基于~(137)Cs技术的三峡库区小流域土壤侵蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是地球上生物赖以生存的基本要素之一,土地退化的日益严重成为制约人类发展的重要因素,土壤侵蚀是其中一个重要的因素。我国是世界上土壤侵蚀最为严重的国家之一,土壤侵蚀面积占国土面积的比例高达38.2%,研究土壤侵蚀的机理,有效地对其进行监控、治理已经成为全球关注的焦点国内外学者早在20世纪60年代末就开始对土壤侵蚀相关理论问题及过程机理进行研究,利用核素示踪技术定量研究土壤侵蚀速率具有常规技术无可比拟的优势,准确、快速、精确度高,越来越受到研究者的重视。
     本研究在对万州区陈家沟流域内的杨家沟小流域进行实地调查的基础上,选取具有代表性的20个采样点进行采样研究,结果表明:
     (1)小流域内~(137)Cs含量的影响因素很多,坡位、坡度土地利用现状都对~(137)Cs的含量存在一定的影响作用,对于水田坡耕地比较密集的地块,由于人为活动使得土壤颗粒沿坡面迁移比较频繁,造成了~(137)Cs含量沿坡面迁移,使得这部分地区~(137)Cs分布规律性不明显,而在坡顶林地范围内,~(137)Cs分布规律基本符合地貌的变化规律:随着坡度增大,含量越低,坡度越小,含量越小。
     (2)通过~(137)Cs法计算出的小流域内水田的土壤侵蚀模数值比较大,由于水田坡度为0,所以理论上水田的土壤侵蚀为微度侵蚀,但是根据张信宝提出的~(137)Cs侵蚀模型的计算来看,水田的侵蚀模数很不规律,结果偏高,因此可能是公式中对于水田的计算存在一定的偏差,有待进一步探讨。
     (3)小流域内有机质分布很不平均,与土壤侵蚀模数相关性不大,但不同土地利用现状对有机质分布影响比较明显。有机质分布规律是:坡耕地<林地<经果林<水田。有机质含量分布~(137)Cs分布规律基本吻合。
     (4) ~(137)Cs法计算小流域土壤侵蚀量,是一种比较快速有效的预测水土流失的新方法,通过此种方法计算得出杨家沟小流域年土壤侵蚀总量为3402.12t。
     (5) ~(137)Cs含量与土壤物理性粘粒以及物理性粉粒存在一定的相关性,随着粘粒粉粒的增多,土壤中的~(137)Cs含量随之增多,这是因为~(137)Cs主要吸附在粉粒粘粒等微团聚体上。土壤中物理性砂粒含量越多,~(137)Cs含量越少。因此可以通过增加土壤团聚体来减少水土流失。
Soil is one of basic factors which life beings in the earth rely on.Soil degradation increasingly restricts human development,and soil erosion is one of the reasons.China is one of the most serious soil erosion Country in the world,and the method that how to control and deal with it have been the focus of the world.Many scholars have studied the theories and mechanism of soil erosion from 1960's.with the development of computer technique,combined GIS with RS to study soil erosion has been the advanced filed in researching soil erosion quantificationally.Using nucleus tracer technique to quantificationally research soil erosion has unsubstituted advantage,such as exactness, speediness,precision,and so on.Now more and more researchers become to pay attention them.
     Based on the field survey advanced position and the surrounding area of Yang jiagou small watershed of Chen jiagou watershed in Wanzhou district,this study selected 20 typical soil sampling points.
     The conclusions of analysis are as follows.
     (1) There are a lot of factors that affect the ~(137)Cs content in small watershed,like slope position,slope,and land use status.As for lands that paddy field and slope soil,~(137)Cs content is forced to change because of humane activities.And within the spectrum of top of slope and woodland,the distributing rules of ~(137)Cs almost suit that of the physiognomy—the bigger the gradient is,the less the content is,and vice versa.
