Elsafty, A.J. Al-Daini, Economical comparison between a solar powered vapour absorption air-conditioning system and a vapour compression system in the Middle East. Renewable Energy,2002,25:569-583.
    [7]R. D. Misra, P. K. Sahoo, S. Sahoo and A. Gupta. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. International Journal of Refrigeration,2003,26(2):158-169.
    [8]K. Onder, S. Arzu, A.K. Soteris, Thermoeconomic optimization of a LiBr absorption refrigeration system. Chemical Engineering and Processing:Process Intensification,2007,46(12):1376-1384.
    [9]中国气象局,气象资料,中国建筑热环境分析专用气象数据集[M].清华大学,中国建筑工业出版社,2007.
    [10]T.C. Hung; T.Y. Shai,A review of organic rankine cycles (ORCs) for the recovery of low grade waste heat[J]. Energy,1997,22(7):661-667.
    [11]G. Gvazzoni, Military Thermoelectric Generator. The lst European Conference on Thermoelectric, cardiff, U.K.,1987:302-311.
    [12]A. Bejan, Advanced Engineering Thermodynamics. New York:John Wiley & Sons, 1988.
    [13]J.C. Bass, R.J. Campana, N.B. Elsner, Thermoelectric Generator for Diesel Trucks. Proceedings of The 10th International Conference on Thermoelectrics, Cardiff, U.K.; 1991:127-131.
    [14]T.C. Hung, Waste heat recovery of organic Rankine cycle using dry fluids[J]. Energy Conversion and Management,2001,42(5):539-553.
    [15]C.A. Balaras, G. Grossman, H. Henning, A. Carlos and L Wang, Solar air conditioning in Europe-an overview, Renewable and Sustainable Energy Reviews,2007, (11):299-314.
    [16]Y.L. Liu, R.Z. Wang, Performance prediction of a solar/gas driving double effect LiBr-H_2O absorption system. Renewable Energy,2004,29:1677-1695.
    [17]R.K. Swartman, V. Ha and C. Swaminathan, Comparision of ammonia-water and ammonia-sodium thiocyanate as the refrigeration-absorbent in a solar refrigeration system. Solar Energy,1975 (17):123-127.
    [18]R.C. Neville, Solar energy and the residence some systems aspects. Solar Energy,1977,19(5):539-548.
    [19]P.C. Auh, An overview of absorption cooling technology in solar application. In: Proceedings of the 3rd Workshop on the Use of Solar Energy for Cooling of Buildings 14, San Francisco, California,1978.
    [20]A.O. Deng, R.Z. Wang, Literature review on solar adsorption technologies for ice-making and air-conditioning proposes and recent developments in solar technology. Renewable and Sustainable Energy Reviews,2001,5:313-342.
    [21]R.Q. Zhu, B.Q. Han, Experimental investigation on an adsorption system for producing chilled water. International Journal of Refrigeraion,1992,15:31-34.
    [22]M. Pons, Experimental data on a solar-powered ice maker using activated carbon and methanol adsorption pair. Transaction of the ASME, Journal of Solar Engineering, 1987,109(4):303-310.
    [23]O.C. Iloeje, Design construction and test run of a solar powered solid absorption refrigerator. Solar Energy,1985,35(5):447-455.
    [24]S. D. Carousel, heat exchanger for sorption cooling process. US Patent, No. 5,503,222,1996.
    [25]F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Applied Thermal Engineering,1998,18:715-729.
    [26]F. Douss, F. Meunier, L M. Sun, Predictive model and experimental results for a two-adsorber solid adsorption heat pump, Industry & Engineering Chemistry Research, 1988,27:310-316.
    [27]M. Suzuki, Application of adsorption cooling systems to automobiles. Heat Recovery Systems and CHP,1993,13(4):335-340.
    [28]L.Z. Zhang, Design and testing of an automobile waste heat adsorption cooling system. Applied Thermal Engineering,2000,20:103-114.
