基于~(137)Cs示踪技术的土壤侵蚀特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国紫色土分布较为广泛,面积为2200万hm~2,主要分布在16个省区市,其中四川、重庆云南3省市分布最广,占紫色土总面积的74.56%。紫色土质地较好,具有丰富的毛管孔隙良好的透水性,且土壤肥力较高,已被广泛的开发利用,是我国宝贵的农业土壤资源。但紫色土成土母岩结构疏松,易风化,抗蚀性低;加上地形、降雨及人为因素,导致该地区水土流失严重。我国紫色土的侵蚀面积及强度仅次于北方的黄土。因此,我国众多学者对紫色土侵蚀规律、侵蚀机理及其影响因素等方面展开了研究,取得了较大的进展。
     本文运用~(137)Cs示踪技术,对戴家沟小流域各地貌部位土地利用类型的土壤侵蚀与沉积状况进行了定量分析评价。戴家沟小流域位于重庆市三峡库区万州长岭镇境内,属于五桥河流域的次级支流。对戴家沟小流域开展土壤侵蚀研究,分析流域侵蚀来源,探讨流域不同地貌部位、不同土地利用类型的土壤侵蚀强度差异,可为三峡库区小流域的水土流失治理提供依据。主要研究结论如下:
     1.戴家沟流域年均侵蚀模数为897.37t/km~2·a,属微度侵蚀区,裸岩地的侵蚀模数达9240t/km~2·a,农耕地的侵蚀模数达1056.43t/km~2·a,控制裸岩面积、合理农作是有效控制流域侵蚀的关键。流域侵蚀特征跟土地利用类型密切相关。除裸岩地外戴家沟小流域以农耕地侵蚀最为严重,流域内不同地貌部位的侵蚀特征差异显著,以坡中>坡顶>坡脚。
     2.综合分析戴家沟小流域的土壤理化性质,表明山地土地利用方式地貌部位综合影响着土壤的物理化学性质。土壤养分的分布格局主要依赖于土地利用与地貌部位之间的差异,人类活动的影响是加剧这种差异的主要原因。不同土地利用类型中的各物理性质显示裸岩地砂化最为严重,而人为扰动最少的马尾松林物理性状明显较好,从不同地貌部位的物理性质来看,坡中是流域最为严重的部位,而坡脚土壤的粘重化较为明显,结构性也较强。各土地利用类型土壤养分以各林地含量最高,农耕地次之,裸岩地最低。不同地貌部位的土壤化学性质研究表明,坡脚是土壤各化学养分的汇集处,其养分含量均高于坡顶坡中,坡中的养分流失最为明显。
     3.统计分析表明:土壤侵蚀模数与~(137)Cs面积活度值相关系为-0.43,除全氮速效磷外,土壤侵蚀模数与土壤各理化性质都达到低度或中度相关。
Distribution of purple soil in our country is broad which is up to 22 million hm~2,and mainly distributed in 16 provinces and autonomous regions,especially Sichuan,Chongqing and Yunnan Province,which reach to 74.56%.Purple soil is rich in capillary porosity and good permeability, high soil fertility and it is our country's precious agricultural soils resources which has been developed in wide range.But the structure of purple soil parent material is loose and easy to efflorescent,anti-erodibility;and also serious soil erosion in the region because of the topography, rainfall and human factors,.In our country,purple soil erosion area and the intensity is only inerior to the loess in the North.Therefore,many scholars in China studied on the purple soil erosion, erosion mechanism and influence factors such as the field and has made great progress.
     In this paper,I use the ~(137)Cs tracer technique to analyse and evaluate parts of the physiognomy and land use types of soil erosion and deposition conditions of small drainage daijiagou.Daijiagou small watershed is located in the Three Gorges reservoir area in Changling town Wanzhou district Chongqing city,and belong to the Wuqiao river watershed tributaries.Base on research of soil erosion in daijigou small watershed,analysis of soil erosion sources,discussion of different parts of the physiognomy and land use types of soil erosion intensity differences it can provide the basis of the Three Gorges reservoir area for small watershed management.The main conclusions of the study as follows:
     1.Annual average erosion modulus of Daijiagou watershed is 897.37t/km~2·a,and which belongs to a Micro-erosion degrees areas.The erosion modulus of Uncovered Rock is 9240 t/km2·a and farmland erosion modulus reach to 1056.43t/km2·a,reasonable farming and control Uncovered Rock area is the key problem of Effective control watershed erosion.Erosion characteristics of watershed are closely related with land-use types.Erosion of agricultural land is most serious except the uncovered Rock,There is a significant difference between the erosion characteristics of different parts of the slope in the watershed,as follows:mid-slope>top of slope> base of slope.