     (2) The soil erosion modulus is bigger than that is calculated through nuclide tracing method. And as the slope of paddy field equals zero,the grade scale of soil erosion intensity belongs to micro degree erosion theoretically.However,most of the paddy field locate on the bottom of this area, which is very close to the riverway;and the soil there is comparatively lossen.That is to say,when the rain season comes,as the water level raises,most soil would be washed out,thus produces more soil erosion.
     (3) The organic matter in small watershed is relatively imbalanced,which has less relativity with soil erosion modulus.But different Soil Utilty Status produce different effect to the distributed of organic matter.The rule of organic matter is:slope soil<woodland<economic fruit forest<paddy field.The distribution rule is almost the same to the content of organic matter.
     (4) It is a very effective and efficient way to use nuclide tracing method work out the soil erosion quantity of the small watershed.Though this way,we can get that the total amount of Yangjiagou is 3402.12t.
     (5) The content of ~(137)Cs has certain pertinence with soil physical clay and soil physical silt.As the manifold of the clay and silt,the content of ~(137)Cs in the soil gets more,for the ~(137)Cs are mostly found in microaggregate such as clay and silt,and the more the physical sand in the soil becomes, the less the ~(137)Cs content gets.So we could prevent the water loss and soil erosion from increase soil aggregate by using this method.
引文
Anderson R_F.et al.Determining sediment accumulation and mixing rates using ~(210)Pb,~(137)Cs,and other tracer:Problems due to post depositional mobility or coring artifacts:Can.J.Fish.AupuatSci.1987,44:39-40.
    Bouyoucos G J.1935,The Clay Ratio as a Criterion of Susceptibility of Soils to Erosion.Toural of American Society of Agronomy,27-.738-741.
    Brown R B,Kling G F,Cutshall N H.1981,Agricultural erosion indicated by ~(137)Cs redistribution:II.Estimates of erosion rates.Soil Science Society of America Journal,45:1191-1197.
    Campbell B L,Airey P L,Calf G E.1987,Use of isotopic techniques in hydrological and erosion-sedimentation studies in tropical and temperate zones of the Asian-Pacific region.In:Gardiner V.(ed.),International geomorphology,Part 1.London:Wiley,pp751-766.
    de Jong E,Begg C M,Kachanoski R G.1983,Estimates of soil erosion and deposition from someSaskatchewan soils.Canadian Journal of Soil Science,63:607-617.
    DusanZ.1982,Soil Erosion,developments in Soil Science.New York,10:164-166.
    F.ZaPata.Handbook for the Assessment of soil Erosion and Sendimentation Using Environmental Radionuelides.Kluwer Aeademic Publishers.USA,2002 IAEA.Primed in the Netherlands,97-107.
    He Q,Walling D E.1997,The distribution of fallout~(137)Cs and~(210)Pb in undisturbed and cultivated soils.Appl.Radiat.Isot.,48:677-690.
    Kachanoski R G.1987,Comparison of measured soil 137-cesium losses and erosion rates.Canadian Journal of Soil Science,67:199-203.
    Liu B Y,Nearing M A,Risse L M.Slope gradient effects on soil loss for steep slopes[J].Trans of the ASAE,1994,37:1835~1840.
    Lowrance D.J.Soil redistribution on three cultivated New Bruunswick hillslope calculated from ~(137)Cs measurement,solum data and USLE.Canadian.Journal of soil science,1986,66:15-17.
    Lowrance R J,McIntyre S,Lance C.1988,Erosion and deposition in a field/forest system estimatedusing cesium-137 activity.Journal of Soil and Water Conservation.43:195-199.
    McHenry J R,Bubenzer G D.1985,Field erosion estimated from~(137)Cs activity measurements.Transactions of American Society of Agricultural Engineers,28:480-483.
    MeCool D K,Brown L C,Foster G R,et al.Revised slope steepness factor for the universal soil loss equation[J].TRANSACTIONS of the ASAE,1987,30 (5):1387~1396.
    Menzel.Estimated soil erosion in Korea with fallout caesium-137.Applied Radiation and Istopes,1987,38 (6).