    [29]王丽伟,王如竹,吴静怡等,氯化钙-氨的吸附特性研究及其在制冷中的应用.中国科学,E辑,2004,34(3):268-279.
    [30]A. Hajji, W.M. Worek, Z. Lavan, Dynamic analysis of a closed-cycle solar adsorption refrigeration using two adsorbent-adsorbate pairs. Transaction of the ASME, Journal of Solar Engineering,1991,113(2):73-79.
    [31]L W. Wang, R.Z.Wang, J.Y. Wu, Compound adsorbent for adsorptin ice maker on fishing boats. International Journal of Refrigeration,2004,27(4):401-408.
    [32]A. Sozen, M. Kurt, M.A. Akcayol and M. Ozalp, Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renewable Energy.2004,29(1): 53-71.
    [33]D.I. Tchernev, Solar energy application of natural zeolites. Natural Zeolites: occurrence, properties and use. London:Pergamon,1978,479-484.
    [34]J. Guo, H.G. Shen, Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings. Energy and Buildings,2009,41(2):175-181.
    [35]M. Sokolov, Enhanced ejector refrigeration cycle powered by low grade heat-International Journal of Refrigeration,1991,13:351-363.
    [36]A. Sozen, M. Ozalp, Solar-driven ejector-absorption cooling system. Applied Energy.2005,80(1):Pages 97-113.
    [37]D.W. Sun, Evaluation of a combined ejection-vapor-compression refrigeration system. International Journal of Energy Refrigeration search,1998,22(4):333-342.
    [38]J.M. Abdulateef, K. Sopian, M.A. Alghoul, A. Baharuddin, Performance of combined solar ejector-absorption refrigeration system. In:Proceedings of World Renewable Energy Conference,2007.
    [39]K.B. Herold, L. Radermacher, Absorption heat pump. Mechanical Engineer,1989, (8):68-73.
    [40]M. Hammad and Y. Zurigat, Performance of a second generation solar cooling unit. Solar Energy,1998,62(2):79-84.
    [41]Ibrahim Atmaca, Abdulvahap Yigit, Simulation of solar-powered absorption cooling system. Renewable Energy,2003,28:1277-1293.
    [42]何梓年,朱宁,刘芳,郭淑玲,太阳能吸收式空调及供热系统的设计及性能.太阳能学报,2001,1:6-11.
    [43]Z.F. Li, K. Sumathy, Simulation of a solar absorption air conditioning system. Energy Conversion and Management 2001,42:313-327.
    [44]Z.F. Li, K.Sumathy, Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Solar Energy,2001,71(5):285-297.
    [45]Z.F. Li, K. Sumathy, Technology development in the solar absorption air conditioning systems. Renewable and Sustainable Energy Reviews,2000, (4):267-293.
    [46]黄飞,余国和,太阳能与天然气综合供热的小型吸收式制冷机在别墅建筑的应用.制冷技术,2002,(1):21-23.
    [47]K. Sumathy, Z.C. Huang and Z.F. Li, Solar cooling with low grade heat source strategy of development in South China. Solar Energy,2002,72(2):155-165.
    [48]李戬洪,马伟斌,江晴,黄志诚,夏文慧,100千瓦太阳能制冷空调系统.太阳能学报,1999,3:239-243.
    [49]A.A.Al-Homoud, R.K.Suri, Raed Al-Roumi and GP. Maheshwari., Experiences with solar cooling system in Kuwait. Renewable Energy,1996,9:664-669.
    [50]G.A. Florides, S.A. Kalogirou, S.A. Tassou and L.C. Wrobel. Modeling and simulation of an absorption solar cooling system for Cyprus. Solar Energy,2002,72(1): 43-51.
    [51]A.A. Sabah, A. Elkamel, A.M. Al-Damkhi, Design and experimental investigation of portable solar thermoelectric refrigerator. Renewable Energy,2009,34 (1):30-34.