     2.It shows that mountain land use and landscape position of the combined effects the physical and chemical properties of soil base on analysis of small watershed in the soil physical and chemical properties.The distribution pattern of soil nutrients mainly depends on differences land use and Geomorphological sites,and the main reason for intensity the difference is the impact of human activities.Physical properties of different land use types figures out that the Uncovered Rock desertificates most serious,and the physical properties of masson pine forest is better because of less human disturbances, From different parts of the physical properties of topography,the mid-slope is the most serious parts,and the soil on the base is Clayey and strong structural.Forest land has highest soil nutrient of all kinds of land-use types,followed by farmland,Uncovered Rock for next.The chemical nutrients assemble at the foot of the slope according to the study of the soil chemical properties of different parts of the topography,The nutrient content of the foot of the slope is higher than the top of slope and the mid-slope,and the mid-slope is the worst.
     3.Statistical analysis showed that:the value of the relevant department of soil erosion modulus and 137Cs area activity is-0.43.The modulus of soil erosion and soil physical and chemical properties low or moderate correlate except of total nitrogen and available phosphorus.
引文
[1]哈德逊.土壤保持[M].北京:科学出版社.1975.
    [2]美国土壤保持协会.土壤侵蚀预报与控制[M].北京:农业出版社.1981.
    [3]柯克比,摩根.土壤侵蚀[M].北京:水利电力出版社.1987.
    [4]拉尔 R著.水土保持学会、黄河水利委员会宣传出版中心译.可蚀性侵蚀性、土壤侵蚀研究方法[M].北京:科学出版社,1991,137-146.
    [5]王礼先主编.水土保持学[M].北京:中国林业出版社.1995.
    [6]关君蔚主编.水土保持原理[M].北京:中国林业出版社.1996.
    [7]唐克丽主编.中国水土保持[M].北京:科学出版社.2004.
    [8]朱永恒,濮励杰.流域侵蚀过程研究[J].水土保持研究,2005,12(2):15-18.
    [9]中华人民共国水利部.全国水土流失公告.北京.2002.
    [10]唐克丽.中国土壤侵蚀与水土保持的特点及展望[J].水土保持研究,1999,6(2):2-7.
    [11]Wischmeier W H,Smith D D.A universal soil loss equation to guide conservation farm planning.Trans.7~(th)International Cong.Soil Sci,1960,1:418-425.
    [12]Wisehmeier W H.Use and misused of the universal soil loss equation.J.Soil and Water Cons,1976,31(1):5-9.
    [13]Meyer L D.Evolution of the Universal Soil Loss Equation.J.Soil and Water Cons,1984,32(2):99-104.
    [14]Renard K D,Forste G D,Weesies G A.Prediction rainfall erosion by water:a guild to conservation planning with the revised universal soil loss equation(RUSLE).USDA Agricultural Handbook No.703,Washington,D C:USDA.1997.
    [15]李连捷,何金海.嘉陵江流域之土壤侵蚀及防淤问题[J].土壤季刊,1946,5(2):102-110.
    [16]朱显谟.土壤学与水土保持[M].西安:陕西人民出版社.2004.
    [17]刘善建.天水水土流失测验的初步分析[J].科学通报,1953,12:59-65.
    [18]Brown R B,Kling G F,Cutshall N H.Agricultural erosion indicated by ~(137)Cs redistribution:Ⅱ.Estimates of erosion rates.Soil Seience Society of America Journal,1981,45:1191-1197.
    [19]Campbell B L,Airey P L,Calf G E.Use of isotopic techniques in hydrological and erosion-sedimentation studies in tropical and temperate zones of the Asian-Pacific region.In:Gardiner V.(ed.),International geomorphology,Part 1.London:Wiley,1987,pp751-766.
    [20]de Jong E,Begg C M,Kachanoski R G Estimates of soil erosion and deposition from some Saskatchewan soils.Canadian Journal of Soil Science,1983,63:607-617.
    [21]He Q,Walling D E.The distribution of fallout ~(137)Cs and ~(210)Pb in undisturbed and cultivated soils.Appl.Radiat.Isot.,1997,48:677-690.
    [22]Lowrance R J,McIntyre S,Lance C.Erosion and deposition in a field/forest system estimated using cesium-137activity.Journal of Soil and Water Conservation.1988,43:195-199.