    Meyer L D.1984,Evolution of the Universal Soil Loss Equation.J.Soil and Water Cons,32 (2):Middleton H E.1930,Properties of Soil Which Influence Soil Erosion.USDA Technical Bulletin,173:16.
    Pennock D J,de Jong E.1987,The influence of slope curvature on soil erosion and deposition inhummock terrain.Soil Science,144:209-217.
    Quine T A,Walling D E,Zhang X et al.1992,Investigation of soil erosion on terraced field nearYangting,Sichuan Province,China,Using caesium-137.Erosion,Debris Flows and Environmentin Mountain Regions,IAHS Publ,209:155-168.
    Renard K D,Forste G D,Weesies G A.1997,Prediction rainfall erosion by water:a guild to conservation planning with the revised universal soil loss equation(RUSLE).USDA Agricultural Handbook No.703,Washington,D C:USDA.
    Ritchie J C,McHenry J R,Gill AC.1974,Fallout Cs-137 in the soils and sediments of three smallwatersheds.Ecology,55:887-890.
    Ritchie J C,Spraberry J A,McHenry J R.1974,Estimating soil erosion from the redistribution offallout Cs-137.Soil Science Society of America Proceedings,38:137-139.
    Ritchie J C,McHenry J R,Gill AC.1974,Fallout Cs-137 in the soils and sediments of three smallwatersheds.Ecology,55:887-890.
    Wallbrink P J,Murray A S.1996,Determining soil loss using the inventory ratio of excess lead-210tocesium-137.Soil Science Society of America Journal,60:1201-1208.
    Walling D E,He Q.1999,Improved models for estimating soil erosion rates from caesium-137measurements.Joumal of Environmental Quality,28:611-622.
    Walling D E,Roman J S,Bradley S B.1989,Sediment associated transport and redistribution of Chemobyl fallout radionuclides.IA HS Publ.,184:37-45.
    Wan G J,Santschi P H,Strum M et al.1987,Natural(~(210)pb,~7Be) and fallout(~(137)Cs,~(239,240)pu,~(90)Sr)radionuclides as geochemical tracers of sedimentation in Greifensee,Switzerland.ChemicalGeology,63:181-196.
    Wischmeier W H,Smith D D.1960,A universal soil loss equation to guide conservation farm planning.Trans.7~(th) International Cong.Soil Sci,1:418-425.
    Wischmeier W H.1976,Use and misused of the universal soil loss equation.J.Soil and Water Cons,31(1):5-9.
    Woodburn R,Kozachyn J.1956,A Study of Relative Erodibility of a Group of Mississippi Gully Soils.Trans,Am.Geographical Union,35:745-753.
    Yang H,Du M,Chang Q et al.1998,Quantitative model of soil erosion rates using ~(137)Cs for uncultivated soil.Soil Science,163:248-257.
    Yang H,Du M,Chang Q et al.2000,A quantitative model for estimating mean annual soil loss in cultivated land using~(137)Cs measurements.Soil Science and Plant Nutrition,46:69-79.
    Zapata F.2003,Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides.Kluwer Academic Publishers,Dordrecht/Boston/London,pp219.
    Zhang X,Higgitt D L,Walling D E.1990,A preliminary assessment of the potential for usingcaesium-137 to estimate rates of soil erosion in the Loess Plateau of China.Hydrological Science Journal,35:267-276.
    Zhang X,Li S,Wang C et a1.1989,Use of caesium-137 measurements to investigate erosion and sediment sources within a small basin in the Loess Plateau of China.Hydrological Processes,3:317-323.
    Zhang X,Walling D E,He Q.1999,Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements.Hydrological Sciences.44:33-45.
    陈永宗,景可,蔡强国等.1988,黄土高原现代侵蚀与治理.北京:科学出版社.
    复旦大学,清华大学,北京大学.1997,原子核物理实验方法。北京:原子能出版社.
    关君蔚主编.1996,水土保持原理.北京:中国林业出版社.