    [52]J. Siatka, Waste energy recovery by absorption systems for cooling, drying and heating. In:Proceedings of the XVIth International Congress of Refrigeration, Paris, 1983,357-365.
    [53]Y.J. He, G.M. Chen, Experimental study on an absorption refrigeration system at low temperatures. International Journal of Thermal Sciences,2007,46(3):294-299.
    [54]P. Lamp, F. Ziegler, European research on solar-assisted air conditioning. International Journal of Refrigeration,1998,21(2):89-99.
    [55]G.A. Florides, S.A.Kalogirou, S.A. Tassou and L.C. Wrobel. Modeling and warming impact assessment of a domestic-size absorption solar cooling system. Applied Thermal Engineering,2002,22:1313-1325.
    [56]J.C. Chinnappa, M.R. Crees, S.S. Murthy, Solar-assisted vapor compression-absorption cascaded air-conditioning systems [J]. Solar Energy,1993,50(6):453-458.
    [57]T. Nishimura, "Heat pumps-status and trends" in Asia and the Pacific. International Journal of Refrigeration,2002,25:405-413.
    [58]H.Q. Zhu, L.H. Gao, X.R. Cai, Shuangliang and absorption refrigeration (heat pump) technology. ISHPC'02, Proc. of the Int. Sorption Heat Pump Conf. Shanghai, China, September 24-27,2002,63-69.
    [59]Jose Fernendez-Seara, Alberto Vales, Manuel Vazquez, Heat recovery system to power an onboard NH_3-H_2O absorption refrigeration plant in trawler chiller fishing vessels. Applied Thermal Engineering,1998,18(12):1189-1205.
    [60]T. Berlitz, H. Plank and F. Ziegler, An ammonia-water absorption refrigerator with a large temperature lift for combined heating and cooling. International Journal of Refrigeration,1998,21(3):219-229.
    [61]A De Francisco, R. Illanes, J.L. Torres, M.Castillo, M. De Blas, E. Prieto and A. Garcia, Development and testing of a prototype of low power water-ammonia absorption equipment for solar energy applications. Renewable Energy,2002,25(4): 537-544.
    [62]P. Golonna, S. Gabrielli. Industrial trigeneration using ammonia-water absorption refrigeration system (AAR). Applied Thermal Engineering,2003,23:381-396.
    [63]刘艳玲,王如竹,代彦军,太阳能双效溴化锂吸收式制冷系统的模拟和经济性分析.中国工程热物理学会工程热力学与能源利用学术会议论文集,2002,347-351.
    [64]W.B. Ma, S.M. Deng, Theoretical analysis of low temperature hot source drive two-stage LiBr-H_2O absorption refrigeration system. International Journal of Refrigeration,1996,19(2):141-146.
    [65]S. Kulankara, K. E. Herold, Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives:the effect of additive vapor transport. International Journal of Refrigeration,2002,25:383-389.
    [66]B. C. Bhaduri, H. K. Varma. P-T-X behaviour of R22 with five different absorbents. International Journal of Refrigeration,1986,11:362-366.
    [67]I. Borde, M. Jelinek, N. C. Daltrophe. Working fluid for an absorption system based on R124 (2-chloro-1,1,1,2,-tetrafluoroethane) and organic absorbent. International Journal of Refrigeration,1997,20(4):256-266.
    [68]M. Jelinek, I. Borde. Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents, Applied Thermal Engineering,1998, 18:765-771.
    [69]B. J. Eiseman, Why refrigerant 22 should be favored for absorption refrigeration. ASHRAE Journal,1959,12:45-51.
    [70]N.K. Ghaddar, M. Shihab and F. Bdeir, Modeling and simulation of solar absorption system performance in Beirut. Renewable Energy,1997,10(4):539-558.
    [71]M. Jeffrey, Gordon, N.K. Choon, High-efficiency solar cooling. Solar Energy,2000, 68(1):23-31.