    [23]McHenry J R,Bubenzer G D.Field erosion estimated from ~(137)Cs activity measurements.Transactions of American Society of Agricultural Engineers,1985,28:480-483.
    [24]Pennock D J,de Jong E.The influence of slope curvature on soil erosion and deposition in hummock terrain.Soil Science,1987,144:209-217.
    [25]Quine T A,Walling D E,Zhang X et al.Investigation of soil erosion on terraced field near Yangting,Sichuan Province,China,Using caesium-137.Erosion,Debris Flows and Environment in Mountain Regions,IAHS Publ,1992,209:155-168.
    [26]Ritchie J C,McHenry J R,Gill AC.Fallout ~(137)Cs in the soils and sediments of three small watersheds.Ecology,1974,55:887-890.
    [27]Ritchie J C,Spraberry J A,McHenry J R.Estimating soil erosion from the redistribution of fallout Cs-137.Soil Science Society of America Proceedings,1974,38:137-139.
    [28]Wallbrink P J,Murray A S.Determining soil loss using the inventory ratio of excess lead-210 to cesium-137.Soil Science Society of America Journal,1996,60:1201-1208.
    [29]Walling D E,Roman J S,Bradley S B.Sediment associated transport and redistribution of Chernobyl fallout radionuclides.IAHS Publ.,1989,184:37-45.
    [30]Yang H,Du M,Chang Q et al.Quantitative model of soil erosion rates using ~(137)Cs for uncultivated soil.Soil Science.1998.163:248-257.
    [31]汪阳春,张信宝,李少龙等.黄土峁坡侵蚀的~(137)Cs法研究[J].水土保持通报,1991(3):34-37.
    [32]杨浩,杜明远,赵其国等.利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型[J].土壤学报,2000,37(3):296-304.
    [33]严平,董光荣,董治宝等.青海共盆地达连海湖积物~(137)Cs示踪的初步结果[J].地球化学,2000,5:469-473.
    [34]Wan G J,Santschi P H,Strum M et al.Natural(~(210)Pb,~7Be)and fallout(~(137)Cs,~(239,240)Pu,~(90)Sr)radionuclides as geochemical tracers of sedimentation in Greifensee,Switzerland.Chemical Geology,1987,63:181-196.
    [35]Zapata F.Handbook for the assessment of soil erosion and sedimentation using environmental radio nuclides.Kluwer Academic Publishers,Dordrecht/Boston/London,2003,pp219.
    [36]Rogowski A S,Tamura T.Movement of ~(137)Cs by runoff,erosion and infiltration on the alluvial Captina silt loam.Health Physics,1965,11:1333-1340.
    [37]Walling D E,He Q.Improved models for estimating soil erosion rates from caesium-137 measurements.Journal of Environmental Quality,1999,28:611-622.
    [38]Menzel R G.Transport of strontium-90 in runoff.Science,1960,131:499-500.
    [39]Davis J J.Cesium and its relationship to potassium in ecology,In:V.Schultz and A.W.Klement Jr.(eds.),Radioecology,Reinhold,New York.1963,pp 539-556.
    [40]Auerbach S I,Olson J S,Waller H D.Landscape investigations using cesium-137.Nature,1964,201:761-764.
    [41]Talibudeen O.Natural radioactivity in soils.Soils and Fertilizer.1964,27:347-359.
    [42]Lomenick T F,Tamura T.Naturally occurring fixation of cesium-137 on sediments of lacustrine origin.Soil Science Society of America Proceedings,1965,27:383-386.
    [43]Rogowski A S,Tamura T.Environmental mobility of cesium-137.Radiation Botany,1970,10:35-45.
    [44]Ritchie J C,McHenry J R,Gill A C.The distribution of Cs-137 in litter and the upper 10centimcters of soil under different vegetation types in northern Mississippi.Health Physics,1972,22:197-198.
    [45]McHenry J R,Ritchie J C,Gill A C.Accumulation of fallout cesium-137 in soils and sediments in selected watersheds.Water Resources Research,1973,9:676-686.
    [46]McHenry J R,Ritchie J C.Estimating field erosion losses from fallout Cs-137 measurements.International Association of Hydrological Sciences Publication,1977a,122:26-33.
    [47]McHenry J R,Ritchie J C.Physical and chemical parameters affecting transport of ~(137)Cs in arid watersheds.Water Resources Research,1977b,13:923-925.
    [48]张信宝,D L 赫吉特,D E沃林.~(137)Cs法测算黄土高原土壤侵蚀速率的初步研究[J].地球化学,1991,3:212-218.