    哈德逊.1975,土壤保持.北京:科学出版社.
    康玲玲,朱小勇,王云璋.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,1999,36(4):536-543.
    柯克比,摩根.1987,土壤侵蚀.北京:水利电力出版社.
    拉尔R著.1991,水土保持学会、黄河水利委员会宣传出版中心译.可蚀性侵蚀性、土壤侵蚀研究方法.北京:科学出版社,pp137-146.
    冷疏影,冯仁国,李锐等.土壤侵蚀与水土保持科学重点研究领域与问题[J].水土保持学报2004,18(1):1-7.
    李雅琦.可活化稳定性核示踪法在土壤侵蚀研究中的应用[J].核技术,1997,20(7):418-422.
    美国土壤保持协会.1981,土壤侵蚀预报与控制.北京:农业出版社.
    南秋菊,华珞,国内外土壤侵蚀研究进展,首都师范大学学报,2003.
    阮伏水,吴雄海.1996,关于土壤可蚀性指标的讨论.水土保持通报,16(6):68-72.
    史德明等.1987,三峡库周地区土壤侵蚀对库区泥沙来源的影响及其对策.In:长江三峡工程对生态环境影响及其对策研究论文集,北京:科学出版社.
    史立人.1998,长江流域水土流失特征,防治对策及实施成效.人民长江,29(1):41-43.
    孙其诚,王光谦.2001,沙粒起跃的动态模拟.中国沙漠,21(增刊):17-21.
    唐克丽主编.2004,中国水土保持.北京:科学出版社,pp845.
    田均良.土壤侵蚀REE示踪法研究初报[J].水土保持学报,1992,6(4):24-27.
    汪阳春,张信宝,李少龙等.1991a,黄土峁坡侵蚀的~(137)Cs法研究.水土保持通报,1991(3):34-37.
    汪阳春,张信宝,李少龙等.1991b,三峡高桥河滩地农田泥沙淤积厚度的~(137)Cs法测定.地理,4(1):63-64.
    王礼先主编.1995,水土保持学.北京:中国林业出版社.
    王力威,石晓燕,李国忠.1997,对风蚀机理的分析与认识.水利科技与经济,3(2):90-91.
    吴学超,冯正永编著.1988,核物理实验数据处理.北京:原子能出版社.
    严平,董光荣,董治宝等.2000,青海共盆地达连海湖积物~(137)Cs示踪的初步结果.地球化学,5:469-473.
    杨福家,2000,原子物理学(第三版),北京:高等教育出版社,pp474.
    杨浩,杜明远,赵其国等.2000,利用~(137)Cs示踪农业耕作土壤侵蚀速率的定量模型.土壤学报,37(3):296-304.
    杨武德.红壤坡地不同利用方式土壤侵蚀时空分布规律研究[J].应用生态学报,1998,9(2):155-158.
    张侠,赵德义.水土保持研究综述[J].地质技术经济管理.2004,26(3):26-30.
    张信宝,D L赫吉特,D E沃林.1991,~(137)Cs法测算黄土高原土壤侵蚀速率的初步研究.地球化学,1991(3):212-218.
    张信宝,李少龙,TA Quine等.1993,犁耕作用对~(137)Cs法测算农耕地土壤侵蚀量的影响.科学通报,38(22):2072-2076.
    张信宝,李少龙,王成华等.1988,~(137)Cs法测算梁峁坡农耕地土壤侵蚀量的初探.水土保持通报,8(5):18-22.
    张信宝,汪阳春,李少龙等.1992,蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)Cs法初步研究.中国水土保持,1992(2):28-31.
    郑永春,王世杰,~(137)Cs技术定量侵蚀速率常用模型及其讨论.山地学报,2002,20(5):600-605.
    郑永春,王世杰.2002,~(137)Cs的土壤地球化学及其侵蚀示踪意义.水土保持学报,16(2):57-60.
    朱显谟.2004,土壤学与水土保持.西安:陕西人民出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700