    [72]Jose Fernandez-Seara, Jaime Sieres, Manuel Vazquez, Absorption refrigeration prototype for onboard cooling production in fishing vessels. In:Ruzhu Wang, Zhen Lu, Wen Wang, et al. eds. Proceeding of the International Sorption Heat Pump Conference, ISHPC'02, Shanghai, China,2002.130-135.
    [73]A. Syed, M. Izquierdo, P. Rodri'guez, G. Maidment, J. Missenden, A. Lecuona and R. Tozer, A novel experimental investigation of a solar cooling system in Madrid. International Journal of Refrigeration,2005,28:859-871.
    [74]A.J. Meyer, T.M. Harms, R.T. Dobson, Steam jet ejector cooling powered by waste or solar heat. Renewable Energy,2009,34(1):297-306.
    [75]A.H. Uppal, B. Norton and S.D. Probert, A low-cost solar-energy stimulated absorption refrigerator for vaccine storage. Applied Energy,1986,25:167-174.
    [76]G.A. Florides, S.A. Tassou, S.A. Kalogirou and L.C. Wrobel, Review of solar and low energy cooling technologies for buildings. Renewable and Sustainable Energy Reviews,2002, (2):557-572.
    [77]A.M. Papadopoulos, S. Oxizidis, N. Kyriakis, Perspective of solar cooling in view of the developments in the air-conditioning sector. Renewable and Sustainable Energy Reviews,2003,7:419-438.
    [78]H.M. Henning, Solar assisted air conditioning of buildings-an overview. Applied Thermal Engineering,2007,27:1734-1749.
    [79][日]田中俊六,太阳能供冷和供热[J].中国建筑出版社,1982.
    [80]A. Yattara, Y. Zhu, M. Mosa Ali., Comparison between solar single-effect and single-effect double-lift absorption machines (Part I). Applied Thermal Engineering, 2003,23:1981-1992.
    [81]N. Miyoshi, S. Sugimoto, M. Aizawa, Multi-effect absorption refrigerating machine. US Patent No.4,551,991,1985.
    [82]R. C. DeVault, W. J. Biermann, Triple-effect absorption refrigeration system with double-condenser coupling. US Patent, No.5,205,136,1993.
    [83]U. Rockenfeller, P. Sarkisian, Triple-effect absorption cycle apparatus. US Patent No.5,335,515,1994.
    [84]G. Grossman, M. Wilk, R. C. DeVault, Simulation and performance analysis of triple-effect absorption cycles. ASHRAE Transactions,1994:100(1):452-458.
    [85]T. Oouchi, S. Usui, T. Fukuda, Multi-stage absorption refrigeration system. US Patent, No.4,520,634,1985.
    [86]M. S. Soylemez, On the thermoal economical optimization of single stage refrigeration systems. Energy and Buildings,2004,36(9):965-968.
    [87]I. Pilatowsky, W. Rivera, R.J. Romero, Thermodynamic analysis of monomethylamine-water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures. Solar Energy Materials & Solar Cells.2001,70:287-300.
    [88]D. Krishnendu, A. Mani, Comparative study of cycle performance for a two stage intermittent solar refrigerator working with R22-absorbent combinations. Energy Conversion and Management,1995,37(1):87-93.
    [89]Y. Fan, L.Luo and B. Souyri, Review of solar sorption refrigeration technologies: development and applications. Renewable and Sustainable Energy Reviews,2007,11(8): 1758-1775.
    [90]M. Thioye, Performance improvement of absorption cooling systems by using staged absorption and desorption cycles. International Jounal of Refrigeration,1997, 20(2):136-145.
    [91]M. Thioye, Performance study of cooling systems using low grade heat energy for refrigeration, International Jounal of Refrigeration,1997,20(4):283-294.
    [92]蒋皓波,冯仰浦,一个能量分级利用的复合制冷循环[J].工程热物理学报,1999,20(6):666-668.