    [49]张信宝,李少龙,T A Quine等.犁耕作用对~(137)Cs法测算农耕地土壤侵蚀量的影响[J].科学通报,1993,38(22):2072-2076.
    [50]张信宝,汪阳春,李少龙等.蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)Cs法初步研究[J].中国水土保持,1992,2:28-31.
    [51]文安邦,张信宝,王玉宽等.长江上游紫色土坡耕地土壤侵蚀~(137)Cs示踪法研究[J].山地学报,2001,19:56-59.
    [52]李青云,张一云,王汉湘.铯-137同位素示踪法测算小流域土壤侵蚀量的研究[J].长江科学院院报,1993,4(10):56-63.
    [53]唐翔宇,杨浩,赵其国等.~(137)Cs示踪技术在土壤侵蚀估算中的应用研究进展[J].地球科学进展,2000,5(15):57-60.
    [54]吴永红、寇权.陇东黄土高塬沟壑区土壤侵蚀的~(137)Cs法研究[J].水土保持通报,1997,5(17):66-74.
    [55]白占国,万曦,万国江等.岩溶山区表土中~3Be,~(137)Cs,~(220)Ra~(228)Ra的地球化学相分配及其侵蚀示踪意义[J].环境科学学报,1997,17(4):407-411.
    [56]杨明义,田均良,刘普灵等.~(137)Cs示踪研究小流域土壤侵蚀与沉积空间分布特征[J].自然科学进展,2001,(01).
    [57]庄作权.利用放射化学及地球化学方法追踪德基水库集水区之泥沙来源[J].水土保持研究,1995,3(2):115-119.
    [58]濮励杰,包浩生,彭补拙等.~(137)Cs应用于我国西部风蚀地区土地退化的初步研究——以新疆库尔勒地区为例[J].土壤学报,1998,35(4):441-449.
    [59]文安邦,张信宝.黄土丘陵区小流域泥沙来源及其动态变化的~(137)Cs研究[J].地理学报,1998,53,124-133.
    [60]严平,高尚玉,董光荣.土壤颗粒组成影响~(137)Cs含量的初步实验结果[J].中国沙漠,2002,2(22):47-51.
    [61]严平,董光荣.~(137)Cs法测定青藏高原土壤风蚀的初步结果[J].科学通报,2000,2(45):63-69.
    [62]杨浩,杜远明.利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型[J].土壤学报,2000,3(37):112-117.
    [63]赵烨,李天杰,徐翠华.南极长城站陆地生态系统中~(137)Cs比活度测定及其地理意义[J].自然科学进展,1999,9(2):113-119.
    [64]史立人.长江流域水土流失特征,防治对策及实施成效[J].人民长江,1998,29(1):41-43.
    [65]杜佐华,严国安.三峡库区水土保持与生态环境改善[J].长江流域资源与环境,1999,8(3):299-304.
    [66]余剑如,史立人.长江上游的地面侵蚀与河流泥沙[J].水土保持通报,1991,11(1):9-17.
    [67]Bruckmann Axel,Volkmar Wolters.Microbial immobilization and recycling of ~(137)C in the organic layers of forest ecosystems:relationship to environmental conditions,humification and invertebrate activity[J].The Science of the Total Environment,1994,157:249-256.
    [68]Cormett R J,Chant L A,Risto B A.Identifying resuspended particles using isotope ratios[J].Hydrobiologia,1994,284:69-77.
    [69]Papastefanou C,Manolopoulou M,Stoulos S,et al.Soil-to-plant transfer of ~(137)C,~(40)K and ~7Be[J].Journal of Environmental Radioactivity,1999,45:59-65.
    [70]Wise S M.Caesium-137 and Lead-210:a review of the techniques and some applications in geomorphology [A].Culling-ford R A,Davidson D A,Lewin J.Timescales in Geomorphology[C].Chichester(UK):John Wiley &Sons,1980,109-127.
    [71]Ritchie J C,McHenry J R.Application of radioactive fall-our Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns,a review[J].Journal of Environmental Quality,1990,19:215-233.
    [72]濮励杰,包浩生,D L Higgitt.土地退化方法应用初步研究—以闽西沙县东溪流域为例[J].自然资源学报,1999,14(1):55-61.
    [73]Pu L J,Ban H S,Peng B Z,et al.Distribution and assess-ment of soil and land degradation in subtropical China-A case study of Dongxi River Basin,Fujian Province[J].Pedosphere,1998,8(3):201-210.