    [93]陈光明,低温制冷机.中国专利,99203770.0.2000
    [94]何一坚,洪荣华,陈光明,热驱动深度冷冻循环.科学通报,2005,50(3):287-291.
    [95]R. Fathi, C. Guemimi, S. Ouaskit, An irreversible thermodynamic model for solar absorption refrigerator. Renewable energy,2004,29:1349-1365.
    [96]G. Grossman, Solar-powered systems for cooling, dehumidification and air conditioning. Solar Energy,2002,72(1):53-62.
    [97]K. Wilhelm, P. Zapp and W.R. Poganietz, CO_2 emissions of global metal-industries: The case of copper. Applied Energy,2007,84(7):842-852.
    [98]The Refrigeration Sector's Commitment to Sustainable Development and Mitigation of Climate Change Published in the brochure'Responding to Climate Change'.30000 copies were distributed during the World Summit on Sustainable Development in Johannesburg, August 26-September 4,2002, and during the eighth Conference of the Parties(COP-8) to the United Nations Framework Convention on climate Change in New Delhi, October 23-November 1,2002, IIR. Statement.
    [99]R.L. Powell, CFC phase-out:have we met the challenge? J. Fluorine Chemistry, 2002,114 (2):237-250.
    [100]E. Malek, T. Davis, R.S. Martin and J. Silva, Meteorological and environmental aspects of one of the worst national air pollution episodes (January,2004) in Logan, Cache Valley, Utah, USA. Atmospheric Research,2006,79:108-122.
    [101]J.M. Calm, Emissions and environmental impacts from air-conditioning and refrigeration systems. International Journal of Refrigeration,2002(25):293-305.
    [102]D. Ibrahim, M.A. Rosen, Energy, environment and sustainable development. Applied Energy,1999,64:427-440.
    [103]M. Lisal, M. Vacek, Effective potentials for liquid simulation of the alternative refrigerants HFC-R32:CH2F2 and HFC-23:CHF3. Fluid Phase Equilibria,1996,118: 61-76.
    [104]H.N. Afgana, D. A. Gobaisi, M.G. Carvalh, Maurizio Cumo. Sustainable energy development. Renewable and Sustainable Energy Reviews,1998(2):235-286.
    [105]A.M. Omer, Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews,2007(7):1-36.
    [106]G. Alefeld, W. Demmel and W. Kern, Advanced absorption cycles and systems for environment protection. In:Proceeding of Absorption Heat Pump Conference 91,1991, Tokyo, Japan,9-17.
    [107]M. Balghouthi, M.H. Chahbani, A. Guizani, Solar Powered air conditioning as a solution to reduce environmental pollution in Tunisia. Desalination,2005,185:105-110.
    [108]清华大学建筑节能研究中心,中国建筑节能发展研究报告.中国建筑工业出版社,北京,2007.
    [109]华泽澎,能源经济学.石油大学出版社,山东,1991.
    [110]X.G Casala, Solar absorption cooling in Spain:Perspectives and outcomes from the simulation of recent installations. Renewable and Sustainable Energy Reviews.2006, (1):1-18.
    [111]N.C. Back, U.C. Shin, S.H. Jeung. Study on the solar absorption cooling and heating system. Proceeding of ISES Solar World Congress 4, Taejon, Korea,1997.
    [112]顾兆林,蒋立本,冯诗愚,王彦峰,吸收-喷射复合制冷技术的研究进展.低温工程,1999,2:1-4.
    [113]A. Sozen, E. Arcaklioglu, M. Ozalp, S. Yucesu., Performance parameters of an ejector-absorption heat transformer. Applied Energy,2005,80(3):273-289.
    [114]舒碧芬,郭开华,R22-DMA热力学性质及吸收压缩式热泵系统优化.工程热物理学报,1997,18(1):9-12.