    [74]Quine T A,Walling D E,Zhang X,et al.Investigation of soil erosion on terraced fields near Yangting,Sichuan Province,using Cesium-137[C].In:Erosion,Debris Flows and Environment in Mountain Regions(Proceedings of the Chengdu Symposium,July 1992).IAHS Publication,1992,209:155-168.
    [75]Walling D E,Quine T A.The use of Cesium-137 measurements in soil erosion surveys[C].In:Erosion,Debris Flows and Environment in Mountain Regions(Proceedings of the Chengdu Symposium,July 1992).IAHS Publication,1992.210:143-152.
    [76]王金磊,濮励杰,金平华,等.~(137)C法应用于流域土壤侵蚀初步研究—以太湖上游浙江省安吉县西苕淋巴细胞为例[J].南京大学学报(自然科学版),2003,39(6):788-796.
    [77]严平,董光荣,张信宝,等.~(137)C法测定青藏高原土壤风蚀的初步结果[J].科学通报,2000,45(2):199-204.
    [78]张信宝,汪阳春,李少龙,等.蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)C法初步研究[J].中国水土保持,1992(2):28-31.
    [79]Zhang X,Higgitt D L,Walling D E.A Preliminary assessment of the potential for using Cesium-137 to estimate soil loss in the Loess Plateau of China[J].Hydrological Sciences Journal.1990,35:243-252.
    [80]Bunzl K,Schimmack W,Bdellium M et al.Sequential extraction of fallout radiocesinm from the soil:Small scale and large scale spale spatial variability[J].Journal of Radio Analysis and Nuclear Chemistry,1997,226:47-53.
    [81]Sutherland R A.Caesium-137 soil sampling and variability in reference locations:a literature review[J].Hydrological Proceedings,1996,10:43-53.
    [82]Pennock D J,Corre M D.Development and application of landform segmentation procedures[J].Soil and Tillage Research,2001,58:151-162.
    [83]Lettner H,Bossew P,Hubmer A K.Spatial variability of fallout ~(137)C in Austrian alpine[J].Journal of Environmental Radioactivity,2000,47:71-82.
    [84]张奇,杨文元,林超文,等.川中丘陵小流域水土流失特征与调控研究[J].水土保持学报,1997,3(3):38-45.
    [85]贾红杰,傅瓦利,张治伟,等.中梁山岩溶区坡耕地土壤侵蚀~(137)Cs法研究[J].西南大学学报(自然科学版),2008,(8):57-61.
    [86]王库,史学正,于东升.红壤丘陵区不同土地利用方式下的土壤侵蚀特征[J],西南农业大学学报,2006,28(5):697-701.
    [87]魏兴萍,赵纯勇,杨华.基于GIS的小流域土壤侵蚀评价研究[J].重庆师范大学学报(自然科学版),2005,22,(4):62-65.
    [88]樊燕,武伟,刘洪斌.土壤重金属与土壤理化性质的空间变异及研究[J].西南师范大学学报(自然科学版),2007,(4):58-63.
    [89]罗中杰,李维一.宜宾县金沙江流域水土流失与防治对策[J].四川师范大学学报(自然科学版),2002,25(2):209-211.
    [90]祁庆.水工建筑物[M].北京:中国水利水电出版社,2002.
    [91]吴持恭.水力学[M].北京:高等教育出版社,2004.
    [92]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
    [93]杨剑虹.土壤农化分析与环境监测(上册)[M].西南农业大学资源环境学院,2004.
    [94]郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994-2002.
    [95]巩杰,陈顶利,傅伯杰,等.黄土丘陵区小流域土地利用植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [96]Acosta—Martinez V,Reicher Z,Bi~'hof M,et al.The role oftreeleafmulch and nitrogenfertilizer onturf grass soil quality[J].Biol Fert Soils,1999,29:55-61.
    [97]Whalley W R,Dumitru E,Dexter A R.Biological efects of soil compaction[J].Soil Till Res,1995,35:53-68.
    [98]高雪松,邓良基,张世熔.不同利用方式与坡位土壤物理性质及养分特征分析[J].水土保持学报,2005,19(2):53-60,79.
    [99]王洪杰,李宪文,史学正,等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44-50.
    [100]BurleML,MieiniczuKJ,FocchiS.Effects of cropping systems on soil chemical characteristics,with emphasison soil acidification[J].PlantandSoil,1997,190:309-316.
    [101]张胜利,李倬,赵文林等,黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州:黄河水利出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700