    [115]郭开华,蒙宗信,舒碧芬,R22-DMA吸收压缩热泵实验与分析.工程热物理学报,1995,16(2):141-144.
    [116]E.A.Groll, Current status of absorption/compression cycle technology. ASHRAE Transactions,1997,103(1):564-578.
    [117]E.A.Groll, modeling of absorption/compression cycles using working pair carbon dioxide/acetone[J]. ASHRAE Transactions,1997,103:863-871.
    [118]F. Ziegler, U. Spindler, An ammonia refrigerator with an absorption circuit as economizer. International Journal of Refrigeration,1993,16(4):230-239.
    [119]M. Fukuta, T. Yanagisawa, Hiroaki Iwata and Kazutaka Tada, Performance of compression/absorption hybrid refrigeration cycle with propane/mineral oil combination. International Journal of Refrigeration,2002,25:907-915.
    [120]Z. Lu, Development of absorption technologies with lithium bromide in China. Proceedings of the International Sorption Heat Pump Conference, Munich, Germany, 1999:13-23.
    [121]G,M. Chen, Eiji Hihara, A new absorption refrigeration cycle using solar energy. Solar Energy,1999,66(6):476-482.
    [122]曹毅然,张小松,鲍鹤灵,太阳能驱动的压缩吸收式复合制冷循环分析.流体机械,2002,10:51-53.
    [123]I. Borde, M. Jelinek, N.C. Daltrophe, Absorption system based on the refrigerant R134a, International Journal of Refrigeration,1995,18:387-394.
    [124]O.M. Mark, W.L. Eric, T.J. Richard, Thermodynamic properties for the alternative refrigerants, International Journal of Refrigeration,1998,21:322-338.
    [125]R.R.Tillner et al., Thermodynamic properties of pure and blended hydrofluoricarbon (HFC) refrigerants. Tokyo:Japan society of refrigerating and air conditioning engineers,1998.
    [126]L.J. He, G.M. Chen, X.L. Cu, Vapor-liquid Equilibria for R22 +N,N-dimethylformamide system at temperatures from 283.15 to 363.15K. Fluid Phase Equilibria,2008,266:84-89.
    [127]NIST REFPROP DATABASE Version 7.0. Reference fluid Thermodynamic and Transport Properties. NIST Standard Reference Database 23, Gaithersbug, MD 20899, USA,2002.
    [128]Professional V7.806. Engineering Equation Slover, York A.P.R.D. Center, England,1992-2006.
    [129]L.A. McNeely, Thermodynamic properties of aqueous solutions of lithium bromide, ASHRAE Transactions,1979(85):Part 1,413-434.
    [130]K.E. Herold, M.J. Moran. Thermodynamic properties of lithium bromide/water solutions. ASHRAE Transactions,1987,93(1):90-112.
    [131]崔晓龙,新型吸收制冷工质相平衡理论与实验研究.博士学位论文,2006.
    [132]J.K. Kim, Berman N. S., Surface tension of aqueous lithium bromide 2-ethyl-l-hexanol [J]. Journal of Chemical English Data,1994,39:122-124.
    [133]J.K. Kim, Berman N.S., Absorption of water vapor into falling films of aqueous lithium bromide. International Journal of Refrigeration,1995,18(7):486-494.
    [134]蒋静坪,计算机实时控制系统.浙江大学出版社,杭州,1992.
    [135]陶永华,新型PID控制及其应用.机械工业出版社,北京,2002.
    [136]陈芝久,制冷装置自动化.机械工业出版社,北京,1997.
    [137]范菊莉,陈光明,张绍志,王海鹰,基于Labview平台的低温生物显微系统自动控制研究.低温工程,2006,149(1):60-64.
    [138]周红燕,靳其兵,沈勇,PID参数自整定方法及其在PVC生产中的应用.聚氯乙烯,2006,(10):27-31.
    [139]PID control toolset user manual. National Instruments,2001,1-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700